Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import warnings | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from ...image_processor import PipelineImageInput, VaeImageProcessor | |
| from ...loaders import FromSingleFileMixin | |
| from ...models import AutoencoderKL, UNet2DConditionModel | |
| from ...schedulers import EulerDiscreteScheduler | |
| from ...utils import deprecate, logging | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.preprocess | |
| def preprocess(image): | |
| warnings.warn( | |
| "The preprocess method is deprecated and will be removed in a future version. Please" | |
| " use VaeImageProcessor.preprocess instead", | |
| FutureWarning, | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64 | |
| image = [np.array(i.resize((w, h)))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, FromSingleFileMixin): | |
| r""" | |
| Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->unet->vae" | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: EulerDiscreteScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic") | |
| def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `list(int)`): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| """ | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_length=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_encoder_out = self.text_encoder( | |
| text_input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| text_embeddings = text_encoder_out.hidden_states[-1] | |
| text_pooler_out = text_encoder_out.pooler_output | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_length=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_encoder_out = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| uncond_embeddings = uncond_encoder_out.hidden_states[-1] | |
| uncond_pooler_out = uncond_encoder_out.pooler_output | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| text_pooler_out = torch.cat([uncond_pooler_out, text_pooler_out]) | |
| return text_embeddings, text_pooler_out | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
| deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def check_inputs(self, prompt, image, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, PIL.Image.Image) | |
| and not isinstance(image, list) | |
| ): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}" | |
| ) | |
| # verify batch size of prompt and image are same if image is a list or tensor | |
| if isinstance(image, list) or isinstance(image, torch.Tensor): | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| else: | |
| batch_size = len(prompt) | |
| if isinstance(image, list): | |
| image_batch_size = len(image) | |
| else: | |
| image_batch_size = image.shape[0] if image.ndim == 4 else 1 | |
| if batch_size != image_batch_size: | |
| raise ValueError( | |
| f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." | |
| " Please make sure that passed `prompt` matches the batch size of `image`." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height, width) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu | |
| def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): | |
| r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. | |
| The suffixes after the scaling factors represent the stages where they are being applied. | |
| Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values | |
| that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | |
| Args: | |
| s1 (`float`): | |
| Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | |
| mitigate "oversmoothing effect" in the enhanced denoising process. | |
| s2 (`float`): | |
| Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | |
| mitigate "oversmoothing effect" in the enhanced denoising process. | |
| b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | |
| b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | |
| """ | |
| if not hasattr(self, "unet"): | |
| raise ValueError("The pipeline must have `unet` for using FreeU.") | |
| self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu | |
| def disable_freeu(self): | |
| """Disables the FreeU mechanism if enabled.""" | |
| self.unet.disable_freeu() | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| image: PipelineImageInput = None, | |
| num_inference_steps: int = 75, | |
| guidance_scale: float = 9.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide image upscaling. | |
| image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a | |
| latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered | |
| a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and | |
| encoded using this pipeline's `vae` encoder. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| Examples: | |
| ```py | |
| >>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline | |
| >>> import torch | |
| >>> pipeline = StableDiffusionPipeline.from_pretrained( | |
| ... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipeline.to("cuda") | |
| >>> model_id = "stabilityai/sd-x2-latent-upscaler" | |
| >>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
| >>> upscaler.to("cuda") | |
| >>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" | |
| >>> generator = torch.manual_seed(33) | |
| >>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images | |
| >>> with torch.no_grad(): | |
| ... image = pipeline.decode_latents(low_res_latents) | |
| >>> image = pipeline.numpy_to_pil(image)[0] | |
| >>> image.save("../images/a1.png") | |
| >>> upscaled_image = upscaler( | |
| ... prompt=prompt, | |
| ... image=low_res_latents, | |
| ... num_inference_steps=20, | |
| ... guidance_scale=0, | |
| ... generator=generator, | |
| ... ).images[0] | |
| >>> upscaled_image.save("../images/a2.png") | |
| ``` | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images. | |
| """ | |
| # 1. Check inputs | |
| self.check_inputs(prompt, image, callback_steps) | |
| # 2. Define call parameters | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| if guidance_scale == 0: | |
| prompt = [""] * batch_size | |
| # 3. Encode input prompt | |
| text_embeddings, text_pooler_out = self._encode_prompt( | |
| prompt, device, do_classifier_free_guidance, negative_prompt | |
| ) | |
| # 4. Preprocess image | |
| image = self.image_processor.preprocess(image) | |
| image = image.to(dtype=text_embeddings.dtype, device=device) | |
| if image.shape[1] == 3: | |
| # encode image if not in latent-space yet | |
| image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor | |
| # 5. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| batch_multiplier = 2 if do_classifier_free_guidance else 1 | |
| image = image[None, :] if image.ndim == 3 else image | |
| image = torch.cat([image] * batch_multiplier) | |
| # 5. Add noise to image (set to be 0): | |
| # (see below notes from the author): | |
| # "the This step theoretically can make the model work better on out-of-distribution inputs, but mostly just seems to make it match the input less, so it's turned off by default." | |
| noise_level = torch.tensor([0.0], dtype=torch.float32, device=device) | |
| noise_level = torch.cat([noise_level] * image.shape[0]) | |
| inv_noise_level = (noise_level**2 + 1) ** (-0.5) | |
| image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None] | |
| image_cond = image_cond.to(text_embeddings.dtype) | |
| noise_level_embed = torch.cat( | |
| [ | |
| torch.ones(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), | |
| torch.zeros(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), | |
| ], | |
| dim=1, | |
| ) | |
| timestep_condition = torch.cat([noise_level_embed, text_pooler_out], dim=1) | |
| # 6. Prepare latent variables | |
| height, width = image.shape[2:] | |
| num_channels_latents = self.vae.config.latent_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height * 2, # 2x upscale | |
| width * 2, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 7. Check that sizes of image and latents match | |
| num_channels_image = image.shape[1] | |
| if num_channels_latents + num_channels_image != self.unet.config.in_channels: | |
| raise ValueError( | |
| f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
| f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_image`: {num_channels_image} " | |
| f" = {num_channels_latents+num_channels_image}. Please verify the config of" | |
| " `pipeline.unet` or your `image` input." | |
| ) | |
| # 9. Denoising loop | |
| num_warmup_steps = 0 | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| sigma = self.scheduler.sigmas[i] | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1) | |
| # preconditioning parameter based on Karras et al. (2022) (table 1) | |
| timestep = torch.log(sigma) * 0.25 | |
| noise_pred = self.unet( | |
| scaled_model_input, | |
| timestep, | |
| encoder_hidden_states=text_embeddings, | |
| timestep_cond=timestep_condition, | |
| ).sample | |
| # in original repo, the output contains a variance channel that's not used | |
| noise_pred = noise_pred[:, :-1] | |
| # apply preconditioning, based on table 1 in Karras et al. (2022) | |
| inv_sigma = 1 / (sigma**2 + 1) | |
| noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| else: | |
| image = latents | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |
