Spaces:
Running
on
Zero
Running
on
Zero
import functools | |
import importlib | |
import inspect | |
import io | |
import logging | |
import multiprocessing | |
import os | |
import random | |
import re | |
import struct | |
import sys | |
import tempfile | |
import time | |
import unittest | |
import urllib.parse | |
from contextlib import contextmanager | |
from distutils.util import strtobool | |
from io import BytesIO, StringIO | |
from pathlib import Path | |
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import PIL.ImageOps | |
import requests | |
from numpy.linalg import norm | |
from packaging import version | |
from .import_utils import ( | |
BACKENDS_MAPPING, | |
is_compel_available, | |
is_flax_available, | |
is_note_seq_available, | |
is_onnx_available, | |
is_opencv_available, | |
is_peft_available, | |
is_torch_available, | |
is_torch_version, | |
is_torchsde_available, | |
is_transformers_available, | |
) | |
from .logging import get_logger | |
global_rng = random.Random() | |
logger = get_logger(__name__) | |
_required_peft_version = is_peft_available() and version.parse( | |
version.parse(importlib.metadata.version("peft")).base_version | |
) > version.parse("0.5") | |
_required_transformers_version = is_transformers_available() and version.parse( | |
version.parse(importlib.metadata.version("transformers")).base_version | |
) > version.parse("4.33") | |
USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version | |
if is_torch_available(): | |
import torch | |
# Set a backend environment variable for any extra module import required for a custom accelerator | |
if "DIFFUSERS_TEST_BACKEND" in os.environ: | |
backend = os.environ["DIFFUSERS_TEST_BACKEND"] | |
try: | |
_ = importlib.import_module(backend) | |
except ModuleNotFoundError as e: | |
raise ModuleNotFoundError( | |
f"Failed to import `DIFFUSERS_TEST_BACKEND` '{backend}'! This should be the name of an installed module \ | |
to enable a specified backend.):\n{e}" | |
) from e | |
if "DIFFUSERS_TEST_DEVICE" in os.environ: | |
torch_device = os.environ["DIFFUSERS_TEST_DEVICE"] | |
try: | |
# try creating device to see if provided device is valid | |
_ = torch.device(torch_device) | |
except RuntimeError as e: | |
raise RuntimeError( | |
f"Unknown testing device specified by environment variable `DIFFUSERS_TEST_DEVICE`: {torch_device}" | |
) from e | |
logger.info(f"torch_device overrode to {torch_device}") | |
else: | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
is_torch_higher_equal_than_1_12 = version.parse( | |
version.parse(torch.__version__).base_version | |
) >= version.parse("1.12") | |
if is_torch_higher_equal_than_1_12: | |
# Some builds of torch 1.12 don't have the mps backend registered. See #892 for more details | |
mps_backend_registered = hasattr(torch.backends, "mps") | |
torch_device = "mps" if (mps_backend_registered and torch.backends.mps.is_available()) else torch_device | |
def torch_all_close(a, b, *args, **kwargs): | |
if not is_torch_available(): | |
raise ValueError("PyTorch needs to be installed to use this function.") | |
if not torch.allclose(a, b, *args, **kwargs): | |
assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}." | |
return True | |
def numpy_cosine_similarity_distance(a, b): | |
similarity = np.dot(a, b) / (norm(a) * norm(b)) | |
distance = 1.0 - similarity.mean() | |
return distance | |
def print_tensor_test(tensor, filename="test_corrections.txt", expected_tensor_name="expected_slice"): | |
test_name = os.environ.get("PYTEST_CURRENT_TEST") | |
if not torch.is_tensor(tensor): | |
tensor = torch.from_numpy(tensor) | |
tensor_str = str(tensor.detach().cpu().flatten().to(torch.float32)).replace("\n", "") | |
# format is usually: | |
# expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161]) | |
output_str = tensor_str.replace("tensor", f"{expected_tensor_name} = np.array") | |
test_file, test_class, test_fn = test_name.split("::") | |
test_fn = test_fn.split()[0] | |
with open(filename, "a") as f: | |
print(";".join([test_file, test_class, test_fn, output_str]), file=f) | |
def get_tests_dir(append_path=None): | |
""" | |
Args: | |
append_path: optional path to append to the tests dir path | |
Return: | |
The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is | |
joined after the `tests` dir the former is provided. | |
""" | |
# this function caller's __file__ | |
caller__file__ = inspect.stack()[1][1] | |
tests_dir = os.path.abspath(os.path.dirname(caller__file__)) | |
while not tests_dir.endswith("tests"): | |
tests_dir = os.path.dirname(tests_dir) | |
if append_path: | |
return Path(tests_dir, append_path).as_posix() | |
else: | |
return tests_dir | |
def parse_flag_from_env(key, default=False): | |
try: | |
value = os.environ[key] | |
except KeyError: | |
# KEY isn't set, default to `default`. | |
_value = default | |
else: | |
# KEY is set, convert it to True or False. | |
try: | |
_value = strtobool(value) | |
except ValueError: | |
# More values are supported, but let's keep the message simple. | |
raise ValueError(f"If set, {key} must be yes or no.") | |
return _value | |
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False) | |
_run_nightly_tests = parse_flag_from_env("RUN_NIGHTLY", default=False) | |
def floats_tensor(shape, scale=1.0, rng=None, name=None): | |
"""Creates a random float32 tensor""" | |
if rng is None: | |
rng = global_rng | |
total_dims = 1 | |
for dim in shape: | |
total_dims *= dim | |
values = [] | |
for _ in range(total_dims): | |
values.append(rng.random() * scale) | |
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous() | |
def slow(test_case): | |
""" | |
Decorator marking a test as slow. | |
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them. | |
""" | |
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case) | |
def nightly(test_case): | |
""" | |
Decorator marking a test that runs nightly in the diffusers CI. | |
Slow tests are skipped by default. Set the RUN_NIGHTLY environment variable to a truthy value to run them. | |
""" | |
return unittest.skipUnless(_run_nightly_tests, "test is nightly")(test_case) | |
def require_torch(test_case): | |
""" | |
Decorator marking a test that requires PyTorch. These tests are skipped when PyTorch isn't installed. | |
""" | |
return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case) | |
def require_torch_2(test_case): | |
""" | |
Decorator marking a test that requires PyTorch 2. These tests are skipped when it isn't installed. | |
""" | |
return unittest.skipUnless(is_torch_available() and is_torch_version(">=", "2.0.0"), "test requires PyTorch 2")( | |
test_case | |
) | |
def require_torch_gpu(test_case): | |
"""Decorator marking a test that requires CUDA and PyTorch.""" | |
return unittest.skipUnless(is_torch_available() and torch_device == "cuda", "test requires PyTorch+CUDA")( | |
test_case | |
) | |
# These decorators are for accelerator-specific behaviours that are not GPU-specific | |
def require_torch_accelerator(test_case): | |
"""Decorator marking a test that requires an accelerator backend and PyTorch.""" | |
return unittest.skipUnless(is_torch_available() and torch_device != "cpu", "test requires accelerator+PyTorch")( | |
test_case | |
) | |
def require_torch_accelerator_with_fp16(test_case): | |
"""Decorator marking a test that requires an accelerator with support for the FP16 data type.""" | |
return unittest.skipUnless(_is_torch_fp16_available(torch_device), "test requires accelerator with fp16 support")( | |
test_case | |
) | |
def require_torch_accelerator_with_fp64(test_case): | |
"""Decorator marking a test that requires an accelerator with support for the FP64 data type.""" | |
return unittest.skipUnless(_is_torch_fp64_available(torch_device), "test requires accelerator with fp64 support")( | |
test_case | |
) | |
def require_torch_accelerator_with_training(test_case): | |
"""Decorator marking a test that requires an accelerator with support for training.""" | |
return unittest.skipUnless( | |
is_torch_available() and backend_supports_training(torch_device), | |
"test requires accelerator with training support", | |
)(test_case) | |
def skip_mps(test_case): | |
"""Decorator marking a test to skip if torch_device is 'mps'""" | |
return unittest.skipUnless(torch_device != "mps", "test requires non 'mps' device")(test_case) | |
def require_flax(test_case): | |
""" | |
Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed | |
""" | |
return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case) | |
def require_compel(test_case): | |
""" | |
Decorator marking a test that requires compel: https://github.com/damian0815/compel. These tests are skipped when | |
the library is not installed. | |
""" | |
return unittest.skipUnless(is_compel_available(), "test requires compel")(test_case) | |
def require_onnxruntime(test_case): | |
""" | |
Decorator marking a test that requires onnxruntime. These tests are skipped when onnxruntime isn't installed. | |
""" | |
return unittest.skipUnless(is_onnx_available(), "test requires onnxruntime")(test_case) | |
def require_note_seq(test_case): | |
""" | |
Decorator marking a test that requires note_seq. These tests are skipped when note_seq isn't installed. | |
""" | |
return unittest.skipUnless(is_note_seq_available(), "test requires note_seq")(test_case) | |
def require_torchsde(test_case): | |
""" | |
Decorator marking a test that requires torchsde. These tests are skipped when torchsde isn't installed. | |
""" | |
return unittest.skipUnless(is_torchsde_available(), "test requires torchsde")(test_case) | |
def require_peft_backend(test_case): | |
""" | |
Decorator marking a test that requires PEFT backend, this would require some specific versions of PEFT and | |
transformers. | |
""" | |
return unittest.skipUnless(USE_PEFT_BACKEND, "test requires PEFT backend")(test_case) | |
def require_peft_version_greater(peft_version): | |
""" | |
Decorator marking a test that requires PEFT backend with a specific version, this would require some specific | |
versions of PEFT and transformers. | |
""" | |
def decorator(test_case): | |
correct_peft_version = is_peft_available() and version.parse( | |
version.parse(importlib.metadata.version("peft")).base_version | |
) > version.parse(peft_version) | |
return unittest.skipUnless( | |
correct_peft_version, f"test requires PEFT backend with the version greater than {peft_version}" | |
)(test_case) | |
return decorator | |
def deprecate_after_peft_backend(test_case): | |
""" | |
Decorator marking a test that will be skipped after PEFT backend | |
""" | |
return unittest.skipUnless(not USE_PEFT_BACKEND, "test skipped in favor of PEFT backend")(test_case) | |
def require_python39_or_higher(test_case): | |
def python39_available(): | |
sys_info = sys.version_info | |
major, minor = sys_info.major, sys_info.minor | |
return major == 3 and minor >= 9 | |
return unittest.skipUnless(python39_available(), "test requires Python 3.9 or higher")(test_case) | |
def load_numpy(arry: Union[str, np.ndarray], local_path: Optional[str] = None) -> np.ndarray: | |
if isinstance(arry, str): | |
if local_path is not None: | |
# local_path can be passed to correct images of tests | |
return Path(local_path, arry.split("/")[-5], arry.split("/")[-2], arry.split("/")[-1]).as_posix() | |
elif arry.startswith("http://") or arry.startswith("https://"): | |
response = requests.get(arry) | |
response.raise_for_status() | |
arry = np.load(BytesIO(response.content)) | |
elif os.path.isfile(arry): | |
arry = np.load(arry) | |
else: | |
raise ValueError( | |
f"Incorrect path or url, URLs must start with `http://` or `https://`, and {arry} is not a valid path" | |
) | |
elif isinstance(arry, np.ndarray): | |
pass | |
else: | |
raise ValueError( | |
"Incorrect format used for numpy ndarray. Should be an url linking to an image, a local path, or a" | |
" ndarray." | |
) | |
return arry | |
def load_pt(url: str): | |
response = requests.get(url) | |
response.raise_for_status() | |
arry = torch.load(BytesIO(response.content)) | |
return arry | |
def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image: | |
""" | |
Loads `image` to a PIL Image. | |
Args: | |
image (`str` or `PIL.Image.Image`): | |
The image to convert to the PIL Image format. | |
Returns: | |
`PIL.Image.Image`: | |
A PIL Image. | |
""" | |
if isinstance(image, str): | |
if image.startswith("http://") or image.startswith("https://"): | |
image = PIL.Image.open(requests.get(image, stream=True).raw) | |
elif os.path.isfile(image): | |
image = PIL.Image.open(image) | |
else: | |
raise ValueError( | |
f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path" | |
) | |
elif isinstance(image, PIL.Image.Image): | |
image = image | |
else: | |
raise ValueError( | |
"Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image." | |
) | |
image = PIL.ImageOps.exif_transpose(image) | |
image = image.convert("RGB") | |
return image | |
def preprocess_image(image: PIL.Image, batch_size: int): | |
w, h = image.size | |
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
image = image.resize((w, h), resample=PIL.Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size) | |
image = torch.from_numpy(image) | |
return 2.0 * image - 1.0 | |
def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None) -> str: | |
if output_gif_path is None: | |
output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name | |
image[0].save( | |
output_gif_path, | |
save_all=True, | |
append_images=image[1:], | |
optimize=False, | |
duration=100, | |
loop=0, | |
) | |
return output_gif_path | |
def buffered_writer(raw_f): | |
f = io.BufferedWriter(raw_f) | |
yield f | |
f.flush() | |
def export_to_ply(mesh, output_ply_path: str = None): | |
""" | |
Write a PLY file for a mesh. | |
""" | |
if output_ply_path is None: | |
output_ply_path = tempfile.NamedTemporaryFile(suffix=".ply").name | |
coords = mesh.verts.detach().cpu().numpy() | |
faces = mesh.faces.cpu().numpy() | |
rgb = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1) | |
with buffered_writer(open(output_ply_path, "wb")) as f: | |
f.write(b"ply\n") | |
f.write(b"format binary_little_endian 1.0\n") | |
f.write(bytes(f"element vertex {len(coords)}\n", "ascii")) | |
f.write(b"property float x\n") | |
f.write(b"property float y\n") | |
f.write(b"property float z\n") | |
if rgb is not None: | |
f.write(b"property uchar red\n") | |
f.write(b"property uchar green\n") | |
f.write(b"property uchar blue\n") | |
if faces is not None: | |
f.write(bytes(f"element face {len(faces)}\n", "ascii")) | |
f.write(b"property list uchar int vertex_index\n") | |
f.write(b"end_header\n") | |
if rgb is not None: | |
rgb = (rgb * 255.499).round().astype(int) | |
vertices = [ | |
(*coord, *rgb) | |
for coord, rgb in zip( | |
coords.tolist(), | |
rgb.tolist(), | |
) | |
] | |
format = struct.Struct("<3f3B") | |
for item in vertices: | |
f.write(format.pack(*item)) | |
else: | |
format = struct.Struct("<3f") | |
for vertex in coords.tolist(): | |
f.write(format.pack(*vertex)) | |
if faces is not None: | |
format = struct.Struct("<B3I") | |
for tri in faces.tolist(): | |
f.write(format.pack(len(tri), *tri)) | |
return output_ply_path | |
def export_to_obj(mesh, output_obj_path: str = None): | |
if output_obj_path is None: | |
output_obj_path = tempfile.NamedTemporaryFile(suffix=".obj").name | |
verts = mesh.verts.detach().cpu().numpy() | |
faces = mesh.faces.cpu().numpy() | |
vertex_colors = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1) | |
vertices = [ | |
"{} {} {} {} {} {}".format(*coord, *color) for coord, color in zip(verts.tolist(), vertex_colors.tolist()) | |
] | |
faces = ["f {} {} {}".format(str(tri[0] + 1), str(tri[1] + 1), str(tri[2] + 1)) for tri in faces.tolist()] | |
combined_data = ["v " + vertex for vertex in vertices] + faces | |
with open(output_obj_path, "w") as f: | |
f.writelines("\n".join(combined_data)) | |
def export_to_video(video_frames: List[np.ndarray], output_video_path: str = None) -> str: | |
if is_opencv_available(): | |
import cv2 | |
else: | |
raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video")) | |
if output_video_path is None: | |
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
h, w, c = video_frames[0].shape | |
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=8, frameSize=(w, h)) | |
for i in range(len(video_frames)): | |
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR) | |
video_writer.write(img) | |
return output_video_path | |
def load_hf_numpy(path) -> np.ndarray: | |
base_url = "https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main" | |
if not path.startswith("http://") and not path.startswith("https://"): | |
path = os.path.join(base_url, urllib.parse.quote(path)) | |
return load_numpy(path) | |
# --- pytest conf functions --- # | |
# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once | |
pytest_opt_registered = {} | |
def pytest_addoption_shared(parser): | |
""" | |
This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there. | |
It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest` | |
option. | |
""" | |
option = "--make-reports" | |
if option not in pytest_opt_registered: | |
parser.addoption( | |
option, | |
action="store", | |
default=False, | |
help="generate report files. The value of this option is used as a prefix to report names", | |
) | |
pytest_opt_registered[option] = 1 | |
def pytest_terminal_summary_main(tr, id): | |
""" | |
Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current | |
directory. The report files are prefixed with the test suite name. | |
This function emulates --duration and -rA pytest arguments. | |
This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined | |
there. | |
Args: | |
- tr: `terminalreporter` passed from `conftest.py` | |
- id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is | |
needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other. | |
NB: this functions taps into a private _pytest API and while unlikely, it could break should | |
pytest do internal changes - also it calls default internal methods of terminalreporter which | |
can be hijacked by various `pytest-` plugins and interfere. | |
""" | |
from _pytest.config import create_terminal_writer | |
if not len(id): | |
id = "tests" | |
config = tr.config | |
orig_writer = config.get_terminal_writer() | |
orig_tbstyle = config.option.tbstyle | |
orig_reportchars = tr.reportchars | |
dir = "reports" | |
Path(dir).mkdir(parents=True, exist_ok=True) | |
report_files = { | |
k: f"{dir}/{id}_{k}.txt" | |
for k in [ | |
"durations", | |
"errors", | |
"failures_long", | |
"failures_short", | |
"failures_line", | |
"passes", | |
"stats", | |
"summary_short", | |
"warnings", | |
] | |
} | |
# custom durations report | |
# note: there is no need to call pytest --durations=XX to get this separate report | |
# adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66 | |
dlist = [] | |
for replist in tr.stats.values(): | |
for rep in replist: | |
if hasattr(rep, "duration"): | |
dlist.append(rep) | |
if dlist: | |
dlist.sort(key=lambda x: x.duration, reverse=True) | |
with open(report_files["durations"], "w") as f: | |
durations_min = 0.05 # sec | |
f.write("slowest durations\n") | |
for i, rep in enumerate(dlist): | |
if rep.duration < durations_min: | |
f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted") | |
break | |
f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n") | |
def summary_failures_short(tr): | |
# expecting that the reports were --tb=long (default) so we chop them off here to the last frame | |
reports = tr.getreports("failed") | |
if not reports: | |
return | |
tr.write_sep("=", "FAILURES SHORT STACK") | |
for rep in reports: | |
msg = tr._getfailureheadline(rep) | |
tr.write_sep("_", msg, red=True, bold=True) | |
# chop off the optional leading extra frames, leaving only the last one | |
longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S) | |
tr._tw.line(longrepr) | |
# note: not printing out any rep.sections to keep the report short | |
# use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each | |
# adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814 | |
# note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g. | |
# pytest-instafail does that) | |
# report failures with line/short/long styles | |
config.option.tbstyle = "auto" # full tb | |
with open(report_files["failures_long"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
tr.summary_failures() | |
# config.option.tbstyle = "short" # short tb | |
with open(report_files["failures_short"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
summary_failures_short(tr) | |
config.option.tbstyle = "line" # one line per error | |
with open(report_files["failures_line"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
tr.summary_failures() | |
with open(report_files["errors"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
tr.summary_errors() | |
with open(report_files["warnings"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
tr.summary_warnings() # normal warnings | |
tr.summary_warnings() # final warnings | |
tr.reportchars = "wPpsxXEf" # emulate -rA (used in summary_passes() and short_test_summary()) | |
with open(report_files["passes"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
tr.summary_passes() | |
with open(report_files["summary_short"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
tr.short_test_summary() | |
with open(report_files["stats"], "w") as f: | |
tr._tw = create_terminal_writer(config, f) | |
tr.summary_stats() | |
# restore: | |
tr._tw = orig_writer | |
tr.reportchars = orig_reportchars | |
config.option.tbstyle = orig_tbstyle | |
# Copied from https://github.com/huggingface/transformers/blob/000e52aec8850d3fe2f360adc6fd256e5b47fe4c/src/transformers/testing_utils.py#L1905 | |
def is_flaky(max_attempts: int = 5, wait_before_retry: Optional[float] = None, description: Optional[str] = None): | |
""" | |
To decorate flaky tests. They will be retried on failures. | |
Args: | |
max_attempts (`int`, *optional*, defaults to 5): | |
The maximum number of attempts to retry the flaky test. | |
wait_before_retry (`float`, *optional*): | |
If provided, will wait that number of seconds before retrying the test. | |
description (`str`, *optional*): | |
A string to describe the situation (what / where / why is flaky, link to GH issue/PR comments, errors, | |
etc.) | |
""" | |
def decorator(test_func_ref): | |
def wrapper(*args, **kwargs): | |
retry_count = 1 | |
while retry_count < max_attempts: | |
try: | |
return test_func_ref(*args, **kwargs) | |
except Exception as err: | |
print(f"Test failed with {err} at try {retry_count}/{max_attempts}.", file=sys.stderr) | |
if wait_before_retry is not None: | |
time.sleep(wait_before_retry) | |
retry_count += 1 | |
return test_func_ref(*args, **kwargs) | |
return wrapper | |
return decorator | |
# Taken from: https://github.com/huggingface/transformers/blob/3658488ff77ff8d45101293e749263acf437f4d5/src/transformers/testing_utils.py#L1787 | |
def run_test_in_subprocess(test_case, target_func, inputs=None, timeout=None): | |
""" | |
To run a test in a subprocess. In particular, this can avoid (GPU) memory issue. | |
Args: | |
test_case (`unittest.TestCase`): | |
The test that will run `target_func`. | |
target_func (`Callable`): | |
The function implementing the actual testing logic. | |
inputs (`dict`, *optional*, defaults to `None`): | |
The inputs that will be passed to `target_func` through an (input) queue. | |
timeout (`int`, *optional*, defaults to `None`): | |
The timeout (in seconds) that will be passed to the input and output queues. If not specified, the env. | |
variable `PYTEST_TIMEOUT` will be checked. If still `None`, its value will be set to `600`. | |
""" | |
if timeout is None: | |
timeout = int(os.environ.get("PYTEST_TIMEOUT", 600)) | |
start_methohd = "spawn" | |
ctx = multiprocessing.get_context(start_methohd) | |
input_queue = ctx.Queue(1) | |
output_queue = ctx.JoinableQueue(1) | |
# We can't send `unittest.TestCase` to the child, otherwise we get issues regarding pickle. | |
input_queue.put(inputs, timeout=timeout) | |
process = ctx.Process(target=target_func, args=(input_queue, output_queue, timeout)) | |
process.start() | |
# Kill the child process if we can't get outputs from it in time: otherwise, the hanging subprocess prevents | |
# the test to exit properly. | |
try: | |
results = output_queue.get(timeout=timeout) | |
output_queue.task_done() | |
except Exception as e: | |
process.terminate() | |
test_case.fail(e) | |
process.join(timeout=timeout) | |
if results["error"] is not None: | |
test_case.fail(f'{results["error"]}') | |
class CaptureLogger: | |
""" | |
Args: | |
Context manager to capture `logging` streams | |
logger: 'logging` logger object | |
Returns: | |
The captured output is available via `self.out` | |
Example: | |
```python | |
>>> from diffusers import logging | |
>>> from diffusers.testing_utils import CaptureLogger | |
>>> msg = "Testing 1, 2, 3" | |
>>> logging.set_verbosity_info() | |
>>> logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py") | |
>>> with CaptureLogger(logger) as cl: | |
... logger.info(msg) | |
>>> assert cl.out, msg + "\n" | |
``` | |
""" | |
def __init__(self, logger): | |
self.logger = logger | |
self.io = StringIO() | |
self.sh = logging.StreamHandler(self.io) | |
self.out = "" | |
def __enter__(self): | |
self.logger.addHandler(self.sh) | |
return self | |
def __exit__(self, *exc): | |
self.logger.removeHandler(self.sh) | |
self.out = self.io.getvalue() | |
def __repr__(self): | |
return f"captured: {self.out}\n" | |
def enable_full_determinism(): | |
""" | |
Helper function for reproducible behavior during distributed training. See | |
- https://pytorch.org/docs/stable/notes/randomness.html for pytorch | |
""" | |
# Enable PyTorch deterministic mode. This potentially requires either the environment | |
# variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set, | |
# depending on the CUDA version, so we set them both here | |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8" | |
torch.use_deterministic_algorithms(True) | |
# Enable CUDNN deterministic mode | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cuda.matmul.allow_tf32 = False | |
def disable_full_determinism(): | |
os.environ["CUDA_LAUNCH_BLOCKING"] = "0" | |
os.environ["CUBLAS_WORKSPACE_CONFIG"] = "" | |
torch.use_deterministic_algorithms(False) | |
# Utils for custom and alternative accelerator devices | |
def _is_torch_fp16_available(device): | |
if not is_torch_available(): | |
return False | |
import torch | |
device = torch.device(device) | |
try: | |
x = torch.zeros((2, 2), dtype=torch.float16).to(device) | |
_ = torch.mul(x, x) | |
return True | |
except Exception as e: | |
if device.type == "cuda": | |
raise ValueError( | |
f"You have passed a device of type 'cuda' which should work with 'fp16', but 'cuda' does not seem to be correctly installed on your machine: {e}" | |
) | |
return False | |
def _is_torch_fp64_available(device): | |
if not is_torch_available(): | |
return False | |
import torch | |
try: | |
x = torch.zeros((2, 2), dtype=torch.float64).to(device) | |
_ = torch.mul(x, x) | |
return True | |
except Exception as e: | |
if device.type == "cuda": | |
raise ValueError( | |
f"You have passed a device of type 'cuda' which should work with 'fp64', but 'cuda' does not seem to be correctly installed on your machine: {e}" | |
) | |
return False | |
# Guard these lookups for when Torch is not used - alternative accelerator support is for PyTorch | |
if is_torch_available(): | |
# Behaviour flags | |
BACKEND_SUPPORTS_TRAINING = {"cuda": True, "cpu": True, "mps": False, "default": True} | |
# Function definitions | |
BACKEND_EMPTY_CACHE = {"cuda": torch.cuda.empty_cache, "cpu": None, "mps": None, "default": None} | |
BACKEND_DEVICE_COUNT = {"cuda": torch.cuda.device_count, "cpu": lambda: 0, "mps": lambda: 0, "default": 0} | |
BACKEND_MANUAL_SEED = {"cuda": torch.cuda.manual_seed, "cpu": torch.manual_seed, "default": torch.manual_seed} | |
# This dispatches a defined function according to the accelerator from the function definitions. | |
def _device_agnostic_dispatch(device: str, dispatch_table: Dict[str, Callable], *args, **kwargs): | |
if device not in dispatch_table: | |
return dispatch_table["default"](*args, **kwargs) | |
fn = dispatch_table[device] | |
# Some device agnostic functions return values. Need to guard against 'None' instead at | |
# user level | |
if fn is None: | |
return None | |
return fn(*args, **kwargs) | |
# These are callables which automatically dispatch the function specific to the accelerator | |
def backend_manual_seed(device: str, seed: int): | |
return _device_agnostic_dispatch(device, BACKEND_MANUAL_SEED, seed) | |
def backend_empty_cache(device: str): | |
return _device_agnostic_dispatch(device, BACKEND_EMPTY_CACHE) | |
def backend_device_count(device: str): | |
return _device_agnostic_dispatch(device, BACKEND_DEVICE_COUNT) | |
# These are callables which return boolean behaviour flags and can be used to specify some | |
# device agnostic alternative where the feature is unsupported. | |
def backend_supports_training(device: str): | |
if not is_torch_available(): | |
return False | |
if device not in BACKEND_SUPPORTS_TRAINING: | |
device = "default" | |
return BACKEND_SUPPORTS_TRAINING[device] | |
# Guard for when Torch is not available | |
if is_torch_available(): | |
# Update device function dict mapping | |
def update_mapping_from_spec(device_fn_dict: Dict[str, Callable], attribute_name: str): | |
try: | |
# Try to import the function directly | |
spec_fn = getattr(device_spec_module, attribute_name) | |
device_fn_dict[torch_device] = spec_fn | |
except AttributeError as e: | |
# If the function doesn't exist, and there is no default, throw an error | |
if "default" not in device_fn_dict: | |
raise AttributeError( | |
f"`{attribute_name}` not found in '{device_spec_path}' and no default fallback function found." | |
) from e | |
if "DIFFUSERS_TEST_DEVICE_SPEC" in os.environ: | |
device_spec_path = os.environ["DIFFUSERS_TEST_DEVICE_SPEC"] | |
if not Path(device_spec_path).is_file(): | |
raise ValueError(f"Specified path to device specification file is not found. Received {device_spec_path}") | |
try: | |
import_name = device_spec_path[: device_spec_path.index(".py")] | |
except ValueError as e: | |
raise ValueError(f"Provided device spec file is not a Python file! Received {device_spec_path}") from e | |
device_spec_module = importlib.import_module(import_name) | |
try: | |
device_name = device_spec_module.DEVICE_NAME | |
except AttributeError: | |
raise AttributeError("Device spec file did not contain `DEVICE_NAME`") | |
if "DIFFUSERS_TEST_DEVICE" in os.environ and torch_device != device_name: | |
msg = f"Mismatch between environment variable `DIFFUSERS_TEST_DEVICE` '{torch_device}' and device found in spec '{device_name}'\n" | |
msg += "Either unset `DIFFUSERS_TEST_DEVICE` or ensure it matches device spec name." | |
raise ValueError(msg) | |
torch_device = device_name | |
# Add one entry here for each `BACKEND_*` dictionary. | |
update_mapping_from_spec(BACKEND_MANUAL_SEED, "MANUAL_SEED_FN") | |
update_mapping_from_spec(BACKEND_EMPTY_CACHE, "EMPTY_CACHE_FN") | |
update_mapping_from_spec(BACKEND_DEVICE_COUNT, "DEVICE_COUNT_FN") | |
update_mapping_from_spec(BACKEND_SUPPORTS_TRAINING, "SUPPORTS_TRAINING") | |