Spaces:
Sleeping
Sleeping
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
PEFT utilities: Utilities related to peft library | |
""" | |
import collections | |
import importlib | |
from typing import Optional | |
from packaging import version | |
from .import_utils import is_peft_available, is_torch_available | |
if is_torch_available(): | |
import torch | |
def recurse_remove_peft_layers(model): | |
r""" | |
Recursively replace all instances of `LoraLayer` with corresponding new layers in `model`. | |
""" | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
has_base_layer_pattern = False | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
has_base_layer_pattern = hasattr(module, "base_layer") | |
break | |
if has_base_layer_pattern: | |
from peft.utils import _get_submodules | |
key_list = [key for key, _ in model.named_modules() if "lora" not in key] | |
for key in key_list: | |
try: | |
parent, target, target_name = _get_submodules(model, key) | |
except AttributeError: | |
continue | |
if hasattr(target, "base_layer"): | |
setattr(parent, target_name, target.get_base_layer()) | |
else: | |
# This is for backwards compatibility with PEFT <= 0.6.2. | |
# TODO can be removed once that PEFT version is no longer supported. | |
from peft.tuners.lora import LoraLayer | |
for name, module in model.named_children(): | |
if len(list(module.children())) > 0: | |
## compound module, go inside it | |
recurse_remove_peft_layers(module) | |
module_replaced = False | |
if isinstance(module, LoraLayer) and isinstance(module, torch.nn.Linear): | |
new_module = torch.nn.Linear(module.in_features, module.out_features, bias=module.bias is not None).to( | |
module.weight.device | |
) | |
new_module.weight = module.weight | |
if module.bias is not None: | |
new_module.bias = module.bias | |
module_replaced = True | |
elif isinstance(module, LoraLayer) and isinstance(module, torch.nn.Conv2d): | |
new_module = torch.nn.Conv2d( | |
module.in_channels, | |
module.out_channels, | |
module.kernel_size, | |
module.stride, | |
module.padding, | |
module.dilation, | |
module.groups, | |
).to(module.weight.device) | |
new_module.weight = module.weight | |
if module.bias is not None: | |
new_module.bias = module.bias | |
module_replaced = True | |
if module_replaced: | |
setattr(model, name, new_module) | |
del module | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return model | |
def scale_lora_layers(model, weight): | |
""" | |
Adjust the weightage given to the LoRA layers of the model. | |
Args: | |
model (`torch.nn.Module`): | |
The model to scale. | |
weight (`float`): | |
The weight to be given to the LoRA layers. | |
""" | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
module.scale_layer(weight) | |
def unscale_lora_layers(model, weight: Optional[float] = None): | |
""" | |
Removes the previously passed weight given to the LoRA layers of the model. | |
Args: | |
model (`torch.nn.Module`): | |
The model to scale. | |
weight (`float`, *optional*): | |
The weight to be given to the LoRA layers. If no scale is passed the scale of the lora layer will be | |
re-initialized to the correct value. If 0.0 is passed, we will re-initialize the scale with the correct | |
value. | |
""" | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
if weight is not None and weight != 0: | |
module.unscale_layer(weight) | |
elif weight is not None and weight == 0: | |
for adapter_name in module.active_adapters: | |
# if weight == 0 unscale should re-set the scale to the original value. | |
module.set_scale(adapter_name, 1.0) | |
def get_peft_kwargs(rank_dict, network_alpha_dict, peft_state_dict, is_unet=True): | |
rank_pattern = {} | |
alpha_pattern = {} | |
r = lora_alpha = list(rank_dict.values())[0] | |
if len(set(rank_dict.values())) > 1: | |
# get the rank occuring the most number of times | |
r = collections.Counter(rank_dict.values()).most_common()[0][0] | |
# for modules with rank different from the most occuring rank, add it to the `rank_pattern` | |
rank_pattern = dict(filter(lambda x: x[1] != r, rank_dict.items())) | |
rank_pattern = {k.split(".lora_B.")[0]: v for k, v in rank_pattern.items()} | |
if network_alpha_dict is not None and len(network_alpha_dict) > 0: | |
if len(set(network_alpha_dict.values())) > 1: | |
# get the alpha occuring the most number of times | |
lora_alpha = collections.Counter(network_alpha_dict.values()).most_common()[0][0] | |
# for modules with alpha different from the most occuring alpha, add it to the `alpha_pattern` | |
alpha_pattern = dict(filter(lambda x: x[1] != lora_alpha, network_alpha_dict.items())) | |
if is_unet: | |
alpha_pattern = { | |
".".join(k.split(".lora_A.")[0].split(".")).replace(".alpha", ""): v | |
for k, v in alpha_pattern.items() | |
} | |
else: | |
alpha_pattern = {".".join(k.split(".down.")[0].split(".")[:-1]): v for k, v in alpha_pattern.items()} | |
else: | |
lora_alpha = set(network_alpha_dict.values()).pop() | |
# layer names without the Diffusers specific | |
target_modules = list({name.split(".lora")[0] for name in peft_state_dict.keys()}) | |
lora_config_kwargs = { | |
"r": r, | |
"lora_alpha": lora_alpha, | |
"rank_pattern": rank_pattern, | |
"alpha_pattern": alpha_pattern, | |
"target_modules": target_modules, | |
} | |
return lora_config_kwargs | |
def get_adapter_name(model): | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
return f"default_{len(module.r)}" | |
return "default_0" | |
def set_adapter_layers(model, enabled=True): | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
# The recent version of PEFT needs to call `enable_adapters` instead | |
if hasattr(module, "enable_adapters"): | |
module.enable_adapters(enabled=enabled) | |
else: | |
module.disable_adapters = not enabled | |
def delete_adapter_layers(model, adapter_name): | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
if hasattr(module, "delete_adapter"): | |
module.delete_adapter(adapter_name) | |
else: | |
raise ValueError( | |
"The version of PEFT you are using is not compatible, please use a version that is greater than 0.6.1" | |
) | |
# For transformers integration - we need to pop the adapter from the config | |
if getattr(model, "_hf_peft_config_loaded", False) and hasattr(model, "peft_config"): | |
model.peft_config.pop(adapter_name, None) | |
# In case all adapters are deleted, we need to delete the config | |
# and make sure to set the flag to False | |
if len(model.peft_config) == 0: | |
del model.peft_config | |
model._hf_peft_config_loaded = None | |
def set_weights_and_activate_adapters(model, adapter_names, weights): | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
# iterate over each adapter, make it active and set the corresponding scaling weight | |
for adapter_name, weight in zip(adapter_names, weights): | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
# For backward compatbility with previous PEFT versions | |
if hasattr(module, "set_adapter"): | |
module.set_adapter(adapter_name) | |
else: | |
module.active_adapter = adapter_name | |
module.set_scale(adapter_name, weight) | |
# set multiple active adapters | |
for module in model.modules(): | |
if isinstance(module, BaseTunerLayer): | |
# For backward compatbility with previous PEFT versions | |
if hasattr(module, "set_adapter"): | |
module.set_adapter(adapter_names) | |
else: | |
module.active_adapter = adapter_names | |
def check_peft_version(min_version: str) -> None: | |
r""" | |
Checks if the version of PEFT is compatible. | |
Args: | |
version (`str`): | |
The version of PEFT to check against. | |
""" | |
if not is_peft_available(): | |
raise ValueError("PEFT is not installed. Please install it with `pip install peft`") | |
is_peft_version_compatible = version.parse(importlib.metadata.version("peft")) > version.parse(min_version) | |
if not is_peft_version_compatible: | |
raise ValueError( | |
f"The version of PEFT you are using is not compatible, please use a version that is greater" | |
f" than {min_version}" | |
) | |