Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..utils import USE_PEFT_BACKEND | |
from .lora import LoRACompatibleConv | |
from .normalization import RMSNorm | |
from .upsampling import upfirdn2d_native | |
class Downsample1D(nn.Module): | |
"""A 1D downsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
padding (`int`, default `1`): | |
padding for the convolution. | |
name (`str`, default `conv`): | |
name of the downsampling 1D layer. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
use_conv: bool = False, | |
out_channels: Optional[int] = None, | |
padding: int = 1, | |
name: str = "conv", | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride) | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
assert inputs.shape[1] == self.channels | |
return self.conv(inputs) | |
class Downsample2D(nn.Module): | |
"""A 2D downsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
padding (`int`, default `1`): | |
padding for the convolution. | |
name (`str`, default `conv`): | |
name of the downsampling 2D layer. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
use_conv: bool = False, | |
out_channels: Optional[int] = None, | |
padding: int = 1, | |
name: str = "conv", | |
kernel_size=3, | |
norm_type=None, | |
eps=None, | |
elementwise_affine=None, | |
bias=True, | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
if norm_type == "ln_norm": | |
self.norm = nn.LayerNorm(channels, eps, elementwise_affine) | |
elif norm_type == "rms_norm": | |
self.norm = RMSNorm(channels, eps, elementwise_affine) | |
elif norm_type is None: | |
self.norm = None | |
else: | |
raise ValueError(f"unknown norm_type: {norm_type}") | |
if use_conv: | |
conv = conv_cls( | |
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias | |
) | |
else: | |
assert self.channels == self.out_channels | |
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.Conv2d_0 = conv | |
self.conv = conv | |
elif name == "Conv2d_0": | |
self.conv = conv | |
else: | |
self.conv = conv | |
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | |
assert hidden_states.shape[1] == self.channels | |
if self.norm is not None: | |
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
if self.use_conv and self.padding == 0: | |
pad = (0, 1, 0, 1) | |
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) | |
assert hidden_states.shape[1] == self.channels | |
if not USE_PEFT_BACKEND: | |
if isinstance(self.conv, LoRACompatibleConv): | |
hidden_states = self.conv(hidden_states, scale) | |
else: | |
hidden_states = self.conv(hidden_states) | |
else: | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class FirDownsample2D(nn.Module): | |
"""A 2D FIR downsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
fir_kernel (`tuple`, default `(1, 3, 3, 1)`): | |
kernel for the FIR filter. | |
""" | |
def __init__( | |
self, | |
channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
use_conv: bool = False, | |
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1), | |
): | |
super().__init__() | |
out_channels = out_channels if out_channels else channels | |
if use_conv: | |
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.fir_kernel = fir_kernel | |
self.use_conv = use_conv | |
self.out_channels = out_channels | |
def _downsample_2d( | |
self, | |
hidden_states: torch.FloatTensor, | |
weight: Optional[torch.FloatTensor] = None, | |
kernel: Optional[torch.FloatTensor] = None, | |
factor: int = 2, | |
gain: float = 1, | |
) -> torch.FloatTensor: | |
"""Fused `Conv2d()` followed by `downsample_2d()`. | |
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more | |
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of | |
arbitrary order. | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
weight (`torch.FloatTensor`, *optional*): | |
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be | |
performed by `inChannels = x.shape[0] // numGroups`. | |
kernel (`torch.FloatTensor`, *optional*): | |
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which | |
corresponds to average pooling. | |
factor (`int`, *optional*, default to `2`): | |
Integer downsampling factor. | |
gain (`float`, *optional*, default to `1.0`): | |
Scaling factor for signal magnitude. | |
Returns: | |
output (`torch.FloatTensor`): | |
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same | |
datatype as `x`. | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
# setup kernel | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * gain | |
if self.use_conv: | |
_, _, convH, convW = weight.shape | |
pad_value = (kernel.shape[0] - factor) + (convW - 1) | |
stride_value = [factor, factor] | |
upfirdn_input = upfirdn2d_native( | |
hidden_states, | |
torch.tensor(kernel, device=hidden_states.device), | |
pad=((pad_value + 1) // 2, pad_value // 2), | |
) | |
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) | |
else: | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, | |
torch.tensor(kernel, device=hidden_states.device), | |
down=factor, | |
pad=((pad_value + 1) // 2, pad_value // 2), | |
) | |
return output | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
if self.use_conv: | |
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) | |
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) | |
else: | |
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) | |
return hidden_states | |
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead | |
class KDownsample2D(nn.Module): | |
r"""A 2D K-downsampling layer. | |
Parameters: | |
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use. | |
""" | |
def __init__(self, pad_mode: str = "reflect"): | |
super().__init__() | |
self.pad_mode = pad_mode | |
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) | |
self.pad = kernel_1d.shape[1] // 2 - 1 | |
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode) | |
weight = inputs.new_zeros( | |
[ | |
inputs.shape[1], | |
inputs.shape[1], | |
self.kernel.shape[0], | |
self.kernel.shape[1], | |
] | |
) | |
indices = torch.arange(inputs.shape[1], device=inputs.device) | |
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) | |
weight[indices, indices] = kernel | |
return F.conv2d(inputs, weight, stride=2) | |
def downsample_2d( | |
hidden_states: torch.FloatTensor, | |
kernel: Optional[torch.FloatTensor] = None, | |
factor: int = 2, | |
gain: float = 1, | |
) -> torch.FloatTensor: | |
r"""Downsample2D a batch of 2D images with the given filter. | |
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the | |
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the | |
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its | |
shape is a multiple of the downsampling factor. | |
Args: | |
hidden_states (`torch.FloatTensor`) | |
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
kernel (`torch.FloatTensor`, *optional*): | |
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which | |
corresponds to average pooling. | |
factor (`int`, *optional*, default to `2`): | |
Integer downsampling factor. | |
gain (`float`, *optional*, default to `1.0`): | |
Scaling factor for signal magnitude. | |
Returns: | |
output (`torch.FloatTensor`): | |
Tensor of the shape `[N, C, H // factor, W // factor]` | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * gain | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, | |
kernel.to(device=hidden_states.device), | |
down=factor, | |
pad=((pad_value + 1) // 2, pad_value // 2), | |
) | |
return output | |