Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from contextlib import nullcontext | |
from io import BytesIO | |
from pathlib import Path | |
import requests | |
import torch | |
import yaml | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.utils import validate_hf_hub_args | |
from ..utils import deprecate, is_accelerate_available, is_transformers_available, logging | |
if is_transformers_available(): | |
pass | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
logger = logging.get_logger(__name__) | |
class FromSingleFileMixin: | |
""" | |
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. | |
""" | |
def from_ckpt(cls, *args, **kwargs): | |
deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead." | |
deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False) | |
return cls.from_single_file(*args, **kwargs) | |
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): | |
r""" | |
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` | |
format. The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A link to the `.ckpt` file (for example | |
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. | |
- A path to a *file* containing all pipeline weights. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
weights. If set to `False`, safetensors weights are not loaded. | |
extract_ema (`bool`, *optional*, defaults to `False`): | |
Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield | |
higher quality images for inference. Non-EMA weights are usually better for continuing finetuning. | |
upcast_attention (`bool`, *optional*, defaults to `None`): | |
Whether the attention computation should always be upcasted. | |
image_size (`int`, *optional*, defaults to 512): | |
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable | |
Diffusion v2 base model. Use 768 for Stable Diffusion v2. | |
prediction_type (`str`, *optional*): | |
The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and | |
the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2. | |
num_in_channels (`int`, *optional*, defaults to `None`): | |
The number of input channels. If `None`, it is automatically inferred. | |
scheduler_type (`str`, *optional*, defaults to `"pndm"`): | |
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", | |
"ddim"]`. | |
load_safety_checker (`bool`, *optional*, defaults to `True`): | |
Whether to load the safety checker or not. | |
text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`): | |
An instance of `CLIPTextModel` to use, specifically the | |
[clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this | |
parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed. | |
vae (`AutoencoderKL`, *optional*, defaults to `None`): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If | |
this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed. | |
tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`): | |
An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance | |
of `CLIPTokenizer` by itself if needed. | |
original_config_file (`str`): | |
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be | |
automatically inferred by looking for a key that only exists in SD2.0 models. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (for example the pipeline components of the | |
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` | |
method. See example below for more information. | |
Examples: | |
```py | |
>>> from diffusers import StableDiffusionPipeline | |
>>> # Download pipeline from huggingface.co and cache. | |
>>> pipeline = StableDiffusionPipeline.from_single_file( | |
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" | |
... ) | |
>>> # Download pipeline from local file | |
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt | |
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly") | |
>>> # Enable float16 and move to GPU | |
>>> pipeline = StableDiffusionPipeline.from_single_file( | |
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", | |
... torch_dtype=torch.float16, | |
... ) | |
>>> pipeline.to("cuda") | |
``` | |
""" | |
# import here to avoid circular dependency | |
from ..pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt | |
original_config_file = kwargs.pop("original_config_file", None) | |
config_files = kwargs.pop("config_files", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
resume_download = kwargs.pop("resume_download", False) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
extract_ema = kwargs.pop("extract_ema", False) | |
image_size = kwargs.pop("image_size", None) | |
scheduler_type = kwargs.pop("scheduler_type", "pndm") | |
num_in_channels = kwargs.pop("num_in_channels", None) | |
upcast_attention = kwargs.pop("upcast_attention", None) | |
load_safety_checker = kwargs.pop("load_safety_checker", True) | |
prediction_type = kwargs.pop("prediction_type", None) | |
text_encoder = kwargs.pop("text_encoder", None) | |
text_encoder_2 = kwargs.pop("text_encoder_2", None) | |
vae = kwargs.pop("vae", None) | |
controlnet = kwargs.pop("controlnet", None) | |
adapter = kwargs.pop("adapter", None) | |
tokenizer = kwargs.pop("tokenizer", None) | |
tokenizer_2 = kwargs.pop("tokenizer_2", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
pipeline_name = cls.__name__ | |
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] | |
from_safetensors = file_extension == "safetensors" | |
if from_safetensors and use_safetensors is False: | |
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") | |
# TODO: For now we only support stable diffusion | |
stable_unclip = None | |
model_type = None | |
if pipeline_name in [ | |
"StableDiffusionControlNetPipeline", | |
"StableDiffusionControlNetImg2ImgPipeline", | |
"StableDiffusionControlNetInpaintPipeline", | |
]: | |
from ..models.controlnet import ControlNetModel | |
from ..pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
# list/tuple or a single instance of ControlNetModel or MultiControlNetModel | |
if not ( | |
isinstance(controlnet, (ControlNetModel, MultiControlNetModel)) | |
or isinstance(controlnet, (list, tuple)) | |
and isinstance(controlnet[0], ControlNetModel) | |
): | |
raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.") | |
elif "StableDiffusion" in pipeline_name: | |
# Model type will be inferred from the checkpoint. | |
pass | |
elif pipeline_name == "StableUnCLIPPipeline": | |
model_type = "FrozenOpenCLIPEmbedder" | |
stable_unclip = "txt2img" | |
elif pipeline_name == "StableUnCLIPImg2ImgPipeline": | |
model_type = "FrozenOpenCLIPEmbedder" | |
stable_unclip = "img2img" | |
elif pipeline_name == "PaintByExamplePipeline": | |
model_type = "PaintByExample" | |
elif pipeline_name == "LDMTextToImagePipeline": | |
model_type = "LDMTextToImage" | |
else: | |
raise ValueError(f"Unhandled pipeline class: {pipeline_name}") | |
# remove huggingface url | |
has_valid_url_prefix = False | |
valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"] | |
for prefix in valid_url_prefixes: | |
if pretrained_model_link_or_path.startswith(prefix): | |
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] | |
has_valid_url_prefix = True | |
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained | |
ckpt_path = Path(pretrained_model_link_or_path) | |
if not ckpt_path.is_file(): | |
if not has_valid_url_prefix: | |
raise ValueError( | |
f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}" | |
) | |
# get repo_id and (potentially nested) file path of ckpt in repo | |
repo_id = "/".join(ckpt_path.parts[:2]) | |
file_path = "/".join(ckpt_path.parts[2:]) | |
if file_path.startswith("blob/"): | |
file_path = file_path[len("blob/") :] | |
if file_path.startswith("main/"): | |
file_path = file_path[len("main/") :] | |
pretrained_model_link_or_path = hf_hub_download( | |
repo_id, | |
filename=file_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
force_download=force_download, | |
) | |
pipe = download_from_original_stable_diffusion_ckpt( | |
pretrained_model_link_or_path, | |
pipeline_class=cls, | |
model_type=model_type, | |
stable_unclip=stable_unclip, | |
controlnet=controlnet, | |
adapter=adapter, | |
from_safetensors=from_safetensors, | |
extract_ema=extract_ema, | |
image_size=image_size, | |
scheduler_type=scheduler_type, | |
num_in_channels=num_in_channels, | |
upcast_attention=upcast_attention, | |
load_safety_checker=load_safety_checker, | |
prediction_type=prediction_type, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
vae=vae, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
original_config_file=original_config_file, | |
config_files=config_files, | |
local_files_only=local_files_only, | |
) | |
if torch_dtype is not None: | |
pipe.to(dtype=torch_dtype) | |
return pipe | |
class FromOriginalVAEMixin: | |
""" | |
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into an [`AutoencoderKL`]. | |
""" | |
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): | |
r""" | |
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or | |
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A link to the `.ckpt` file (for example | |
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. | |
- A path to a *file* containing all pipeline weights. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to True, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
image_size (`int`, *optional*, defaults to 512): | |
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable | |
Diffusion v2 base model. Use 768 for Stable Diffusion v2. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
weights. If set to `False`, safetensors weights are not loaded. | |
upcast_attention (`bool`, *optional*, defaults to `None`): | |
Whether the attention computation should always be upcasted. | |
scaling_factor (`float`, *optional*, defaults to 0.18215): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z | |
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution | |
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (for example the pipeline components of the | |
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` | |
method. See example below for more information. | |
<Tip warning={true}> | |
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading | |
a VAE from SDXL or a Stable Diffusion v2 model or higher. | |
</Tip> | |
Examples: | |
```py | |
from diffusers import AutoencoderKL | |
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file | |
model = AutoencoderKL.from_single_file(url) | |
``` | |
""" | |
from ..models import AutoencoderKL | |
# import here to avoid circular dependency | |
from ..pipelines.stable_diffusion.convert_from_ckpt import ( | |
convert_ldm_vae_checkpoint, | |
create_vae_diffusers_config, | |
) | |
config_file = kwargs.pop("config_file", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
resume_download = kwargs.pop("resume_download", False) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
image_size = kwargs.pop("image_size", None) | |
scaling_factor = kwargs.pop("scaling_factor", None) | |
kwargs.pop("upcast_attention", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] | |
from_safetensors = file_extension == "safetensors" | |
if from_safetensors and use_safetensors is False: | |
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") | |
# remove huggingface url | |
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]: | |
if pretrained_model_link_or_path.startswith(prefix): | |
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] | |
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained | |
ckpt_path = Path(pretrained_model_link_or_path) | |
if not ckpt_path.is_file(): | |
# get repo_id and (potentially nested) file path of ckpt in repo | |
repo_id = "/".join(ckpt_path.parts[:2]) | |
file_path = "/".join(ckpt_path.parts[2:]) | |
if file_path.startswith("blob/"): | |
file_path = file_path[len("blob/") :] | |
if file_path.startswith("main/"): | |
file_path = file_path[len("main/") :] | |
pretrained_model_link_or_path = hf_hub_download( | |
repo_id, | |
filename=file_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
force_download=force_download, | |
) | |
if from_safetensors: | |
from safetensors import safe_open | |
checkpoint = {} | |
with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
checkpoint[key] = f.get_tensor(key) | |
else: | |
checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu") | |
if "state_dict" in checkpoint: | |
checkpoint = checkpoint["state_dict"] | |
if config_file is None: | |
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" | |
config_file = BytesIO(requests.get(config_url).content) | |
original_config = yaml.safe_load(config_file) | |
# default to sd-v1-5 | |
image_size = image_size or 512 | |
vae_config = create_vae_diffusers_config(original_config, image_size=image_size) | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) | |
if scaling_factor is None: | |
if ( | |
"model" in original_config | |
and "params" in original_config["model"] | |
and "scale_factor" in original_config["model"]["params"] | |
): | |
vae_scaling_factor = original_config["model"]["params"]["scale_factor"] | |
else: | |
vae_scaling_factor = 0.18215 # default SD scaling factor | |
vae_config["scaling_factor"] = vae_scaling_factor | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
vae = AutoencoderKL(**vae_config) | |
if is_accelerate_available(): | |
from ..models.modeling_utils import load_model_dict_into_meta | |
load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu") | |
else: | |
vae.load_state_dict(converted_vae_checkpoint) | |
if torch_dtype is not None: | |
vae.to(dtype=torch_dtype) | |
return vae | |
class FromOriginalControlnetMixin: | |
""" | |
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`]. | |
""" | |
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): | |
r""" | |
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or | |
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A link to the `.ckpt` file (for example | |
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. | |
- A path to a *file* containing all pipeline weights. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to True, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
weights. If set to `False`, safetensors weights are not loaded. | |
image_size (`int`, *optional*, defaults to 512): | |
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable | |
Diffusion v2 base model. Use 768 for Stable Diffusion v2. | |
upcast_attention (`bool`, *optional*, defaults to `None`): | |
Whether the attention computation should always be upcasted. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (for example the pipeline components of the | |
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` | |
method. See example below for more information. | |
Examples: | |
```py | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path | |
model = ControlNetModel.from_single_file(url) | |
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path | |
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet) | |
``` | |
""" | |
# import here to avoid circular dependency | |
from ..pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt | |
config_file = kwargs.pop("config_file", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
resume_download = kwargs.pop("resume_download", False) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
num_in_channels = kwargs.pop("num_in_channels", None) | |
use_linear_projection = kwargs.pop("use_linear_projection", None) | |
revision = kwargs.pop("revision", None) | |
extract_ema = kwargs.pop("extract_ema", False) | |
image_size = kwargs.pop("image_size", None) | |
upcast_attention = kwargs.pop("upcast_attention", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] | |
from_safetensors = file_extension == "safetensors" | |
if from_safetensors and use_safetensors is False: | |
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") | |
# remove huggingface url | |
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]: | |
if pretrained_model_link_or_path.startswith(prefix): | |
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] | |
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained | |
ckpt_path = Path(pretrained_model_link_or_path) | |
if not ckpt_path.is_file(): | |
# get repo_id and (potentially nested) file path of ckpt in repo | |
repo_id = "/".join(ckpt_path.parts[:2]) | |
file_path = "/".join(ckpt_path.parts[2:]) | |
if file_path.startswith("blob/"): | |
file_path = file_path[len("blob/") :] | |
if file_path.startswith("main/"): | |
file_path = file_path[len("main/") :] | |
pretrained_model_link_or_path = hf_hub_download( | |
repo_id, | |
filename=file_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
force_download=force_download, | |
) | |
if config_file is None: | |
config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml" | |
config_file = BytesIO(requests.get(config_url).content) | |
image_size = image_size or 512 | |
controlnet = download_controlnet_from_original_ckpt( | |
pretrained_model_link_or_path, | |
original_config_file=config_file, | |
image_size=image_size, | |
extract_ema=extract_ema, | |
num_in_channels=num_in_channels, | |
upcast_attention=upcast_attention, | |
from_safetensors=from_safetensors, | |
use_linear_projection=use_linear_projection, | |
) | |
if torch_dtype is not None: | |
controlnet.to(dtype=torch_dtype) | |
return controlnet | |