MultiMAE / utils /optim_factory.py
Bachmann Roman Christian
Initial commit
3b49518
# --------------------------------------------------------
# Based on BEiT, timm, DINO DeiT and MAE-priv code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# https://github.com/BUPT-PRIV/MAE-priv
# --------------------------------------------------------
import json
import torch
from torch import optim as optim
try:
from apex.optimizers import FusedAdam, FusedLAMB, FusedNovoGrad, FusedSGD
has_apex = True
except ImportError:
has_apex = False
def get_num_layer_for_vit(var_name, num_max_layer):
if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"):
return 0
elif var_name.startswith("patch_embed"):
return 0
elif var_name.startswith("input_adapters"):
return 0
elif var_name.startswith("rel_pos_bias"):
return num_max_layer - 1
elif var_name.startswith("blocks") or var_name.startswith("encoder"):
layer_id = int(var_name.split('.')[1])
return layer_id + 1
else:
return num_max_layer - 1
class LayerDecayValueAssigner(object):
def __init__(self, values):
self.values = values
def get_scale(self, layer_id):
return self.values[layer_id]
def get_layer_id(self, var_name):
return get_num_layer_for_vit(var_name, len(self.values))
def get_parameter_groups(
model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None,
decoder_decay=None, decoder_list=(), no_lr_scale_list=[]):
parameter_group_names = {}
parameter_group_vars = {}
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
# Assign weight decay values
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
group_name = "no_decay"
this_weight_decay = 0.
elif decoder_decay is not None and (name.startswith("decoder.") or name in decoder_list):
group_name = "decoder_decay"
this_weight_decay = decoder_decay
else:
group_name = "decay"
this_weight_decay = weight_decay
# Assign layer ID for LR scaling
skip_scale = False
if get_num_layer is not None:
layer_id = get_num_layer(name)
group_name = "layer_%d_%s" % (layer_id, group_name)
if name in no_lr_scale_list:
skip_scale = True
group_name = f'{group_name}_no_lr_scale'
else:
layer_id = None
if group_name not in parameter_group_names:
if get_layer_scale is not None and not skip_scale:
scale = get_layer_scale(layer_id)
else:
scale = 1.
parameter_group_names[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name]["params"].append(param)
parameter_group_names[group_name]["params"].append(name)
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
return list(parameter_group_vars.values())
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None):
'''
Model can either be a single nn.Module, or a dictionary with {'model': model, 'balancer': balancer}.
'''
opt_lower = args.opt.lower()
weight_decay = args.weight_decay
try:
decoder_decay = args.decoder_decay
except:
decoder_decay = None
try:
no_lr_scale_list = args.no_lr_scale_list.split('-')
except:
no_lr_scale_list = []
def get_parameters(m):
if weight_decay and filter_bias_and_bn:
skip = {}
if skip_list is not None:
skip = skip_list
elif hasattr(m, 'no_weight_decay'):
skip = m.no_weight_decay()
decoder={}
if hasattr(m, 'decoder_weight_decay'):
decoder = m.decoder_weight_decay()
parameters = get_parameter_groups(m, weight_decay, skip, get_num_layer, get_layer_scale, decoder_decay, decoder, no_lr_scale_list)
wd = 0.
else:
parameters = m.parameters()
wd = weight_decay
return parameters, wd
if isinstance(model, torch.nn.Module):
parameters, weight_decay = get_parameters(model)
elif isinstance(model, dict):
parameters = [
{
"params": [p for n, p in model['model'].named_parameters()
if p.requires_grad],
"lr_scale": 1.,
},
{
"params": [p for n, p in model['balancer'].named_parameters()
if p.requires_grad],
"lr_scale": args.balancer_lr_scale,
},
]
if 'fused' in opt_lower:
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
opt_args = dict(lr=args.lr, weight_decay=weight_decay)
if hasattr(args, 'opt_eps') and args.opt_eps is not None:
opt_args['eps'] = args.opt_eps
if hasattr(args, 'opt_betas') and args.opt_betas is not None:
opt_args['betas'] = args.opt_betas
print("optimizer settings:", opt_args)
opt_split = opt_lower.split('_')
opt_lower = opt_split[-1]
if opt_lower == 'sgd' or opt_lower == 'nesterov':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
elif opt_lower == 'momentum':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
elif opt_lower == 'adam':
optimizer = optim.Adam(parameters, **opt_args)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, **opt_args)
else:
assert False and "Invalid optimizer"
raise ValueError
return optimizer