Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Code from the MMSegmentation code base | |
# https://github.com/open-mmlab/mmsegmentation | |
# -------------------------------------------------------- | |
import numpy as np | |
def intersect_and_union(pred_label, | |
label, | |
num_classes, | |
ignore_index, | |
label_map=dict(), | |
reduce_zero_label=False): | |
"""Calculate intersection and Union. | |
Args: | |
pred_label (ndarray): Prediction segmentation map. | |
label (ndarray): Ground truth segmentation map. | |
num_classes (int): Number of categories. | |
ignore_index (int): Index that will be ignored in evaluation. | |
label_map (dict): Mapping old labels to new labels. The parameter will | |
work only when label is str. Default: dict(). | |
reduce_zero_label (bool): Wether ignore zero label. The parameter will | |
work only when label is str. Default: False. | |
Returns: | |
ndarray: The intersection of prediction and ground truth histogram | |
on all classes. | |
ndarray: The union of prediction and ground truth histogram on all | |
classes. | |
ndarray: The prediction histogram on all classes. | |
ndarray: The ground truth histogram on all classes. | |
""" | |
if isinstance(pred_label, str): | |
pred_label = np.load(pred_label) | |
# modify if custom classes | |
if label_map is not None: | |
for old_id, new_id in label_map.items(): | |
label[label == old_id] = new_id | |
if reduce_zero_label: | |
# avoid using underflow conversion | |
label[label == 0] = 255 | |
label = label - 1 | |
label[label == 254] = 255 | |
mask = (label != ignore_index) | |
pred_label = pred_label[mask] | |
label = label[mask] | |
intersect = pred_label[pred_label == label] | |
area_intersect, _ = np.histogram( | |
intersect, bins=np.arange(num_classes + 1)) | |
area_pred_label, _ = np.histogram( | |
pred_label, bins=np.arange(num_classes + 1)) | |
area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1)) | |
area_union = area_pred_label + area_label - area_intersect | |
return area_intersect, area_union, area_pred_label, area_label | |
def total_intersect_and_union(results, | |
gt_seg_maps, | |
num_classes, | |
ignore_index, | |
label_map=dict(), | |
reduce_zero_label=False): | |
"""Calculate Total Intersection and Union. | |
Args: | |
results (list[ndarray]): List of prediction segmentation maps. | |
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. | |
num_classes (int): Number of categories. | |
ignore_index (int): Index that will be ignored in evaluation. | |
label_map (dict): Mapping old labels to new labels. Default: dict(). | |
reduce_zero_label (bool): Wether ignore zero label. Default: False. | |
Returns: | |
ndarray: The intersection of prediction and ground truth histogram | |
on all classes. | |
ndarray: The union of prediction and ground truth histogram on all | |
classes. | |
ndarray: The prediction histogram on all classes. | |
ndarray: The ground truth histogram on all classes. | |
""" | |
num_imgs = len(results) | |
assert len(gt_seg_maps) == num_imgs | |
total_area_intersect = np.zeros((num_classes, ), dtype=np.float) | |
total_area_union = np.zeros((num_classes, ), dtype=np.float) | |
total_area_pred_label = np.zeros((num_classes, ), dtype=np.float) | |
total_area_label = np.zeros((num_classes, ), dtype=np.float) | |
for i in range(num_imgs): | |
area_intersect, area_union, area_pred_label, area_label = \ | |
intersect_and_union(results[i], gt_seg_maps[i], num_classes, | |
ignore_index, label_map, reduce_zero_label) | |
total_area_intersect += area_intersect | |
total_area_union += area_union | |
total_area_pred_label += area_pred_label | |
total_area_label += area_label | |
return total_area_intersect, total_area_union, \ | |
total_area_pred_label, total_area_label | |
def mean_iou(results, | |
gt_seg_maps, | |
num_classes, | |
ignore_index, | |
nan_to_num=None, | |
label_map=dict(), | |
reduce_zero_label=False): | |
"""Calculate Mean Intersection and Union (mIoU) | |
Args: | |
results (list[ndarray]): List of prediction segmentation maps. | |
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. | |
num_classes (int): Number of categories. | |
ignore_index (int): Index that will be ignored in evaluation. | |
nan_to_num (int, optional): If specified, NaN values will be replaced | |
by the numbers defined by the user. Default: None. | |
label_map (dict): Mapping old labels to new labels. Default: dict(). | |
reduce_zero_label (bool): Wether ignore zero label. Default: False. | |
Returns: | |
float: Overall accuracy on all images. | |
ndarray: Per category accuracy, shape (num_classes, ). | |
ndarray: Per category IoU, shape (num_classes, ). | |
""" | |
all_acc, acc, iou = eval_metrics( | |
results=results, | |
gt_seg_maps=gt_seg_maps, | |
num_classes=num_classes, | |
ignore_index=ignore_index, | |
metrics=['mIoU'], | |
nan_to_num=nan_to_num, | |
label_map=label_map, | |
reduce_zero_label=reduce_zero_label) | |
return all_acc, acc, iou | |
def mean_dice(results, | |
gt_seg_maps, | |
num_classes, | |
ignore_index, | |
nan_to_num=None, | |
label_map=dict(), | |
reduce_zero_label=False): | |
"""Calculate Mean Dice (mDice) | |
Args: | |
results (list[ndarray]): List of prediction segmentation maps. | |
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. | |
num_classes (int): Number of categories. | |
ignore_index (int): Index that will be ignored in evaluation. | |
nan_to_num (int, optional): If specified, NaN values will be replaced | |
by the numbers defined by the user. Default: None. | |
label_map (dict): Mapping old labels to new labels. Default: dict(). | |
reduce_zero_label (bool): Wether ignore zero label. Default: False. | |
Returns: | |
float: Overall accuracy on all images. | |
ndarray: Per category accuracy, shape (num_classes, ). | |
ndarray: Per category dice, shape (num_classes, ). | |
""" | |
all_acc, acc, dice = eval_metrics( | |
results=results, | |
gt_seg_maps=gt_seg_maps, | |
num_classes=num_classes, | |
ignore_index=ignore_index, | |
metrics=['mDice'], | |
nan_to_num=nan_to_num, | |
label_map=label_map, | |
reduce_zero_label=reduce_zero_label) | |
return all_acc, acc, dice | |
def eval_metrics(results, | |
gt_seg_maps, | |
num_classes, | |
ignore_index, | |
metrics=['mIoU'], | |
nan_to_num=None, | |
label_map=dict(), | |
reduce_zero_label=False): | |
"""Calculate evaluation metrics | |
Args: | |
results (list[ndarray]): List of prediction segmentation maps. | |
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. | |
num_classes (int): Number of categories. | |
ignore_index (int): Index that will be ignored in evaluation. | |
metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. | |
nan_to_num (int, optional): If specified, NaN values will be replaced | |
by the numbers defined by the user. Default: None. | |
label_map (dict): Mapping old labels to new labels. Default: dict(). | |
reduce_zero_label (bool): Wether ignore zero label. Default: False. | |
Returns: | |
float: Overall accuracy on all images. | |
ndarray: Per category accuracy, shape (num_classes, ). | |
ndarray: Per category evalution metrics, shape (num_classes, ). | |
""" | |
if isinstance(metrics, str): | |
metrics = [metrics] | |
allowed_metrics = ['mIoU', 'mDice'] | |
if not set(metrics).issubset(set(allowed_metrics)): | |
raise KeyError('metrics {} is not supported'.format(metrics)) | |
total_area_intersect, total_area_union, total_area_pred_label, \ | |
total_area_label = total_intersect_and_union(results, gt_seg_maps, | |
num_classes, ignore_index, | |
label_map, | |
reduce_zero_label) | |
all_acc = total_area_intersect.sum() / total_area_label.sum() | |
acc = total_area_intersect / total_area_label | |
ret_metrics = [all_acc, acc] | |
for metric in metrics: | |
if metric == 'mIoU': | |
iou = total_area_intersect / total_area_union | |
ret_metrics.append(iou) | |
elif metric == 'mDice': | |
dice = 2 * total_area_intersect / ( | |
total_area_pred_label + total_area_label) | |
ret_metrics.append(dice) | |
if nan_to_num is not None: | |
ret_metrics = [ | |
np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics | |
] | |
return ret_metrics | |