MultiMAE / dpt /models.py
Bachmann Roman Christian
Initial commit
3b49518
raw
history blame
4.56 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base_model import BaseModel
from .blocks import (
FeatureFusionBlock,
FeatureFusionBlock_custom,
Interpolate,
_make_encoder,
forward_vit,
)
def _make_fusion_block(features, use_bn):
return FeatureFusionBlock_custom(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
)
class DPT(BaseModel):
def __init__(
self,
head,
features=256,
backbone="vitb_rn50_384",
readout="project",
channels_last=False,
use_bn=False,
enable_attention_hooks=False,
):
super(DPT, self).__init__()
self.channels_last = channels_last
hooks = {
"vitb_rn50_384": [0, 1, 8, 11],
"vitb16_384": [2, 5, 8, 11],
"vitl16_384": [5, 11, 17, 23],
}
# Instantiate backbone and reassemble blocks
self.pretrained, self.scratch = _make_encoder(
backbone,
features,
False, # Set to true of you want to train from scratch, uses ImageNet weights
groups=1,
expand=False,
exportable=False,
hooks=hooks[backbone],
use_readout=readout,
enable_attention_hooks=enable_attention_hooks,
)
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
self.scratch.output_conv = head
def forward(self, x):
if self.channels_last == True:
x.contiguous(memory_format=torch.channels_last)
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return out
class DPTDepthModel(DPT):
def __init__(
self, path=None, non_negative=True, scale=1.0, shift=0.0, invert=False, **kwargs
):
features = kwargs["features"] if "features" in kwargs else 256
self.scale = scale
self.shift = shift
self.invert = invert
head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
super().__init__(head, **kwargs)
if path is not None:
self.load(path)
def forward(self, x):
inv_depth = super().forward(x).squeeze(dim=1)
if self.invert:
depth = self.scale * inv_depth + self.shift
depth[depth < 1e-8] = 1e-8
depth = 1.0 / depth
return depth
else:
return inv_depth
class DPTSegmentationModel(DPT):
def __init__(self, num_classes, path=None, **kwargs):
features = kwargs["features"] if "features" in kwargs else 256
kwargs["use_bn"] = True
head = nn.Sequential(
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(features),
nn.ReLU(True),
nn.Dropout(0.1, False),
nn.Conv2d(features, num_classes, kernel_size=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
)
super().__init__(head, **kwargs)
self.auxlayer = nn.Sequential(
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(features),
nn.ReLU(True),
nn.Dropout(0.1, False),
nn.Conv2d(features, num_classes, kernel_size=1),
)
if path is not None:
self.load(path)