Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Based on timm and MAE-priv code bases | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/BUPT-PRIV/MAE-priv | |
# -------------------------------------------------------- | |
""" Eval metrics and related | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
class AverageMeter: | |
"""Computes and stores the average and current value""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def accuracy(output, target, topk=(1,)): | |
"""Computes the accuracy over the k top predictions for the specified values of k""" | |
maxk = min(max(topk), output.size()[1]) | |
batch_size = target.size(0) | |
_, pred = output.topk(maxk, 1, True, True) | |
pred = pred.t() | |
correct = pred.eq(target.reshape(1, -1).expand_as(pred)) | |
return [correct[:min(k, maxk)].reshape(-1).float().sum(0) * 100. / batch_size for k in topk] | |
def cls_map(output, target): | |
# batch_size = target.size(0) | |
# idx_axes = torch.arange(batch_size) | |
scores, preds = output.softmax(dim=-1).topk(1, 1, True, True) | |
return scores, preds | |