Spaces:
Runtime error
Runtime error
from collections import defaultdict | |
from loguru import logger | |
from tqdm import tqdm | |
import torch | |
from yolox.utils import ( | |
gather, | |
is_main_process, | |
postprocess, | |
synchronize, | |
time_synchronized, | |
xyxy2xywh | |
) | |
from yolox.tracker.byte_tracker import BYTETracker | |
from yolox.sort_tracker.sort import Sort | |
from yolox.deepsort_tracker.deepsort import DeepSort | |
from yolox.motdt_tracker.motdt_tracker import OnlineTracker | |
import contextlib | |
import io | |
import os | |
import itertools | |
import json | |
import tempfile | |
import time | |
def write_results(filename, results): | |
save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n' | |
with open(filename, 'w') as f: | |
for frame_id, tlwhs, track_ids, scores in results: | |
for tlwh, track_id, score in zip(tlwhs, track_ids, scores): | |
if track_id < 0: | |
continue | |
x1, y1, w, h = tlwh | |
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2)) | |
f.write(line) | |
logger.info('save results to {}'.format(filename)) | |
def write_results_no_score(filename, results): | |
save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n' | |
with open(filename, 'w') as f: | |
for frame_id, tlwhs, track_ids in results: | |
for tlwh, track_id in zip(tlwhs, track_ids): | |
if track_id < 0: | |
continue | |
x1, y1, w, h = tlwh | |
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1)) | |
f.write(line) | |
logger.info('save results to {}'.format(filename)) | |
class MOTEvaluator: | |
""" | |
COCO AP Evaluation class. All the data in the val2017 dataset are processed | |
and evaluated by COCO API. | |
""" | |
def __init__( | |
self, args, dataloader, img_size, confthre, nmsthre, num_classes): | |
""" | |
Args: | |
dataloader (Dataloader): evaluate dataloader. | |
img_size (int): image size after preprocess. images are resized | |
to squares whose shape is (img_size, img_size). | |
confthre (float): confidence threshold ranging from 0 to 1, which | |
is defined in the config file. | |
nmsthre (float): IoU threshold of non-max supression ranging from 0 to 1. | |
""" | |
self.dataloader = dataloader | |
self.img_size = img_size | |
self.confthre = confthre | |
self.nmsthre = nmsthre | |
self.num_classes = num_classes | |
self.args = args | |
def evaluate( | |
self, | |
model, | |
distributed=False, | |
half=False, | |
trt_file=None, | |
decoder=None, | |
test_size=None, | |
result_folder=None | |
): | |
""" | |
COCO average precision (AP) Evaluation. Iterate inference on the test dataset | |
and the results are evaluated by COCO API. | |
NOTE: This function will change training mode to False, please save states if needed. | |
Args: | |
model : model to evaluate. | |
Returns: | |
ap50_95 (float) : COCO AP of IoU=50:95 | |
ap50 (float) : COCO AP of IoU=50 | |
summary (sr): summary info of evaluation. | |
""" | |
# TODO half to amp_test | |
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor | |
model = model.eval() | |
if half: | |
model = model.half() | |
ids = [] | |
data_list = [] | |
results = [] | |
video_names = defaultdict() | |
progress_bar = tqdm if is_main_process() else iter | |
inference_time = 0 | |
track_time = 0 | |
n_samples = len(self.dataloader) - 1 | |
if trt_file is not None: | |
from torch2trt import TRTModule | |
model_trt = TRTModule() | |
model_trt.load_state_dict(torch.load(trt_file)) | |
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() | |
model(x) | |
model = model_trt | |
tracker = BYTETracker(self.args) | |
ori_thresh = self.args.track_thresh | |
for cur_iter, (imgs, _, info_imgs, ids) in enumerate( | |
progress_bar(self.dataloader) | |
): | |
with torch.no_grad(): | |
# init tracker | |
frame_id = info_imgs[2].item() | |
video_id = info_imgs[3].item() | |
img_file_name = info_imgs[4] | |
video_name = img_file_name[0].split('/')[0] | |
if video_name == 'MOT17-05-FRCNN' or video_name == 'MOT17-06-FRCNN': | |
self.args.track_buffer = 14 | |
elif video_name == 'MOT17-13-FRCNN' or video_name == 'MOT17-14-FRCNN': | |
self.args.track_buffer = 25 | |
else: | |
self.args.track_buffer = 30 | |
if video_name == 'MOT17-01-FRCNN': | |
self.args.track_thresh = 0.65 | |
elif video_name == 'MOT17-06-FRCNN': | |
self.args.track_thresh = 0.65 | |
elif video_name == 'MOT17-12-FRCNN': | |
self.args.track_thresh = 0.7 | |
elif video_name == 'MOT17-14-FRCNN': | |
self.args.track_thresh = 0.67 | |
else: | |
self.args.track_thresh = ori_thresh | |
if video_name == 'MOT20-06' or video_name == 'MOT20-08': | |
self.args.track_thresh = 0.3 | |
else: | |
self.args.track_thresh = ori_thresh | |
if video_name not in video_names: | |
video_names[video_id] = video_name | |
if frame_id == 1: | |
tracker = BYTETracker(self.args) | |
if len(results) != 0: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) | |
write_results(result_filename, results) | |
results = [] | |
imgs = imgs.type(tensor_type) | |
# skip the the last iters since batchsize might be not enough for batch inference | |
is_time_record = cur_iter < len(self.dataloader) - 1 | |
if is_time_record: | |
start = time.time() | |
outputs = model(imgs) | |
if decoder is not None: | |
outputs = decoder(outputs, dtype=outputs.type()) | |
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) | |
if is_time_record: | |
infer_end = time_synchronized() | |
inference_time += infer_end - start | |
output_results = self.convert_to_coco_format(outputs, info_imgs, ids) | |
data_list.extend(output_results) | |
# run tracking | |
if outputs[0] is not None: | |
online_targets = tracker.update(outputs[0], info_imgs, self.img_size) | |
online_tlwhs = [] | |
online_ids = [] | |
online_scores = [] | |
for t in online_targets: | |
tlwh = t.tlwh | |
tid = t.track_id | |
vertical = tlwh[2] / tlwh[3] > 1.6 | |
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: | |
online_tlwhs.append(tlwh) | |
online_ids.append(tid) | |
online_scores.append(t.score) | |
# save results | |
results.append((frame_id, online_tlwhs, online_ids, online_scores)) | |
if is_time_record: | |
track_end = time_synchronized() | |
track_time += track_end - infer_end | |
if cur_iter == len(self.dataloader) - 1: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) | |
write_results(result_filename, results) | |
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) | |
if distributed: | |
data_list = gather(data_list, dst=0) | |
data_list = list(itertools.chain(*data_list)) | |
torch.distributed.reduce(statistics, dst=0) | |
eval_results = self.evaluate_prediction(data_list, statistics) | |
synchronize() | |
return eval_results | |
def evaluate_sort( | |
self, | |
model, | |
distributed=False, | |
half=False, | |
trt_file=None, | |
decoder=None, | |
test_size=None, | |
result_folder=None | |
): | |
""" | |
COCO average precision (AP) Evaluation. Iterate inference on the test dataset | |
and the results are evaluated by COCO API. | |
NOTE: This function will change training mode to False, please save states if needed. | |
Args: | |
model : model to evaluate. | |
Returns: | |
ap50_95 (float) : COCO AP of IoU=50:95 | |
ap50 (float) : COCO AP of IoU=50 | |
summary (sr): summary info of evaluation. | |
""" | |
# TODO half to amp_test | |
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor | |
model = model.eval() | |
if half: | |
model = model.half() | |
ids = [] | |
data_list = [] | |
results = [] | |
video_names = defaultdict() | |
progress_bar = tqdm if is_main_process() else iter | |
inference_time = 0 | |
track_time = 0 | |
n_samples = len(self.dataloader) - 1 | |
if trt_file is not None: | |
from torch2trt import TRTModule | |
model_trt = TRTModule() | |
model_trt.load_state_dict(torch.load(trt_file)) | |
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() | |
model(x) | |
model = model_trt | |
tracker = Sort(self.args.track_thresh) | |
for cur_iter, (imgs, _, info_imgs, ids) in enumerate( | |
progress_bar(self.dataloader) | |
): | |
with torch.no_grad(): | |
# init tracker | |
frame_id = info_imgs[2].item() | |
video_id = info_imgs[3].item() | |
img_file_name = info_imgs[4] | |
video_name = img_file_name[0].split('/')[0] | |
if video_name not in video_names: | |
video_names[video_id] = video_name | |
if frame_id == 1: | |
tracker = Sort(self.args.track_thresh) | |
if len(results) != 0: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) | |
write_results_no_score(result_filename, results) | |
results = [] | |
imgs = imgs.type(tensor_type) | |
# skip the the last iters since batchsize might be not enough for batch inference | |
is_time_record = cur_iter < len(self.dataloader) - 1 | |
if is_time_record: | |
start = time.time() | |
outputs = model(imgs) | |
if decoder is not None: | |
outputs = decoder(outputs, dtype=outputs.type()) | |
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) | |
if is_time_record: | |
infer_end = time_synchronized() | |
inference_time += infer_end - start | |
output_results = self.convert_to_coco_format(outputs, info_imgs, ids) | |
data_list.extend(output_results) | |
# run tracking | |
online_targets = tracker.update(outputs[0], info_imgs, self.img_size) | |
online_tlwhs = [] | |
online_ids = [] | |
for t in online_targets: | |
tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]] | |
tid = t[4] | |
vertical = tlwh[2] / tlwh[3] > 1.6 | |
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: | |
online_tlwhs.append(tlwh) | |
online_ids.append(tid) | |
# save results | |
results.append((frame_id, online_tlwhs, online_ids)) | |
if is_time_record: | |
track_end = time_synchronized() | |
track_time += track_end - infer_end | |
if cur_iter == len(self.dataloader) - 1: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) | |
write_results_no_score(result_filename, results) | |
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) | |
if distributed: | |
data_list = gather(data_list, dst=0) | |
data_list = list(itertools.chain(*data_list)) | |
torch.distributed.reduce(statistics, dst=0) | |
eval_results = self.evaluate_prediction(data_list, statistics) | |
synchronize() | |
return eval_results | |
def evaluate_deepsort( | |
self, | |
model, | |
distributed=False, | |
half=False, | |
trt_file=None, | |
decoder=None, | |
test_size=None, | |
result_folder=None, | |
model_folder=None | |
): | |
""" | |
COCO average precision (AP) Evaluation. Iterate inference on the test dataset | |
and the results are evaluated by COCO API. | |
NOTE: This function will change training mode to False, please save states if needed. | |
Args: | |
model : model to evaluate. | |
Returns: | |
ap50_95 (float) : COCO AP of IoU=50:95 | |
ap50 (float) : COCO AP of IoU=50 | |
summary (sr): summary info of evaluation. | |
""" | |
# TODO half to amp_test | |
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor | |
model = model.eval() | |
if half: | |
model = model.half() | |
ids = [] | |
data_list = [] | |
results = [] | |
video_names = defaultdict() | |
progress_bar = tqdm if is_main_process() else iter | |
inference_time = 0 | |
track_time = 0 | |
n_samples = len(self.dataloader) - 1 | |
if trt_file is not None: | |
from torch2trt import TRTModule | |
model_trt = TRTModule() | |
model_trt.load_state_dict(torch.load(trt_file)) | |
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() | |
model(x) | |
model = model_trt | |
tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh) | |
for cur_iter, (imgs, _, info_imgs, ids) in enumerate( | |
progress_bar(self.dataloader) | |
): | |
with torch.no_grad(): | |
# init tracker | |
frame_id = info_imgs[2].item() | |
video_id = info_imgs[3].item() | |
img_file_name = info_imgs[4] | |
video_name = img_file_name[0].split('/')[0] | |
if video_name not in video_names: | |
video_names[video_id] = video_name | |
if frame_id == 1: | |
tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh) | |
if len(results) != 0: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) | |
write_results_no_score(result_filename, results) | |
results = [] | |
imgs = imgs.type(tensor_type) | |
# skip the the last iters since batchsize might be not enough for batch inference | |
is_time_record = cur_iter < len(self.dataloader) - 1 | |
if is_time_record: | |
start = time.time() | |
outputs = model(imgs) | |
if decoder is not None: | |
outputs = decoder(outputs, dtype=outputs.type()) | |
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) | |
if is_time_record: | |
infer_end = time_synchronized() | |
inference_time += infer_end - start | |
output_results = self.convert_to_coco_format(outputs, info_imgs, ids) | |
data_list.extend(output_results) | |
# run tracking | |
online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0]) | |
online_tlwhs = [] | |
online_ids = [] | |
for t in online_targets: | |
tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]] | |
tid = t[4] | |
vertical = tlwh[2] / tlwh[3] > 1.6 | |
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: | |
online_tlwhs.append(tlwh) | |
online_ids.append(tid) | |
# save results | |
results.append((frame_id, online_tlwhs, online_ids)) | |
if is_time_record: | |
track_end = time_synchronized() | |
track_time += track_end - infer_end | |
if cur_iter == len(self.dataloader) - 1: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) | |
write_results_no_score(result_filename, results) | |
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) | |
if distributed: | |
data_list = gather(data_list, dst=0) | |
data_list = list(itertools.chain(*data_list)) | |
torch.distributed.reduce(statistics, dst=0) | |
eval_results = self.evaluate_prediction(data_list, statistics) | |
synchronize() | |
return eval_results | |
def evaluate_motdt( | |
self, | |
model, | |
distributed=False, | |
half=False, | |
trt_file=None, | |
decoder=None, | |
test_size=None, | |
result_folder=None, | |
model_folder=None | |
): | |
""" | |
COCO average precision (AP) Evaluation. Iterate inference on the test dataset | |
and the results are evaluated by COCO API. | |
NOTE: This function will change training mode to False, please save states if needed. | |
Args: | |
model : model to evaluate. | |
Returns: | |
ap50_95 (float) : COCO AP of IoU=50:95 | |
ap50 (float) : COCO AP of IoU=50 | |
summary (sr): summary info of evaluation. | |
""" | |
# TODO half to amp_test | |
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor | |
model = model.eval() | |
if half: | |
model = model.half() | |
ids = [] | |
data_list = [] | |
results = [] | |
video_names = defaultdict() | |
progress_bar = tqdm if is_main_process() else iter | |
inference_time = 0 | |
track_time = 0 | |
n_samples = len(self.dataloader) - 1 | |
if trt_file is not None: | |
from torch2trt import TRTModule | |
model_trt = TRTModule() | |
model_trt.load_state_dict(torch.load(trt_file)) | |
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() | |
model(x) | |
model = model_trt | |
tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh) | |
for cur_iter, (imgs, _, info_imgs, ids) in enumerate( | |
progress_bar(self.dataloader) | |
): | |
with torch.no_grad(): | |
# init tracker | |
frame_id = info_imgs[2].item() | |
video_id = info_imgs[3].item() | |
img_file_name = info_imgs[4] | |
video_name = img_file_name[0].split('/')[0] | |
if video_name not in video_names: | |
video_names[video_id] = video_name | |
if frame_id == 1: | |
tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh) | |
if len(results) != 0: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) | |
write_results(result_filename, results) | |
results = [] | |
imgs = imgs.type(tensor_type) | |
# skip the the last iters since batchsize might be not enough for batch inference | |
is_time_record = cur_iter < len(self.dataloader) - 1 | |
if is_time_record: | |
start = time.time() | |
outputs = model(imgs) | |
if decoder is not None: | |
outputs = decoder(outputs, dtype=outputs.type()) | |
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) | |
if is_time_record: | |
infer_end = time_synchronized() | |
inference_time += infer_end - start | |
output_results = self.convert_to_coco_format(outputs, info_imgs, ids) | |
data_list.extend(output_results) | |
# run tracking | |
online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0]) | |
online_tlwhs = [] | |
online_ids = [] | |
online_scores = [] | |
for t in online_targets: | |
tlwh = t.tlwh | |
tid = t.track_id | |
vertical = tlwh[2] / tlwh[3] > 1.6 | |
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: | |
online_tlwhs.append(tlwh) | |
online_ids.append(tid) | |
online_scores.append(t.score) | |
# save results | |
results.append((frame_id, online_tlwhs, online_ids, online_scores)) | |
if is_time_record: | |
track_end = time_synchronized() | |
track_time += track_end - infer_end | |
if cur_iter == len(self.dataloader) - 1: | |
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) | |
write_results(result_filename, results) | |
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) | |
if distributed: | |
data_list = gather(data_list, dst=0) | |
data_list = list(itertools.chain(*data_list)) | |
torch.distributed.reduce(statistics, dst=0) | |
eval_results = self.evaluate_prediction(data_list, statistics) | |
synchronize() | |
return eval_results | |
def convert_to_coco_format(self, outputs, info_imgs, ids): | |
data_list = [] | |
for (output, img_h, img_w, img_id) in zip( | |
outputs, info_imgs[0], info_imgs[1], ids | |
): | |
if output is None: | |
continue | |
output = output.cpu() | |
bboxes = output[:, 0:4] | |
# preprocessing: resize | |
scale = min( | |
self.img_size[0] / float(img_h), self.img_size[1] / float(img_w) | |
) | |
bboxes /= scale | |
bboxes = xyxy2xywh(bboxes) | |
cls = output[:, 6] | |
scores = output[:, 4] * output[:, 5] | |
for ind in range(bboxes.shape[0]): | |
label = self.dataloader.dataset.class_ids[int(cls[ind])] | |
pred_data = { | |
"image_id": int(img_id), | |
"category_id": label, | |
"bbox": bboxes[ind].numpy().tolist(), | |
"score": scores[ind].numpy().item(), | |
"segmentation": [], | |
} # COCO json format | |
data_list.append(pred_data) | |
return data_list | |
def evaluate_prediction(self, data_dict, statistics): | |
if not is_main_process(): | |
return 0, 0, None | |
logger.info("Evaluate in main process...") | |
annType = ["segm", "bbox", "keypoints"] | |
inference_time = statistics[0].item() | |
track_time = statistics[1].item() | |
n_samples = statistics[2].item() | |
a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size) | |
a_track_time = 1000 * track_time / (n_samples * self.dataloader.batch_size) | |
time_info = ", ".join( | |
[ | |
"Average {} time: {:.2f} ms".format(k, v) | |
for k, v in zip( | |
["forward", "track", "inference"], | |
[a_infer_time, a_track_time, (a_infer_time + a_track_time)], | |
) | |
] | |
) | |
info = time_info + "\n" | |
# Evaluate the Dt (detection) json comparing with the ground truth | |
if len(data_dict) > 0: | |
cocoGt = self.dataloader.dataset.coco | |
# TODO: since pycocotools can't process dict in py36, write data to json file. | |
_, tmp = tempfile.mkstemp() | |
json.dump(data_dict, open(tmp, "w")) | |
cocoDt = cocoGt.loadRes(tmp) | |
''' | |
try: | |
from yolox.layers import COCOeval_opt as COCOeval | |
except ImportError: | |
from pycocotools import cocoeval as COCOeval | |
logger.warning("Use standard COCOeval.") | |
''' | |
#from pycocotools.cocoeval import COCOeval | |
from yolox.layers import COCOeval_opt as COCOeval | |
cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) | |
cocoEval.evaluate() | |
cocoEval.accumulate() | |
redirect_string = io.StringIO() | |
with contextlib.redirect_stdout(redirect_string): | |
cocoEval.summarize() | |
info += redirect_string.getvalue() | |
return cocoEval.stats[0], cocoEval.stats[1], info | |
else: | |
return 0, 0, info | |