Duibonduil's picture
Upload 17 files
d7949de verified
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import shutil
from pathlib import Path
from typing import Generator
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep
from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas
from smolagents.utils import _is_package_available
def get_step_footnote_content(step_log: ActionStep | PlanningStep, step_name: str) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if step_log.token_usage is not None:
step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}"
step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else ""
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
return step_footnote_content
def _clean_model_output(model_output: str) -> str:
"""
Clean up model output by removing trailing tags and extra backticks.
Args:
model_output (`str`): Raw model output.
Returns:
`str`: Cleaned model output.
"""
if not model_output:
return ""
model_output = model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
return model_output.strip()
def _format_code_content(content: str) -> str:
"""
Format code content as Python code block if it's not already formatted.
Args:
content (`str`): Code content to format.
Returns:
`str`: Code content formatted as a Python code block.
"""
content = content.strip()
# Remove existing code blocks and end_code tags
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
# Add Python code block formatting if not already present
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
return content
def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator:
"""
Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.
Args:
step_log ([`ActionStep`]): ActionStep to process.
skip_model_outputs (`bool`): Whether to skip model outputs.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the action step.
"""
import gradio as gr
# Output the step number
step_number = f"Step {step_log.step_number}"
if not skip_model_outputs:
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=f"**{step_number}**", metadata={"status": "done"})
# First yield the thought/reasoning from the LLM
if not skip_model_outputs and getattr(step_log, "model_output", ""):
model_output = _clean_model_output(step_log.model_output)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=model_output, metadata={"status": "done"})
# For tool calls, create a parent message
if getattr(step_log, "tool_calls", []):
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Process arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
# Format code content if needed
if used_code:
content = _format_code_content(content)
# Create the tool call message
parent_message_tool = gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"status": "done",
},
)
yield parent_message_tool
# Display execution logs if they exist
if getattr(step_log, "observations", "") and step_log.observations.strip():
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=f"```bash\n{log_content}\n",
metadata={"title": "📝 Execution Logs", "status": "done"},
)
# Display any images in observations
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
metadata={"title": "🖼️ Output Image", "status": "done"},
)
# Handle errors
if getattr(step_log, "error", None):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT, content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"}
)
# Add step footnote and separator
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=get_step_footnote_content(step_log, step_number),
metadata={"status": "done"},
)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator:
"""
Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`PlanningStep`]): PlanningStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the planning step.
"""
import gradio as gr
if not skip_model_outputs:
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="**Planning step**", metadata={"status": "done"})
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"})
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=get_step_footnote_content(step_log, "Planning step"),
metadata={"status": "done"},
)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
"""
Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
"""
import gradio as gr
final_answer = step_log.output
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role=MessageRole.ASSISTANT, content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"}
)
def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False):
"""Extract Gradio ChatMessage objects from agent steps with proper nesting.
Args:
step_log: The step log to display as gr.ChatMessage objects.
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
This is used for instance when streaming model outputs have already been displayed.
"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
if isinstance(step_log, ActionStep):
yield from _process_action_step(step_log, skip_model_outputs)
elif isinstance(step_log, PlanningStep):
yield from _process_planning_step(step_log, skip_model_outputs)
elif isinstance(step_log, FinalAnswerStep):
yield from _process_final_answer_step(step_log)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
) -> Generator:
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
accumulated_events: list[ChatMessageStreamDelta] = []
for event in agent.run(
task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args
):
if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep):
for message in pull_messages_from_step(
event,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
):
yield message
accumulated_events = []
elif isinstance(event, ChatMessageStreamDelta):
accumulated_events.append(event)
text = agglomerate_stream_deltas(accumulated_events).render_as_markdown()
yield text
class GradioUI:
"""
Gradio interface for interacting with a [`MultiStepAgent`].
This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, upload files, and receive responses in a chat-like format.
It can reset the agent's memory at the start of each interaction if desired.
It supports file uploads, which are saved to a specified folder.
It uses the [`gradio.Chatbot`] component to display the conversation history.
This class requires the `gradio` extra to be installed: `smolagents[gradio]`.
Args:
agent ([`MultiStepAgent`]): The agent to interact with.
file_upload_folder (`str`, *optional*): The folder where uploaded files will be saved.
If not provided, file uploads are disabled.
reset_agent_memory (`bool`, *optional*, defaults to `False`): Whether to reset the agent's memory at the start of each interaction.
If `True`, the agent will not remember previous interactions.
Raises:
ModuleNotFoundError: If the `gradio` extra is not installed.
Example:
```python
from smolagents import CodeAgent, GradioUI, InferenceClientModel
model = InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct")
agent = CodeAgent(tools=[], model=model)
gradio_ui = GradioUI(agent, file_upload_folder="uploads", reset_agent_memory=True)
gradio_ui.launch()
```
"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None, reset_agent_memory: bool = False):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = Path(file_upload_folder) if file_upload_folder is not None else None
self.reset_agent_memory = reset_agent_memory
self.name = getattr(agent, "name") or "Agent interface"
self.description = getattr(agent, "description", None)
if self.file_upload_folder is not None:
if not self.file_upload_folder.exists():
self.file_upload_folder.mkdir(parents=True, exist_ok=True)
def interact_with_agent(self, prompt, messages, session_state):
import gradio as gr
# Get the agent type from the template agent
if "agent" not in session_state:
session_state["agent"] = self.agent
try:
messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"}))
yield messages
for msg in stream_to_gradio(
session_state["agent"], task=prompt, reset_agent_memory=self.reset_agent_memory
):
if isinstance(msg, gr.ChatMessage):
messages[-1].metadata["status"] = "done"
messages.append(msg)
elif isinstance(msg, str): # Then it's only a completion delta
msg = msg.replace("<", r"\<").replace(">", r"\>") # HTML tags seem to break Gradio Chatbot
if messages[-1].metadata["status"] == "pending":
messages[-1].content = msg
else:
messages.append(
gr.ChatMessage(role=MessageRole.ASSISTANT, content=msg, metadata={"status": "pending"})
)
yield messages
yield messages
except Exception as e:
yield messages
raise gr.Error(f"Error in interaction: {str(e)}")
def upload_file(self, file, file_uploads_log, allowed_file_types=None):
"""
Upload a file and add it to the list of uploaded files in the session state.
The file is saved to the `self.file_upload_folder` folder.
If the file type is not allowed, it returns a message indicating the disallowed file type.
Args:
file (`gradio.File`): The uploaded file.
file_uploads_log (`list`): A list to log uploaded files.
allowed_file_types (`list`, *optional*): List of allowed file extensions. Defaults to [".pdf", ".docx", ".txt"].
"""
import gradio as gr
if file is None:
return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log
if allowed_file_types is None:
allowed_file_types = [".pdf", ".docx", ".txt"]
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
import gradio as gr
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
gr.Button(interactive=False),
)
def launch(self, share: bool = True, **kwargs):
"""
Launch the Gradio app with the agent interface.
Args:
share (`bool`, defaults to `True`): Whether to share the app publicly.
**kwargs: Additional keyword arguments to pass to the Gradio launch method.
"""
self.create_app().launch(debug=True, share=share, **kwargs)
def create_app(self):
import gradio as gr
with gr.Blocks(theme="ocean", fill_height=True) as demo:
# Add session state to store session-specific data
session_state = gr.State({})
stored_messages = gr.State([])
file_uploads_log = gr.State([])
with gr.Sidebar():
gr.Markdown(
f"# {self.name.replace('_', ' ').capitalize()}"
"\n> This web ui allows you to interact with a `smolagents` agent that can use tools and execute steps to complete tasks."
+ (f"\n\n**Agent description:**\n{self.description}" if self.description else "")
)
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(
lines=3,
label="Chat Message",
container=False,
placeholder="Enter your prompt here and press Shift+Enter or press the button",
)
submit_btn = gr.Button("Submit", variant="primary")
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
gr.HTML(
"<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>"
)
# Main chat interface
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
latex_delimiters=[
{"left": r"$$", "right": r"$$", "display": True},
{"left": r"$", "right": r"$", "display": False},
{"left": r"\[", "right": r"\]", "display": True},
{"left": r"\(", "right": r"\)", "display": False},
],
)
# Set up event handlers
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
submit_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
return demo
__all__ = ["stream_to_gradio", "GradioUI"]