|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
import shutil |
|
from pathlib import Path |
|
from typing import Generator |
|
|
|
from smolagents.agent_types import AgentAudio, AgentImage, AgentText |
|
from smolagents.agents import MultiStepAgent, PlanningStep |
|
from smolagents.memory import ActionStep, FinalAnswerStep |
|
from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas |
|
from smolagents.utils import _is_package_available |
|
|
|
|
|
def get_step_footnote_content(step_log: ActionStep | PlanningStep, step_name: str) -> str: |
|
"""Get a footnote string for a step log with duration and token information""" |
|
step_footnote = f"**{step_name}**" |
|
if step_log.token_usage is not None: |
|
step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}" |
|
step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else "" |
|
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """ |
|
return step_footnote_content |
|
|
|
|
|
def _clean_model_output(model_output: str) -> str: |
|
""" |
|
Clean up model output by removing trailing tags and extra backticks. |
|
|
|
Args: |
|
model_output (`str`): Raw model output. |
|
|
|
Returns: |
|
`str`: Cleaned model output. |
|
""" |
|
if not model_output: |
|
return "" |
|
model_output = model_output.strip() |
|
|
|
model_output = re.sub(r"```\s*<end_code>", "```", model_output) |
|
model_output = re.sub(r"<end_code>\s*```", "```", model_output) |
|
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) |
|
return model_output.strip() |
|
|
|
|
|
def _format_code_content(content: str) -> str: |
|
""" |
|
Format code content as Python code block if it's not already formatted. |
|
|
|
Args: |
|
content (`str`): Code content to format. |
|
|
|
Returns: |
|
`str`: Code content formatted as a Python code block. |
|
""" |
|
content = content.strip() |
|
|
|
content = re.sub(r"```.*?\n", "", content) |
|
content = re.sub(r"\s*<end_code>\s*", "", content) |
|
content = content.strip() |
|
|
|
if not content.startswith("```python"): |
|
content = f"```python\n{content}\n```" |
|
return content |
|
|
|
|
|
def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator: |
|
""" |
|
Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects. |
|
|
|
Args: |
|
step_log ([`ActionStep`]): ActionStep to process. |
|
skip_model_outputs (`bool`): Whether to skip model outputs. |
|
|
|
Yields: |
|
`gradio.ChatMessage`: Gradio ChatMessages representing the action step. |
|
""" |
|
import gradio as gr |
|
|
|
|
|
step_number = f"Step {step_log.step_number}" |
|
if not skip_model_outputs: |
|
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=f"**{step_number}**", metadata={"status": "done"}) |
|
|
|
|
|
if not skip_model_outputs and getattr(step_log, "model_output", ""): |
|
model_output = _clean_model_output(step_log.model_output) |
|
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=model_output, metadata={"status": "done"}) |
|
|
|
|
|
if getattr(step_log, "tool_calls", []): |
|
first_tool_call = step_log.tool_calls[0] |
|
used_code = first_tool_call.name == "python_interpreter" |
|
|
|
|
|
args = first_tool_call.arguments |
|
if isinstance(args, dict): |
|
content = str(args.get("answer", str(args))) |
|
else: |
|
content = str(args).strip() |
|
|
|
|
|
if used_code: |
|
content = _format_code_content(content) |
|
|
|
|
|
parent_message_tool = gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content=content, |
|
metadata={ |
|
"title": f"🛠️ Used tool {first_tool_call.name}", |
|
"status": "done", |
|
}, |
|
) |
|
yield parent_message_tool |
|
|
|
|
|
if getattr(step_log, "observations", "") and step_log.observations.strip(): |
|
log_content = step_log.observations.strip() |
|
if log_content: |
|
log_content = re.sub(r"^Execution logs:\s*", "", log_content) |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content=f"```bash\n{log_content}\n", |
|
metadata={"title": "📝 Execution Logs", "status": "done"}, |
|
) |
|
|
|
|
|
if getattr(step_log, "observations_images", []): |
|
for image in step_log.observations_images: |
|
path_image = AgentImage(image).to_string() |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"}, |
|
metadata={"title": "🖼️ Output Image", "status": "done"}, |
|
) |
|
|
|
|
|
if getattr(step_log, "error", None): |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"} |
|
) |
|
|
|
|
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content=get_step_footnote_content(step_log, step_number), |
|
metadata={"status": "done"}, |
|
) |
|
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"}) |
|
|
|
|
|
def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator: |
|
""" |
|
Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects. |
|
|
|
Args: |
|
step_log ([`PlanningStep`]): PlanningStep to process. |
|
|
|
Yields: |
|
`gradio.ChatMessage`: Gradio ChatMessages representing the planning step. |
|
""" |
|
import gradio as gr |
|
|
|
if not skip_model_outputs: |
|
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="**Planning step**", metadata={"status": "done"}) |
|
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"}) |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content=get_step_footnote_content(step_log, "Planning step"), |
|
metadata={"status": "done"}, |
|
) |
|
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"}) |
|
|
|
|
|
def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator: |
|
""" |
|
Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects. |
|
|
|
Args: |
|
step_log ([`FinalAnswerStep`]): FinalAnswerStep to process. |
|
|
|
Yields: |
|
`gradio.ChatMessage`: Gradio ChatMessages representing the final answer. |
|
""" |
|
import gradio as gr |
|
|
|
final_answer = step_log.output |
|
if isinstance(final_answer, AgentText): |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content=f"**Final answer:**\n{final_answer.to_string()}\n", |
|
metadata={"status": "done"}, |
|
) |
|
elif isinstance(final_answer, AgentImage): |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content={"path": final_answer.to_string(), "mime_type": "image/png"}, |
|
metadata={"status": "done"}, |
|
) |
|
elif isinstance(final_answer, AgentAudio): |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, |
|
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, |
|
metadata={"status": "done"}, |
|
) |
|
else: |
|
yield gr.ChatMessage( |
|
role=MessageRole.ASSISTANT, content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"} |
|
) |
|
|
|
|
|
def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False): |
|
"""Extract Gradio ChatMessage objects from agent steps with proper nesting. |
|
|
|
Args: |
|
step_log: The step log to display as gr.ChatMessage objects. |
|
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects: |
|
This is used for instance when streaming model outputs have already been displayed. |
|
""" |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
if isinstance(step_log, ActionStep): |
|
yield from _process_action_step(step_log, skip_model_outputs) |
|
elif isinstance(step_log, PlanningStep): |
|
yield from _process_planning_step(step_log, skip_model_outputs) |
|
elif isinstance(step_log, FinalAnswerStep): |
|
yield from _process_final_answer_step(step_log) |
|
else: |
|
raise ValueError(f"Unsupported step type: {type(step_log)}") |
|
|
|
|
|
def stream_to_gradio( |
|
agent, |
|
task: str, |
|
task_images: list | None = None, |
|
reset_agent_memory: bool = False, |
|
additional_args: dict | None = None, |
|
) -> Generator: |
|
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" |
|
|
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
accumulated_events: list[ChatMessageStreamDelta] = [] |
|
for event in agent.run( |
|
task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args |
|
): |
|
if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep): |
|
for message in pull_messages_from_step( |
|
event, |
|
|
|
skip_model_outputs=getattr(agent, "stream_outputs", False), |
|
): |
|
yield message |
|
accumulated_events = [] |
|
elif isinstance(event, ChatMessageStreamDelta): |
|
accumulated_events.append(event) |
|
text = agglomerate_stream_deltas(accumulated_events).render_as_markdown() |
|
yield text |
|
|
|
|
|
class GradioUI: |
|
""" |
|
Gradio interface for interacting with a [`MultiStepAgent`]. |
|
|
|
This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, upload files, and receive responses in a chat-like format. |
|
It can reset the agent's memory at the start of each interaction if desired. |
|
It supports file uploads, which are saved to a specified folder. |
|
It uses the [`gradio.Chatbot`] component to display the conversation history. |
|
This class requires the `gradio` extra to be installed: `smolagents[gradio]`. |
|
|
|
Args: |
|
agent ([`MultiStepAgent`]): The agent to interact with. |
|
file_upload_folder (`str`, *optional*): The folder where uploaded files will be saved. |
|
If not provided, file uploads are disabled. |
|
reset_agent_memory (`bool`, *optional*, defaults to `False`): Whether to reset the agent's memory at the start of each interaction. |
|
If `True`, the agent will not remember previous interactions. |
|
|
|
Raises: |
|
ModuleNotFoundError: If the `gradio` extra is not installed. |
|
|
|
Example: |
|
```python |
|
from smolagents import CodeAgent, GradioUI, InferenceClientModel |
|
|
|
model = InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct") |
|
agent = CodeAgent(tools=[], model=model) |
|
gradio_ui = GradioUI(agent, file_upload_folder="uploads", reset_agent_memory=True) |
|
gradio_ui.launch() |
|
``` |
|
""" |
|
|
|
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None, reset_agent_memory: bool = False): |
|
if not _is_package_available("gradio"): |
|
raise ModuleNotFoundError( |
|
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" |
|
) |
|
self.agent = agent |
|
self.file_upload_folder = Path(file_upload_folder) if file_upload_folder is not None else None |
|
self.reset_agent_memory = reset_agent_memory |
|
self.name = getattr(agent, "name") or "Agent interface" |
|
self.description = getattr(agent, "description", None) |
|
if self.file_upload_folder is not None: |
|
if not self.file_upload_folder.exists(): |
|
self.file_upload_folder.mkdir(parents=True, exist_ok=True) |
|
|
|
def interact_with_agent(self, prompt, messages, session_state): |
|
import gradio as gr |
|
|
|
|
|
if "agent" not in session_state: |
|
session_state["agent"] = self.agent |
|
|
|
try: |
|
messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"})) |
|
yield messages |
|
|
|
for msg in stream_to_gradio( |
|
session_state["agent"], task=prompt, reset_agent_memory=self.reset_agent_memory |
|
): |
|
if isinstance(msg, gr.ChatMessage): |
|
messages[-1].metadata["status"] = "done" |
|
messages.append(msg) |
|
elif isinstance(msg, str): |
|
msg = msg.replace("<", r"\<").replace(">", r"\>") |
|
if messages[-1].metadata["status"] == "pending": |
|
messages[-1].content = msg |
|
else: |
|
messages.append( |
|
gr.ChatMessage(role=MessageRole.ASSISTANT, content=msg, metadata={"status": "pending"}) |
|
) |
|
yield messages |
|
|
|
yield messages |
|
except Exception as e: |
|
yield messages |
|
raise gr.Error(f"Error in interaction: {str(e)}") |
|
|
|
def upload_file(self, file, file_uploads_log, allowed_file_types=None): |
|
""" |
|
Upload a file and add it to the list of uploaded files in the session state. |
|
|
|
The file is saved to the `self.file_upload_folder` folder. |
|
If the file type is not allowed, it returns a message indicating the disallowed file type. |
|
|
|
Args: |
|
file (`gradio.File`): The uploaded file. |
|
file_uploads_log (`list`): A list to log uploaded files. |
|
allowed_file_types (`list`, *optional*): List of allowed file extensions. Defaults to [".pdf", ".docx", ".txt"]. |
|
""" |
|
import gradio as gr |
|
|
|
if file is None: |
|
return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log |
|
|
|
if allowed_file_types is None: |
|
allowed_file_types = [".pdf", ".docx", ".txt"] |
|
|
|
file_ext = os.path.splitext(file.name)[1].lower() |
|
if file_ext not in allowed_file_types: |
|
return gr.Textbox("File type disallowed", visible=True), file_uploads_log |
|
|
|
|
|
original_name = os.path.basename(file.name) |
|
sanitized_name = re.sub( |
|
r"[^\w\-.]", "_", original_name |
|
) |
|
|
|
|
|
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) |
|
shutil.copy(file.name, file_path) |
|
|
|
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] |
|
|
|
def log_user_message(self, text_input, file_uploads_log): |
|
import gradio as gr |
|
|
|
return ( |
|
text_input |
|
+ ( |
|
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" |
|
if len(file_uploads_log) > 0 |
|
else "" |
|
), |
|
"", |
|
gr.Button(interactive=False), |
|
) |
|
|
|
def launch(self, share: bool = True, **kwargs): |
|
""" |
|
Launch the Gradio app with the agent interface. |
|
|
|
Args: |
|
share (`bool`, defaults to `True`): Whether to share the app publicly. |
|
**kwargs: Additional keyword arguments to pass to the Gradio launch method. |
|
""" |
|
self.create_app().launch(debug=True, share=share, **kwargs) |
|
|
|
def create_app(self): |
|
import gradio as gr |
|
|
|
with gr.Blocks(theme="ocean", fill_height=True) as demo: |
|
|
|
session_state = gr.State({}) |
|
stored_messages = gr.State([]) |
|
file_uploads_log = gr.State([]) |
|
|
|
with gr.Sidebar(): |
|
gr.Markdown( |
|
f"# {self.name.replace('_', ' ').capitalize()}" |
|
"\n> This web ui allows you to interact with a `smolagents` agent that can use tools and execute steps to complete tasks." |
|
+ (f"\n\n**Agent description:**\n{self.description}" if self.description else "") |
|
) |
|
|
|
with gr.Group(): |
|
gr.Markdown("**Your request**", container=True) |
|
text_input = gr.Textbox( |
|
lines=3, |
|
label="Chat Message", |
|
container=False, |
|
placeholder="Enter your prompt here and press Shift+Enter or press the button", |
|
) |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
|
|
|
|
if self.file_upload_folder is not None: |
|
upload_file = gr.File(label="Upload a file") |
|
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) |
|
upload_file.change( |
|
self.upload_file, |
|
[upload_file, file_uploads_log], |
|
[upload_status, file_uploads_log], |
|
) |
|
|
|
gr.HTML( |
|
"<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>" |
|
) |
|
|
|
|
|
chatbot = gr.Chatbot( |
|
label="Agent", |
|
type="messages", |
|
avatar_images=( |
|
None, |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", |
|
), |
|
resizeable=True, |
|
scale=1, |
|
latex_delimiters=[ |
|
{"left": r"$$", "right": r"$$", "display": True}, |
|
{"left": r"$", "right": r"$", "display": False}, |
|
{"left": r"\[", "right": r"\]", "display": True}, |
|
{"left": r"\(", "right": r"\)", "display": False}, |
|
], |
|
) |
|
|
|
|
|
text_input.submit( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, submit_btn], |
|
).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button" |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, submit_btn], |
|
) |
|
|
|
submit_btn.click( |
|
self.log_user_message, |
|
[text_input, file_uploads_log], |
|
[stored_messages, text_input, submit_btn], |
|
).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then( |
|
lambda: ( |
|
gr.Textbox( |
|
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button" |
|
), |
|
gr.Button(interactive=True), |
|
), |
|
None, |
|
[text_input, submit_btn], |
|
) |
|
|
|
return demo |
|
|
|
|
|
__all__ = ["stream_to_gradio", "GradioUI"] |
|
|