Spaces:
Sleeping
Sleeping
import os | |
import json | |
import torch | |
import numpy as np | |
import qa_mdt.audioldm_train.modules.hifigan as hifigan | |
import importlib | |
import torch | |
import numpy as np | |
from collections import abc | |
import multiprocessing as mp | |
from threading import Thread | |
from queue import Queue | |
from inspect import isfunction | |
from PIL import Image, ImageDraw, ImageFont | |
import json | |
with open('./qa_mdt/offset_pretrained_checkpoints.json', 'r') as config_file: | |
config_data = json.load(config_file) | |
def log_txt_as_img(wh, xc, size=10): | |
# wh a tuple of (width, height) | |
# xc a list of captions to plot | |
b = len(xc) | |
txts = list() | |
for bi in range(b): | |
txt = Image.new("RGB", wh, color="white") | |
draw = ImageDraw.Draw(txt) | |
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size) | |
nc = int(40 * (wh[0] / 256)) | |
lines = "\n".join( | |
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc) | |
) | |
try: | |
draw.text((0, 0), lines, fill="black", font=font) | |
except UnicodeEncodeError: | |
print("Cant encode string for logging. Skipping.") | |
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 | |
txts.append(txt) | |
txts = np.stack(txts) | |
txts = torch.tensor(txts) | |
return txts | |
def ismap(x): | |
if not isinstance(x, torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] > 3) | |
def isimage(x): | |
if not isinstance(x, torch.Tensor): | |
return False | |
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
def int16_to_float32(x): | |
return (x / 32767.0).astype(np.float32) | |
def float32_to_int16(x): | |
x = np.clip(x, a_min=-1.0, a_max=1.0) | |
return (x * 32767.0).astype(np.int16) | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def mean_flat(tensor): | |
""" | |
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def count_params(model, verbose=False): | |
total_params = sum(p.numel() for p in model.parameters()) | |
if verbose: | |
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") | |
return total_params | |
def instantiate_from_config(config): | |
if not "target" in config: | |
if config == "__is_first_stage__": | |
return None | |
elif config == "__is_unconditional__": | |
return None | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): | |
# create dummy dataset instance | |
# run prefetching | |
if idx_to_fn: | |
res = func(data, worker_id=idx) | |
else: | |
res = func(data) | |
Q.put([idx, res]) | |
Q.put("Done") | |
def parallel_data_prefetch( | |
func: callable, | |
data, | |
n_proc, | |
target_data_type="ndarray", | |
cpu_intensive=True, | |
use_worker_id=False, | |
): | |
# if target_data_type not in ["ndarray", "list"]: | |
# raise ValueError( | |
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray." | |
# ) | |
if isinstance(data, np.ndarray) and target_data_type == "list": | |
raise ValueError("list expected but function got ndarray.") | |
elif isinstance(data, abc.Iterable): | |
if isinstance(data, dict): | |
print( | |
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' | |
) | |
data = list(data.values()) | |
if target_data_type == "ndarray": | |
data = np.asarray(data) | |
else: | |
data = list(data) | |
else: | |
raise TypeError( | |
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}." | |
) | |
if cpu_intensive: | |
Q = mp.Queue(1000) | |
proc = mp.Process | |
else: | |
Q = Queue(1000) | |
proc = Thread | |
# spawn processes | |
if target_data_type == "ndarray": | |
arguments = [ | |
[func, Q, part, i, use_worker_id] | |
for i, part in enumerate(np.array_split(data, n_proc)) | |
] | |
else: | |
step = ( | |
int(len(data) / n_proc + 1) | |
if len(data) % n_proc != 0 | |
else int(len(data) / n_proc) | |
) | |
arguments = [ | |
[func, Q, part, i, use_worker_id] | |
for i, part in enumerate( | |
[data[i : i + step] for i in range(0, len(data), step)] | |
) | |
] | |
processes = [] | |
for i in range(n_proc): | |
p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) | |
processes += [p] | |
# start processes | |
print(f"Start prefetching...") | |
import time | |
start = time.time() | |
gather_res = [[] for _ in range(n_proc)] | |
try: | |
for p in processes: | |
p.start() | |
k = 0 | |
while k < n_proc: | |
# get result | |
res = Q.get() | |
if res == "Done": | |
k += 1 | |
else: | |
gather_res[res[0]] = res[1] | |
except Exception as e: | |
print("Exception: ", e) | |
for p in processes: | |
p.terminate() | |
raise e | |
finally: | |
for p in processes: | |
p.join() | |
print(f"Prefetching complete. [{time.time() - start} sec.]") | |
if target_data_type == "ndarray": | |
if not isinstance(gather_res[0], np.ndarray): | |
return np.concatenate([np.asarray(r) for r in gather_res], axis=0) | |
# order outputs | |
return np.concatenate(gather_res, axis=0) | |
elif target_data_type == "list": | |
out = [] | |
for r in gather_res: | |
out.extend(r) | |
return out | |
else: | |
return gather_res | |
def get_available_checkpoint_keys(model, ckpt): | |
print("==> Attemp to reload from %s" % ckpt) | |
state_dict = torch.load(ckpt)["state_dict"] | |
current_state_dict = model.state_dict() | |
new_state_dict = {} | |
for k in state_dict.keys(): | |
if ( | |
k in current_state_dict.keys() | |
and current_state_dict[k].size() == state_dict[k].size() | |
): | |
new_state_dict[k] = state_dict[k] | |
else: | |
print("==> WARNING: Skipping %s" % k) | |
print( | |
"%s out of %s keys are matched" | |
% (len(new_state_dict.keys()), len(state_dict.keys())) | |
) | |
return new_state_dict | |
def get_param_num(model): | |
num_param = sum(param.numel() for param in model.parameters()) | |
return num_param | |
def torch_version_orig_mod_remove(state_dict): | |
new_state_dict = {} | |
new_state_dict["generator"] = {} | |
for key in state_dict["generator"].keys(): | |
if "_orig_mod." in key: | |
new_state_dict["generator"][key.replace("_orig_mod.", "")] = state_dict[ | |
"generator" | |
][key] | |
else: | |
new_state_dict["generator"][key] = state_dict["generator"][key] | |
return new_state_dict | |
def get_vocoder(config, device, mel_bins): | |
ROOT = config_data["hifi-gan"] | |
if mel_bins == 64: | |
# import pdb | |
# pdb.set_trace() | |
model_path = os.path.join(ROOT, "hifigan_16k_64bins") | |
with open(model_path + ".json", "r") as f: | |
config = json.load(f) | |
config = hifigan.AttrDict(config) | |
vocoder = hifigan.Generator(config) | |
elif mel_bins == 256: | |
model_path = os.path.join(ROOT, "hifigan_48k_256bins") | |
with open(model_path + ".json", "r") as f: | |
config = json.load(f) | |
config = hifigan.AttrDict(config) | |
vocoder = hifigan.Generator_HiFiRes(config) | |
ckpt = torch.load(model_path + ".ckpt") | |
ckpt = torch_version_orig_mod_remove(ckpt) | |
vocoder.load_state_dict(ckpt["generator"]) | |
vocoder.eval() | |
vocoder.remove_weight_norm() | |
vocoder.to(device) | |
return vocoder | |
def vocoder_infer(mels, vocoder, lengths=None): | |
with torch.no_grad(): | |
wavs = vocoder(mels).squeeze(1) | |
wavs = (wavs.cpu().numpy() * 32768).astype("int16") | |
if lengths is not None: | |
wavs = wavs[:, :lengths] | |
return wavs | |