Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Various utilities for neural networks. | |
""" | |
import math | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class GroupNorm32(nn.GroupNorm): | |
def __init__(self, num_groups, num_channels, swish, eps=1e-5): | |
super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) | |
self.swish = swish | |
def forward(self, x): | |
y = super().forward(x.float()).to(x.dtype) | |
if self.swish == 1.0: | |
y = F.silu(y) | |
elif self.swish: | |
y = y * F.sigmoid(y * float(self.swish)) | |
return y | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def update_ema(target_params, source_params, rate=0.99): | |
""" | |
Update target parameters to be closer to those of source parameters using | |
an exponential moving average. | |
:param target_params: the target parameter sequence. | |
:param source_params: the source parameter sequence. | |
:param rate: the EMA rate (closer to 1 means slower). | |
""" | |
for targ, src in zip(target_params, source_params): | |
targ.detach().mul_(rate).add_(src, alpha=1 - rate) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def mean_flat(tensor): | |
""" | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def normalization(channels, swish=0.0): | |
""" | |
Make a standard normalization layer, with an optional swish activation. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) | |
# def timestep_embedding(timesteps, dim, max_period=10000): | |
# """ | |
# Create sinusoidal timestep embeddings. | |
# :param timesteps: a 1-D Tensor of N indices, one per batch element. | |
# These may be fractional. | |
# :param dim: the dimension of the output. | |
# :param max_period: controls the minimum frequency of the embeddings. | |
# :return: an [N x dim] Tensor of positional embeddings. | |
# """ | |
# half = dim // 2 | |
# freqs = th.exp( | |
# -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half | |
# ).to(device=timesteps.device) | |
# args = timesteps[:, None].float() * freqs[None] | |
# embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) | |
# if dim % 2: | |
# embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) | |
# return embedding | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
if not repeat_only: | |
half = dim // 2 | |
freqs = th.exp( | |
-math.log(max_period) | |
* th.arange(start=0, end=half, dtype=th.float32) | |
/ half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) | |
else: | |
embedding = repeat(timesteps, "b -> b d", d=dim) | |
return embedding | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
# flag = False | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
class CheckpointFunction(th.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_tensors = list(args[:length]) | |
ctx.input_params = list(args[length:]) | |
with th.no_grad(): | |
output_tensors = ctx.run_function(*ctx.input_tensors) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
with th.enable_grad(): | |
# Fixes a bug where the first op in run_function modifies the | |
# Tensor storage in place, which is not allowed for detach()'d | |
# Tensors. | |
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
output_tensors = ctx.run_function(*shallow_copies) | |
input_grads = th.autograd.grad( | |
output_tensors, | |
ctx.input_tensors + ctx.input_params, | |
output_grads, | |
allow_unused=True, | |
) | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return (None, None) + input_grads | |