Spaces:
Runtime error
Runtime error
# Copyright (c) SenseTime Research. All rights reserved. | |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Train a GAN using the techniques described in the paper | |
"Alias-Free Generative Adversarial Networks".""" | |
import os | |
import click | |
import re | |
import json | |
import tempfile | |
import torch | |
import dnnlib | |
from training import training_loop | |
from metrics import metric_main | |
from torch_utils import training_stats | |
from torch_utils import custom_ops | |
import ast | |
# ---------------------------------------------------------------------------- | |
def subprocess_fn(rank, c, temp_dir): | |
dnnlib.util.Logger(file_name=os.path.join( | |
c.run_dir, 'log.txt'), file_mode='a', should_flush=True) | |
# Init torch.distributed. | |
if c.num_gpus > 1: | |
init_file = os.path.abspath(os.path.join( | |
temp_dir, '.torch_distributed_init')) | |
if os.name == 'nt': | |
init_method = 'file:///' + init_file.replace('\\', '/') | |
torch.distributed.init_process_group( | |
backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus) | |
else: | |
init_method = f'file://{init_file}' | |
torch.distributed.init_process_group( | |
backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus) | |
# Init torch_utils. | |
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None | |
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) | |
if rank != 0: | |
custom_ops.verbosity = 'none' | |
# Execute training loop. | |
training_loop.training_loop(rank=rank, **c) | |
# ---------------------------------------------------------------------------- | |
def launch_training(c, desc, outdir, dry_run): | |
dnnlib.util.Logger(should_flush=True) | |
# Pick output directory. | |
prev_run_dirs = [] | |
if os.path.isdir(outdir): | |
prev_run_dirs = [x for x in os.listdir( | |
outdir) if os.path.isdir(os.path.join(outdir, x))] | |
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs] | |
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None] | |
cur_run_id = max(prev_run_ids, default=-1) + 1 | |
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}') | |
assert not os.path.exists(c.run_dir) | |
# Print options. | |
print() | |
print('Training options:') | |
print(json.dumps(c, indent=2)) | |
print() | |
print(f'Output directory: {c.run_dir}') | |
print(f'Number of GPUs: {c.num_gpus}') | |
print(f'Batch size: {c.batch_size} images') | |
print(f'Training duration: {c.total_kimg} kimg') | |
print(f'Dataset path: {c.training_set_kwargs.path}') | |
print(f'Dataset size: {c.training_set_kwargs.max_size} images') | |
print(f'Dataset resolution: {c.training_set_kwargs.resolution}') | |
print(f'Dataset labels: {c.training_set_kwargs.use_labels}') | |
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}') | |
print() | |
# Dry run? | |
if dry_run: | |
print('Dry run; exiting.') | |
return | |
# Create output directory. | |
print('Creating output directory...') | |
os.makedirs(c.run_dir) | |
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f: | |
json.dump(c, f, indent=2) | |
# Launch processes. | |
print('Launching processes...') | |
torch.multiprocessing.set_start_method('spawn') | |
with tempfile.TemporaryDirectory() as temp_dir: | |
if c.num_gpus == 1: | |
subprocess_fn(rank=0, c=c, temp_dir=temp_dir) | |
else: | |
torch.multiprocessing.spawn( | |
fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus) | |
# ---------------------------------------------------------------------------- | |
def init_dataset_kwargs(data, square=False): | |
# dataset | |
try: | |
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', | |
path=data, use_labels=True, max_size=None, xflip=False, square=square) | |
# Subclass of training.dataset.Dataset. | |
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) | |
# Be explicit about resolution. | |
dataset_kwargs.resolution = dataset_obj.resolution | |
# Be explicit about labels. | |
dataset_kwargs.use_labels = dataset_obj.has_labels | |
# Be explicit about dataset size. | |
dataset_kwargs.max_size = len(dataset_obj) | |
return dataset_kwargs, dataset_obj.name | |
except IOError as err: | |
raise click.ClickException(f'--data: {err}') | |
print("out of dataset") | |
# ---------------------------------------------------------------------------- | |
def parse_comma_separated_list(s): | |
if isinstance(s, list): | |
return s | |
if s is None or s.lower() == 'none' or s == '': | |
return [] | |
return s.split(',') | |
# ---------------------------------------------------------------------------- | |
# Required. | |
# Optional features. | |
# Misc hyperparameters. | |
# Misc settings. | |
def main(**kwargs): | |
"""Train a GAN using the techniques described in the paper | |
"Alias-Free Generative Adversarial Networks". | |
Examples: | |
\b | |
# Train StyleGAN3-T for AFHQv2 using 8 GPUs. | |
python train.py --outdir=~/training-runs --cfg=stylegan3-t --data=~/datasets/afhqv2-512x512.zip \\ | |
--gpus=8 --batch=32 --gamma=8.2 --mirror=1 | |
\b | |
# Fine-tune StyleGAN3-R for MetFaces-U using 1 GPU, starting from the pre-trained FFHQ-U pickle. | |
python train.py --outdir=~/training-runs --cfg=stylegan3-r --data=~/datasets/metfacesu-1024x1024.zip \\ | |
--gpus=8 --batch=32 --gamma=6.6 --mirror=1 --kimg=5000 --snap=5 \\ | |
--resume=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-1024x1024.pkl | |
\b | |
# Train StyleGAN2 for FFHQ at 1024x1024 resolution using 8 GPUs. | |
python train.py --outdir=~/training-runs --cfg=stylegan2 --data=~/datasets/ffhq-1024x1024.zip \\ | |
--gpus=8 --batch=32 --gamma=10 --mirror=1 --aug=noaug | |
""" | |
# Initialize config. | |
opts = dnnlib.EasyDict(kwargs) # Command line arguments. | |
c = dnnlib.EasyDict() # Main config dict. | |
print('---- square: ', opts.square) | |
c.G_kwargs = dnnlib.EasyDict( | |
class_name=None, z_dim=512, w_dim=512, mapping_kwargs=dnnlib.EasyDict(), square=opts.square) | |
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks_stylegan2.Discriminator', block_kwargs=dnnlib.EasyDict( | |
), mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict(), square=opts.square) | |
c.G_opt_kwargs = dnnlib.EasyDict( | |
class_name='torch.optim.Adam', betas=[0, 0.99], eps=1e-8) | |
c.D_opt_kwargs = dnnlib.EasyDict( | |
class_name='torch.optim.Adam', betas=[0, 0.99], eps=1e-8) | |
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.StyleGAN2Loss') | |
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2) | |
# Training set. | |
c.training_set_kwargs, dataset_name = init_dataset_kwargs( | |
data=opts.data, square=opts.square) | |
if opts.cond and not c.training_set_kwargs.use_labels: | |
raise click.ClickException( | |
'--cond=True requires labels specified in dataset.json') | |
c.training_set_kwargs.use_labels = opts.cond | |
c.training_set_kwargs.xflip = opts.mirror | |
# Hyperparameters & settings. | |
c.num_gpus = opts.gpus | |
c.batch_size = opts.batch | |
c.batch_gpu = opts.batch_gpu or opts.batch // opts.gpus | |
c.G_kwargs.channel_base = c.D_kwargs.channel_base = opts.cbase | |
c.G_kwargs.channel_max = c.D_kwargs.channel_max = opts.cmax | |
c.G_kwargs.mapping_kwargs.num_layers = ( | |
8 if opts.cfg == 'stylegan2' else 2) if opts.map_depth is None else opts.map_depth | |
c.D_kwargs.block_kwargs.freeze_layers = opts.freezed | |
c.D_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group | |
c.loss_kwargs.r1_gamma = opts.gamma | |
c.G_opt_kwargs.lr = ( | |
0.002 if opts.cfg == 'stylegan2' else 0.0025) if opts.glr is None else opts.glr | |
c.D_opt_kwargs.lr = opts.dlr | |
c.metrics = opts.metrics | |
c.total_kimg = opts.kimg | |
c.kimg_per_tick = opts.tick | |
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap | |
c.random_seed = c.training_set_kwargs.random_seed = opts.seed | |
c.data_loader_kwargs.num_workers = opts.workers | |
# Sanity checks. | |
if c.batch_size % c.num_gpus != 0: | |
raise click.ClickException('--batch must be a multiple of --gpus') | |
if c.batch_size % (c.num_gpus * c.batch_gpu) != 0: | |
raise click.ClickException( | |
'--batch must be a multiple of --gpus times --batch-gpu') | |
if c.batch_gpu < c.D_kwargs.epilogue_kwargs.mbstd_group_size: | |
raise click.ClickException( | |
'--batch-gpu cannot be smaller than --mbstd') | |
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics): | |
raise click.ClickException('\n'.join( | |
['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) | |
# Base configuration. | |
c.ema_kimg = c.batch_size * 10 / 32 | |
if opts.cfg == 'stylegan2': | |
c.G_kwargs.class_name = 'training.networks_stylegan2.Generator' | |
# Enable style mixing regularization. | |
c.loss_kwargs.style_mixing_prob = 0.9 | |
c.loss_kwargs.pl_weight = 2 # Enable path length regularization. | |
c.G_reg_interval = 4 # Enable lazy regularization for G. | |
# Speed up training by using regular convolutions instead of grouped convolutions. | |
c.G_kwargs.fused_modconv_default = 'inference_only' | |
# Speed up path length regularization by skipping gradient computation wrt. conv2d weights. | |
c.loss_kwargs.pl_no_weight_grad = True | |
else: | |
c.G_kwargs.class_name = 'training.networks_stylegan3.Generator' | |
c.G_kwargs.magnitude_ema_beta = 0.5 ** (c.batch_size / (20 * 1e3)) | |
if opts.cfg == 'stylegan3-r': | |
c.G_kwargs.conv_kernel = 1 # Use 1x1 convolutions. | |
c.G_kwargs.channel_base *= 2 # Double the number of feature maps. | |
c.G_kwargs.channel_max *= 2 | |
# Use radially symmetric downsampling filters. | |
c.G_kwargs.use_radial_filters = True | |
# Blur the images seen by the discriminator. | |
c.loss_kwargs.blur_init_sigma = 10 | |
# Fade out the blur during the first N kimg. | |
c.loss_kwargs.blur_fade_kimg = c.batch_size * 200 / 32 | |
# Augmentation. | |
if opts.aug != 'noaug': | |
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, | |
scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1) | |
if opts.aug == 'ada': | |
c.ada_target = opts.target | |
if opts.aug == 'fixed': | |
c.augment_p = opts.p | |
# Resume. | |
if opts.resume is not None: | |
c.resume_pkl = opts.resume | |
c.ada_kimg = 100 # Make ADA react faster at the beginning. | |
c.ema_rampup = None # Disable EMA rampup. | |
c.loss_kwargs.blur_init_sigma = 0 # Disable blur rampup. | |
# Performance-related toggles. | |
if opts.fp32: | |
c.G_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0 | |
c.G_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None | |
if opts.nobench: | |
c.cudnn_benchmark = False | |
# Description string. | |
desc = f'{opts.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
if opts.desc is not None: | |
desc += f'-{opts.desc}' | |
# Launch. | |
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run) | |
# ---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
main() # pylint: disable=no-value-for-parameter | |
# ---------------------------------------------------------------------------- | |