Spaces:
Runtime error
Runtime error
##### `πβ Open_Assistant.py` | |
##### https://huggingface.co/spaces/olivierdehaene/chat-llm-streaming/blob/main/README.md | |
##### https://huggingface.co/OpenAssistant/oasst-sft-1-pythia-12b | |
##### Please reach out to ben@benbox.org for any questions | |
#### Loading needed Python libraries | |
import streamlit as st | |
import os | |
from text_generation import Client, InferenceAPIClient | |
from text_generation import InferenceAPIClient | |
st.header('πβ Open Assistant LLM') | |
st.write('This is the first iteration English supervised-fine-tuning (SFT) model of the Open-Assistant project. It is based on a Pythia 12B that was fine-tuned on ~22k human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before March 7, 2023.') | |
st.write('Question: :green[Why is the sky blue?]') | |
client = InferenceAPIClient("OpenAssistant/oasst-sft-1-pythia-12b") | |
text = client.generate("<|prompter|>Why is the sky blue?<|endoftext|><|assistant|>").generated_text | |
st.write('Answer: :green[' + str(text) + ']') | |
# Token Streaming | |
#text = "" | |
#for response in client.generate_stream("<|prompter|>Why is the sky blue?<|endoftext|><|assistant|>"): | |
# if not response.token.special: | |
# print(response.token.text) | |
# text += response.token.text | |
#st.write(text) | |
# | |
# openchat_preprompt = ( | |
# "\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for " | |
# "fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source " | |
# "community. I am not human, not evil and not alive, and thus have no thoughts and feelings, " | |
# "but I am programmed to be helpful, polite, honest, and friendly.\n" | |
# ) | |
# | |
# | |
# def get_client(model: str): | |
# if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B": | |
# return Client(os.getenv("OPENCHAT_API_URL")) | |
# return InferenceAPIClient(model, token = os.getenv("HF_TOKEN", None)) | |
# | |
# | |
# def get_usernames(model: str): | |
# """ | |
# Returns: | |
# (str, str, str, str): pre-prompt, username, bot name, separator | |
# """ | |
# if model == "OpenAssistant/oasst-sft-1-pythia-12b": | |
# return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>" | |
# if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B": | |
# return openchat_preprompt, "<human>: ", "<bot>: ", "\n" | |
# return "", "User: ", "Assistant: ", "\n" | |
# | |
# | |
# def predict( | |
# model: str, | |
# inputs: str, | |
# typical_p: float, | |
# top_p: float, | |
# temperature: float, | |
# top_k: int, | |
# repetition_penalty: float, | |
# watermark: bool, | |
# chatbot, | |
# history, | |
# ): | |
# client = get_client(model) | |
# preprompt, user_name, assistant_name, sep = get_usernames(model) | |
# | |
# history.append(inputs) | |
# | |
# past = [] | |
# for data in chatbot: | |
# user_data, model_data = data | |
# | |
# if not user_data.startswith(user_name): | |
# user_data = user_name + user_data | |
# if not model_data.startswith(sep + assistant_name): | |
# model_data = sep + assistant_name + model_data | |
# | |
# past.append(user_data + model_data.rstrip() + sep) | |
# | |
# if not inputs.startswith(user_name): | |
# inputs = user_name + inputs | |
# | |
# total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip() | |
# | |
# partial_words = "" | |
# | |
# if model == "OpenAssistant/oasst-sft-1-pythia-12b": | |
# iterator = client.generate_stream( | |
# total_inputs, | |
# typical_p = typical_p, | |
# truncate = 1000, | |
# watermark = watermark, | |
# max_new_tokens = 500, | |
# ) | |
# else: | |
# iterator = client.generate_stream( | |
# total_inputs, | |
# top_p = top_p if top_p < 1.0 else None, | |
# top_k = top_k, | |
# truncate = 1000, | |
# repetition_penalty = repetition_penalty, | |
# watermark = watermark, | |
# temperature = temperature, | |
# max_new_tokens = 500, | |
# stop_sequences = [user_name.rstrip(), assistant_name.rstrip()], | |
# ) | |
# | |
# for i, response in enumerate(iterator): | |
# if response.token.special: | |
# continue | |
# | |
# partial_words = partial_words + response.token.text | |
# if partial_words.endswith(user_name.rstrip()): | |
# partial_words = partial_words.rstrip(user_name.rstrip()) | |
# if partial_words.endswith(assistant_name.rstrip()): | |
# partial_words = partial_words.rstrip(assistant_name.rstrip()) | |
# | |
# if i == 0: | |
# history.append(" " + partial_words) | |
# elif response.token.text not in user_name: | |
# history[-1] = partial_words | |
# | |
# chat = [ | |
# (history[i].strip(), history[i + 1].strip()) | |
# for i in range(0, len(history) - 1, 2) | |
# ] | |
# yield chat, history | |
# | |
# | |
# def reset_textbox(): | |
# return gr.update(value = "") | |
# | |
# | |
# def radio_on_change( | |
# value: str, | |
# disclaimer, | |
# typical_p, | |
# top_p, | |
# top_k, | |
# temperature, | |
# repetition_penalty, | |
# watermark, | |
# ): | |
# if value == "OpenAssistant/oasst-sft-1-pythia-12b": | |
# typical_p = typical_p.update(value = 0.2, visible = True) | |
# top_p = top_p.update(visible = False) | |
# top_k = top_k.update(visible = False) | |
# temperature = temperature.update(visible = False) | |
# disclaimer = disclaimer.update(visible = False) | |
# repetition_penalty = repetition_penalty.update(visible = False) | |
# watermark = watermark.update(False) | |
# elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B": | |
# typical_p = typical_p.update(visible = False) | |
# top_p = top_p.update(value = 0.25, visible = True) | |
# top_k = top_k.update(value = 50, visible = True) | |
# temperature = temperature.update(value = 0.6, visible = True) | |
# repetition_penalty = repetition_penalty.update(value = 1.01, visible = True) | |
# watermark = watermark.update(False) | |
# disclaimer = disclaimer.update(visible = True) | |
# else: | |
# typical_p = typical_p.update(visible = False) | |
# top_p = top_p.update(value = 0.95, visible = True) | |
# top_k = top_k.update(value = 4, visible = True) | |
# temperature = temperature.update(value = 0.5, visible = True) | |
# repetition_penalty = repetition_penalty.update(value = 1.03, visible = True) | |
# watermark = watermark.update(True) | |
# disclaimer = disclaimer.update(visible = False) | |
# return ( | |
# disclaimer, | |
# typical_p, | |
# top_p, | |
# top_k, | |
# temperature, | |
# repetition_penalty, | |
# watermark, | |
# ) | |
# | |
# | |
# title = """<h1 align="center">π₯Large Language Model API πStreamingπ</h1>""" | |
# description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
# ``` | |
# User: <utterance> | |
# Assistant: <utterance> | |
# User: <utterance> | |
# Assistant: <utterance> | |
# ... | |
# ``` | |
# In this app, you can explore the outputs of multiple LLMs when prompted in this way. | |
# """ | |
# | |
# openchat_disclaimer = """ | |
# <div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div> | |
# """ | |
# | |
# with gr.Blocks( | |
# css = """#col_container {margin-left: auto; margin-right: auto;} | |
# #chatbot {height: 520px; overflow: auto;}""" | |
# ) as demo: | |
# gr.HTML(title) | |
# with gr.Column(elem_id = "col_container"): | |
# model = gr.Radio( | |
# value = "OpenAssistant/oasst-sft-1-pythia-12b", | |
# choices = [ | |
# "OpenAssistant/oasst-sft-1-pythia-12b", | |
# # "togethercomputer/GPT-NeoXT-Chat-Base-20B", | |
# "google/flan-t5-xxl", | |
# "google/flan-ul2", | |
# "bigscience/bloom", | |
# "bigscience/bloomz", | |
# "EleutherAI/gpt-neox-20b", | |
# ], | |
# label = "Model", | |
# interactive = True, | |
# ) | |
# | |
# chatbot = gr.Chatbot(elem_id = "chatbot") | |
# inputs = gr.Textbox( | |
# placeholder = "Hi there!", label = "Type an input and press Enter" | |
# ) | |
# disclaimer = gr.Markdown(openchat_disclaimer, visible = False) | |
# state = gr.State([]) | |
# b1 = gr.Button() | |
# | |
# with gr.Accordion("Parameters", open = False): | |
# typical_p = gr.Slider( | |
# minimum = -0, | |
# maximum = 1.0, | |
# value = 0.2, | |
# step = 0.05, | |
# interactive = True, | |
# label = "Typical P mass", | |
# ) | |
# top_p = gr.Slider( | |
# minimum = -0, | |
# maximum = 1.0, | |
# value = 0.25, | |
# step = 0.05, | |
# interactive = True, | |
# label = "Top-p (nucleus sampling)", | |
# visible = False, | |
# ) | |
# temperature = gr.Slider( | |
# minimum = -0, | |
# maximum = 5.0, | |
# value = 0.6, | |
# step = 0.1, | |
# interactive = True, | |
# label = "Temperature", | |
# visible = False, | |
# ) | |
# top_k = gr.Slider( | |
# minimum = 1, | |
# maximum = 50, | |
# value = 50, | |
# step = 1, | |
# interactive = True, | |
# label = "Top-k", | |
# visible = False, | |
# ) | |
# repetition_penalty = gr.Slider( | |
# minimum = 0.1, | |
# maximum = 3.0, | |
# value = 1.03, | |
# step = 0.01, | |
# interactive = True, | |
# label = "Repetition Penalty", | |
# visible = False, | |
# ) | |
# watermark = gr.Checkbox(value = False, label = "Text watermarking") | |
# | |
# model.change( | |
# lambda value: radio_on_change( | |
# value, | |
# disclaimer, | |
# typical_p, | |
# top_p, | |
# top_k, | |
# temperature, | |
# repetition_penalty, | |
# watermark, | |
# ), | |
# inputs = model, | |
# outputs = [ | |
# disclaimer, | |
# typical_p, | |
# top_p, | |
# top_k, | |
# temperature, | |
# repetition_penalty, | |
# watermark, | |
# ], | |
# ) | |
# | |
# inputs.submit( | |
# predict, | |
# [ | |
# model, | |
# inputs, | |
# typical_p, | |
# top_p, | |
# temperature, | |
# top_k, | |
# repetition_penalty, | |
# watermark, | |
# chatbot, | |
# state, | |
# ], | |
# [chatbot, state], | |
# ) | |
# b1.click( | |
# predict, | |
# [ | |
# model, | |
# inputs, | |
# typical_p, | |
# top_p, | |
# temperature, | |
# top_k, | |
# repetition_penalty, | |
# watermark, | |
# chatbot, | |
# state, | |
# ], | |
# [chatbot, state], | |
# ) | |
# b1.click(reset_textbox, [], [inputs]) | |
# inputs.submit(reset_textbox, [], [inputs]) | |
# | |
# gr.Markdown(description) | |
# demo.queue(concurrency_count = 16).launch(debug = True) | |