Merge branch 'main' into winglian-patch-1
Browse files- .gitignore +161 -2
- README.md +60 -20
- docker/Dockerfile-base +3 -3
- examples/lora-openllama-3b/config.yml +67 -0
- src/axolotl/prompters.py +2 -2
- src/axolotl/utils/models.py +2 -2
- src/axolotl/utils/validation.py +10 -0
.gitignore
CHANGED
@@ -1,4 +1,163 @@
|
|
1 |
**/axolotl.egg-info
|
2 |
-
**/__pycache__
|
3 |
-
.idea
|
4 |
configs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
**/axolotl.egg-info
|
|
|
|
|
2 |
configs
|
3 |
+
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*$py.class
|
8 |
+
|
9 |
+
# C extensions
|
10 |
+
*.so
|
11 |
+
|
12 |
+
# Distribution / packaging
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
share/python-wheels/
|
27 |
+
*.egg-info/
|
28 |
+
.installed.cfg
|
29 |
+
*.egg
|
30 |
+
MANIFEST
|
31 |
+
|
32 |
+
# PyInstaller
|
33 |
+
# Usually these files are written by a python script from a template
|
34 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
35 |
+
*.manifest
|
36 |
+
*.spec
|
37 |
+
|
38 |
+
# Installer logs
|
39 |
+
pip-log.txt
|
40 |
+
pip-delete-this-directory.txt
|
41 |
+
|
42 |
+
# Unit test / coverage reports
|
43 |
+
htmlcov/
|
44 |
+
.tox/
|
45 |
+
.nox/
|
46 |
+
.coverage
|
47 |
+
.coverage.*
|
48 |
+
.cache
|
49 |
+
nosetests.xml
|
50 |
+
coverage.xml
|
51 |
+
*.cover
|
52 |
+
*.py,cover
|
53 |
+
.hypothesis/
|
54 |
+
.pytest_cache/
|
55 |
+
cover/
|
56 |
+
|
57 |
+
# Translations
|
58 |
+
*.mo
|
59 |
+
*.pot
|
60 |
+
|
61 |
+
# Django stuff:
|
62 |
+
*.log
|
63 |
+
local_settings.py
|
64 |
+
db.sqlite3
|
65 |
+
db.sqlite3-journal
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/_build/
|
76 |
+
|
77 |
+
# PyBuilder
|
78 |
+
.pybuilder/
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
# For a library or package, you might want to ignore these files since the code is
|
90 |
+
# intended to run in multiple environments; otherwise, check them in:
|
91 |
+
# .python-version
|
92 |
+
|
93 |
+
# pipenv
|
94 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
95 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
96 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
97 |
+
# install all needed dependencies.
|
98 |
+
#Pipfile.lock
|
99 |
+
|
100 |
+
# poetry
|
101 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
102 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
103 |
+
# commonly ignored for libraries.
|
104 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
105 |
+
#poetry.lock
|
106 |
+
|
107 |
+
# pdm
|
108 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
109 |
+
#pdm.lock
|
110 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
111 |
+
# in version control.
|
112 |
+
# https://pdm.fming.dev/#use-with-ide
|
113 |
+
.pdm.toml
|
114 |
+
|
115 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
116 |
+
__pypackages__/
|
117 |
+
|
118 |
+
# Celery stuff
|
119 |
+
celerybeat-schedule
|
120 |
+
celerybeat.pid
|
121 |
+
|
122 |
+
# SageMath parsed files
|
123 |
+
*.sage.py
|
124 |
+
|
125 |
+
# Environments
|
126 |
+
.env
|
127 |
+
.venv
|
128 |
+
env/
|
129 |
+
venv/
|
130 |
+
ENV/
|
131 |
+
env.bak/
|
132 |
+
venv.bak/
|
133 |
+
|
134 |
+
# Spyder project settings
|
135 |
+
.spyderproject
|
136 |
+
.spyproject
|
137 |
+
|
138 |
+
# Rope project settings
|
139 |
+
.ropeproject
|
140 |
+
|
141 |
+
# mkdocs documentation
|
142 |
+
/site
|
143 |
+
|
144 |
+
# mypy
|
145 |
+
.mypy_cache/
|
146 |
+
.dmypy.json
|
147 |
+
dmypy.json
|
148 |
+
|
149 |
+
# Pyre type checker
|
150 |
+
.pyre/
|
151 |
+
|
152 |
+
# pytype static type analyzer
|
153 |
+
.pytype/
|
154 |
+
|
155 |
+
# Cython debug symbols
|
156 |
+
cython_debug/
|
157 |
+
|
158 |
+
# PyCharm
|
159 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
160 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
161 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
162 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
163 |
+
.idea/
|
README.md
CHANGED
@@ -97,6 +97,18 @@ Have dataset(s) in one of the following format (JSONL recommended):
|
|
97 |
```json
|
98 |
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
|
99 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
> Have some new format to propose? Check if it's already defined in [data.py](src/axolotl/utils/data.py) in `dev` branch!
|
102 |
|
@@ -124,17 +136,17 @@ See sample configs in [configs](configs) folder or [examples](examples) for quic
|
|
124 |
|
125 |
- loading
|
126 |
```yaml
|
127 |
-
|
128 |
load_in_8bit: true
|
129 |
-
bf16: true
|
130 |
fp16: true
|
131 |
-
tf32: true
|
132 |
```
|
133 |
Note: Repo does not do 4-bit quantization.
|
134 |
|
135 |
- lora
|
136 |
```yaml
|
137 |
-
adapter: lora # blank for full finetune
|
138 |
lora_r: 8
|
139 |
lora_alpha: 16
|
140 |
lora_dropout: 0.05
|
@@ -163,28 +175,32 @@ tokenizer_type: AutoTokenizer
|
|
163 |
# Trust remote code for untrusted source
|
164 |
trust_remote_code:
|
165 |
|
166 |
-
# whether you are training a 4-bit quantized model
|
167 |
load_4bit: true
|
168 |
gptq_groupsize: 128 # group size
|
169 |
gptq_model_v1: false # v1 or v2
|
170 |
|
171 |
# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
172 |
load_in_8bit: true
|
|
|
|
|
173 |
|
174 |
# Use CUDA bf16
|
175 |
-
bf16: true
|
176 |
# Use CUDA fp16
|
177 |
fp16: true
|
178 |
# Use CUDA tf32
|
179 |
-
tf32: true
|
180 |
|
181 |
# a list of one or more datasets to finetune the model with
|
182 |
datasets:
|
183 |
# this can be either a hf dataset, or relative path
|
184 |
- path: vicgalle/alpaca-gpt4
|
185 |
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
186 |
-
type: alpaca
|
187 |
data_files: # path to source data files
|
|
|
|
|
188 |
|
189 |
# axolotl attempts to save the dataset as an arrow after packing the data together so
|
190 |
# subsequent training attempts load faster, relative path
|
@@ -201,7 +217,7 @@ sequence_len: 2048
|
|
201 |
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
|
202 |
max_packed_sequence_len: 1024
|
203 |
|
204 |
-
# if you want to use lora
|
205 |
adapter: lora
|
206 |
# if you already have a lora model trained that you want to load, put that here
|
207 |
# lora hyperparameters
|
@@ -224,6 +240,7 @@ lora_out_dir:
|
|
224 |
lora_fan_in_fan_out: false
|
225 |
|
226 |
# wandb configuration if you're using it
|
|
|
227 |
wandb_project:
|
228 |
wandb_watch:
|
229 |
wandb_run_id:
|
@@ -252,8 +269,18 @@ gradient_checkpointing: false
|
|
252 |
# stop training after this many evaluation losses have increased in a row
|
253 |
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
254 |
early_stopping_patience: 3
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
# specify optimizer
|
258 |
optimizer:
|
259 |
# specify weight decay
|
@@ -262,7 +289,7 @@ weight_decay:
|
|
262 |
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
263 |
xformers_attention:
|
264 |
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
|
265 |
-
flash_attention:
|
266 |
|
267 |
# resume from a specific checkpoint dir
|
268 |
resume_from_checkpoint:
|
@@ -288,11 +315,17 @@ fsdp_config:
|
|
288 |
# Deepspeed
|
289 |
deepspeed:
|
290 |
|
291 |
-
#
|
292 |
torchdistx_path:
|
293 |
|
|
|
|
|
|
|
294 |
# Debug mode
|
295 |
debug:
|
|
|
|
|
|
|
296 |
```
|
297 |
|
298 |
</details>
|
@@ -317,12 +350,16 @@ accelerate launch scripts/finetune.py configs/your_config.yml
|
|
317 |
|
318 |
### Inference
|
319 |
|
320 |
-
|
321 |
|
322 |
-
|
323 |
-
```bash
|
324 |
-
--lora_model_dir ./completed-model
|
325 |
-
```
|
|
|
|
|
|
|
|
|
326 |
|
327 |
### Merge LORA to base
|
328 |
|
@@ -341,8 +378,11 @@ Please reduce any below
|
|
341 |
- `eval_batch_size`
|
342 |
- `sequence_len`
|
343 |
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
346 |
|
347 |
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you
|
348 |
|
|
|
97 |
```json
|
98 |
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
|
99 |
```
|
100 |
+
- `explainchoice`: question, choices, (solution OR explanation)
|
101 |
+
```json
|
102 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
103 |
+
```
|
104 |
+
- `concisechoice`: question, choices, (solution OR explanation)
|
105 |
+
```json
|
106 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
107 |
+
```
|
108 |
+
- `summarizetldr`: article and summary
|
109 |
+
```json
|
110 |
+
{"article": "...", "summary": "..."}
|
111 |
+
```
|
112 |
|
113 |
> Have some new format to propose? Check if it's already defined in [data.py](src/axolotl/utils/data.py) in `dev` branch!
|
114 |
|
|
|
136 |
|
137 |
- loading
|
138 |
```yaml
|
139 |
+
load_in_4bit: true
|
140 |
load_in_8bit: true
|
141 |
+
bf16: true # require >=ampere
|
142 |
fp16: true
|
143 |
+
tf32: true # require >=ampere
|
144 |
```
|
145 |
Note: Repo does not do 4-bit quantization.
|
146 |
|
147 |
- lora
|
148 |
```yaml
|
149 |
+
adapter: lora # qlora or leave blank for full finetune
|
150 |
lora_r: 8
|
151 |
lora_alpha: 16
|
152 |
lora_dropout: 0.05
|
|
|
175 |
# Trust remote code for untrusted source
|
176 |
trust_remote_code:
|
177 |
|
178 |
+
# whether you are training a 4-bit GPTQ quantized model
|
179 |
load_4bit: true
|
180 |
gptq_groupsize: 128 # group size
|
181 |
gptq_model_v1: false # v1 or v2
|
182 |
|
183 |
# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
184 |
load_in_8bit: true
|
185 |
+
# use bitsandbytes 4 bit
|
186 |
+
load_in_4bit:
|
187 |
|
188 |
# Use CUDA bf16
|
189 |
+
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
|
190 |
# Use CUDA fp16
|
191 |
fp16: true
|
192 |
# Use CUDA tf32
|
193 |
+
tf32: true # require >=ampere
|
194 |
|
195 |
# a list of one or more datasets to finetune the model with
|
196 |
datasets:
|
197 |
# this can be either a hf dataset, or relative path
|
198 |
- path: vicgalle/alpaca-gpt4
|
199 |
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
200 |
+
type: alpaca # format OR format:prompt_style (chat/instruct)
|
201 |
data_files: # path to source data files
|
202 |
+
shards: # true if use subset data. make sure to set `shards` param also
|
203 |
+
shards: # number of shards to split dataset into
|
204 |
|
205 |
# axolotl attempts to save the dataset as an arrow after packing the data together so
|
206 |
# subsequent training attempts load faster, relative path
|
|
|
217 |
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
|
218 |
max_packed_sequence_len: 1024
|
219 |
|
220 |
+
# if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
|
221 |
adapter: lora
|
222 |
# if you already have a lora model trained that you want to load, put that here
|
223 |
# lora hyperparameters
|
|
|
240 |
lora_fan_in_fan_out: false
|
241 |
|
242 |
# wandb configuration if you're using it
|
243 |
+
wandb_mode:
|
244 |
wandb_project:
|
245 |
wandb_watch:
|
246 |
wandb_run_id:
|
|
|
269 |
# stop training after this many evaluation losses have increased in a row
|
270 |
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
271 |
early_stopping_patience: 3
|
272 |
+
|
273 |
+
# specify a scheduler and kwargs to use with the optimizer
|
274 |
+
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
|
275 |
+
lr_scheduler_kwargs:
|
276 |
+
|
277 |
+
# for one_cycle optim
|
278 |
+
lr_div_factor: # learning rate div factor
|
279 |
+
|
280 |
+
# for log_sweep optim
|
281 |
+
log_sweep_min_lr:
|
282 |
+
log_sweep_max_lr:
|
283 |
+
|
284 |
# specify optimizer
|
285 |
optimizer:
|
286 |
# specify weight decay
|
|
|
289 |
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
290 |
xformers_attention:
|
291 |
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
|
292 |
+
flash_attention: # require a100 for llama
|
293 |
|
294 |
# resume from a specific checkpoint dir
|
295 |
resume_from_checkpoint:
|
|
|
315 |
# Deepspeed
|
316 |
deepspeed:
|
317 |
|
318 |
+
# Path to torch distx for optim 'adamw_anyprecision'
|
319 |
torchdistx_path:
|
320 |
|
321 |
+
# Set padding for data collator to 'longest'
|
322 |
+
collator_pad_to_longest:
|
323 |
+
|
324 |
# Debug mode
|
325 |
debug:
|
326 |
+
|
327 |
+
# Seed
|
328 |
+
seed:
|
329 |
```
|
330 |
|
331 |
</details>
|
|
|
350 |
|
351 |
### Inference
|
352 |
|
353 |
+
Pass the appropriate flag to the train command:
|
354 |
|
355 |
+
- Pretrained LORA:
|
356 |
+
```bash
|
357 |
+
--inference --lora_model_dir ./completed-model
|
358 |
+
```
|
359 |
+
- Full weights finetune:
|
360 |
+
```bash
|
361 |
+
--inference --base_model ./completed-model
|
362 |
+
```
|
363 |
|
364 |
### Merge LORA to base
|
365 |
|
|
|
378 |
- `eval_batch_size`
|
379 |
- `sequence_len`
|
380 |
|
381 |
+
> RuntimeError: expected scalar type Float but found Half
|
382 |
+
|
383 |
+
Try set `fp16: true`
|
384 |
+
|
385 |
+
## Need help? 🙋♂️
|
386 |
|
387 |
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you
|
388 |
|
docker/Dockerfile-base
CHANGED
@@ -43,11 +43,11 @@ RUN git clone https://github.com/HazyResearch/flash-attention.git && \
|
|
43 |
python3 setup.py bdist_wheel && \
|
44 |
cd csrc/fused_dense_lib && \
|
45 |
python3 setup.py bdist_wheel && \
|
46 |
-
cd
|
47 |
python3 setup.py bdist_wheel && \
|
48 |
-
cd
|
49 |
python3 setup.py bdist_wheel && \
|
50 |
-
cd
|
51 |
python3 setup.py bdist_wheel
|
52 |
|
53 |
FROM base-builder AS deepspeed-builder
|
|
|
43 |
python3 setup.py bdist_wheel && \
|
44 |
cd csrc/fused_dense_lib && \
|
45 |
python3 setup.py bdist_wheel && \
|
46 |
+
cd ../xentropy && \
|
47 |
python3 setup.py bdist_wheel && \
|
48 |
+
cd ../rotary && \
|
49 |
python3 setup.py bdist_wheel && \
|
50 |
+
cd ../layer_norm && \
|
51 |
python3 setup.py bdist_wheel
|
52 |
|
53 |
FROM base-builder AS deepspeed-builder
|
examples/lora-openllama-3b/config.yml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: openlm-research/open_llama_3b_600bt_preview
|
2 |
+
base_model_config: openlm-research/open_llama_3b_600bt_preview
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: LlamaTokenizer
|
5 |
+
load_in_8bit: true
|
6 |
+
load_in_4bit: false
|
7 |
+
strict: false
|
8 |
+
push_dataset_to_hub:
|
9 |
+
datasets:
|
10 |
+
- path: teknium/GPT4-LLM-Cleaned
|
11 |
+
type: alpaca
|
12 |
+
dataset_prepared_path: last_run_prepared
|
13 |
+
val_set_size: 0.02
|
14 |
+
adapter: lora
|
15 |
+
lora_model_dir:
|
16 |
+
sequence_len: 256
|
17 |
+
max_packed_sequence_len:
|
18 |
+
lora_r: 8
|
19 |
+
lora_alpha: 16
|
20 |
+
lora_dropout: 0.0
|
21 |
+
lora_target_modules:
|
22 |
+
- gate_proj
|
23 |
+
- down_proj
|
24 |
+
- up_proj
|
25 |
+
- q_proj
|
26 |
+
- v_proj
|
27 |
+
- k_proj
|
28 |
+
- o_proj
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
wandb_project:
|
31 |
+
wandb_watch:
|
32 |
+
wandb_run_id:
|
33 |
+
wandb_log_model:
|
34 |
+
output_dir: ./lora-out
|
35 |
+
batch_size: 16
|
36 |
+
micro_batch_size: 4
|
37 |
+
num_epochs: 3
|
38 |
+
optimizer: adamw_bnb_8bit
|
39 |
+
torchdistx_path:
|
40 |
+
lr_scheduler: cosine
|
41 |
+
learning_rate: 0.0002
|
42 |
+
train_on_inputs: false
|
43 |
+
group_by_length: false
|
44 |
+
bf16: false
|
45 |
+
fp16: true
|
46 |
+
tf32: false
|
47 |
+
gradient_checkpointing: true
|
48 |
+
early_stopping_patience:
|
49 |
+
resume_from_checkpoint:
|
50 |
+
local_rank:
|
51 |
+
logging_steps: 1
|
52 |
+
xformers_attention: true
|
53 |
+
flash_attention:
|
54 |
+
gptq_groupsize:
|
55 |
+
gptq_model_v1:
|
56 |
+
warmup_steps: 10
|
57 |
+
eval_steps: 50
|
58 |
+
save_steps:
|
59 |
+
debug:
|
60 |
+
deepspeed:
|
61 |
+
weight_decay: 0.0
|
62 |
+
fsdp:
|
63 |
+
fsdp_config:
|
64 |
+
special_tokens:
|
65 |
+
bos_token: "<s>"
|
66 |
+
eos_token: "</s>"
|
67 |
+
unk_token: "<unk>"
|
src/axolotl/prompters.py
CHANGED
@@ -17,8 +17,8 @@ class AlpacaPrompter:
|
|
17 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
18 |
prompt_style = None
|
19 |
|
20 |
-
def __init__(self, prompt_style=
|
21 |
-
self.prompt_style = prompt_style
|
22 |
self.match_prompt_style()
|
23 |
|
24 |
def match_prompt_style(self):
|
|
|
17 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
18 |
prompt_style = None
|
19 |
|
20 |
+
def __init__(self, prompt_style=PromptStyle.instruct.value):
|
21 |
+
self.prompt_style = prompt_style if prompt_style else PromptStyle.instruct.value
|
22 |
self.match_prompt_style()
|
23 |
|
24 |
def match_prompt_style(self):
|
src/axolotl/utils/models.py
CHANGED
@@ -211,12 +211,12 @@ def load_model(
|
|
211 |
try:
|
212 |
if is_llama_derived_model and "LlamaTokenizer" in globals():
|
213 |
tokenizer = LlamaTokenizer.from_pretrained(
|
214 |
-
|
215 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
216 |
)
|
217 |
else:
|
218 |
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(
|
219 |
-
|
220 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
221 |
)
|
222 |
except:
|
|
|
211 |
try:
|
212 |
if is_llama_derived_model and "LlamaTokenizer" in globals():
|
213 |
tokenizer = LlamaTokenizer.from_pretrained(
|
214 |
+
base_model_config,
|
215 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
216 |
)
|
217 |
else:
|
218 |
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(
|
219 |
+
base_model_config,
|
220 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
221 |
)
|
222 |
except:
|
src/axolotl/utils/validation.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def validate_config(cfg):
|
2 |
+
if cfg.adapter == "qlora":
|
3 |
+
assert cfg.load_in_8bit is False
|
4 |
+
assert cfg.load_4bit is False
|
5 |
+
assert cfg.load_in_4bit is True
|
6 |
+
pass
|
7 |
+
# TODO
|
8 |
+
# MPT 7b
|
9 |
+
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
10 |
+
# no 8bit adamw w bf16
|