Merge pull request #57 from OpenAccess-AI-Collective/fixes-for-basic-samples
Browse files
examples/lora-openllama-3b/config.yml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: openlm-research/open_llama_3b_600bt_preview
|
2 |
+
base_model_config: openlm-research/open_llama_3b_600bt_preview
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: LlamaTokenizer
|
5 |
+
load_in_8bit: true
|
6 |
+
load_in_4bit: false
|
7 |
+
strict: false
|
8 |
+
push_dataset_to_hub:
|
9 |
+
datasets:
|
10 |
+
- path: teknium/GPT4-LLM-Cleaned
|
11 |
+
type: alpaca
|
12 |
+
dataset_prepared_path: last_run_prepared
|
13 |
+
val_set_size: 0.02
|
14 |
+
adapter: lora
|
15 |
+
lora_model_dir:
|
16 |
+
sequence_len: 256
|
17 |
+
max_packed_sequence_len:
|
18 |
+
lora_r: 8
|
19 |
+
lora_alpha: 16
|
20 |
+
lora_dropout: 0.0
|
21 |
+
lora_target_modules:
|
22 |
+
- gate_proj
|
23 |
+
- down_proj
|
24 |
+
- up_proj
|
25 |
+
- q_proj
|
26 |
+
- v_proj
|
27 |
+
- k_proj
|
28 |
+
- o_proj
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
wandb_project:
|
31 |
+
wandb_watch:
|
32 |
+
wandb_run_id:
|
33 |
+
wandb_log_model:
|
34 |
+
output_dir: ./lora-out
|
35 |
+
batch_size: 16
|
36 |
+
micro_batch_size: 4
|
37 |
+
num_epochs: 3
|
38 |
+
optimizer: adamw_bnb_8bit
|
39 |
+
torchdistx_path:
|
40 |
+
lr_scheduler: cosine
|
41 |
+
learning_rate: 0.0002
|
42 |
+
train_on_inputs: false
|
43 |
+
group_by_length: false
|
44 |
+
bf16: false
|
45 |
+
fp16: true
|
46 |
+
tf32: false
|
47 |
+
gradient_checkpointing: true
|
48 |
+
early_stopping_patience:
|
49 |
+
resume_from_checkpoint:
|
50 |
+
local_rank:
|
51 |
+
logging_steps: 1
|
52 |
+
xformers_attention: true
|
53 |
+
flash_attention:
|
54 |
+
gptq_groupsize:
|
55 |
+
gptq_model_v1:
|
56 |
+
warmup_steps: 10
|
57 |
+
eval_steps: 50
|
58 |
+
save_steps:
|
59 |
+
debug:
|
60 |
+
deepspeed:
|
61 |
+
weight_decay: 0.0
|
62 |
+
fsdp:
|
63 |
+
fsdp_config:
|
64 |
+
special_tokens:
|
65 |
+
bos_token: "<s>"
|
66 |
+
eos_token: "</s>"
|
67 |
+
unk_token: "<unk>"
|
src/axolotl/prompters.py
CHANGED
@@ -17,8 +17,8 @@ class AlpacaPrompter:
|
|
17 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
18 |
prompt_style = None
|
19 |
|
20 |
-
def __init__(self, prompt_style=
|
21 |
-
self.prompt_style = prompt_style
|
22 |
self.match_prompt_style()
|
23 |
|
24 |
def match_prompt_style(self):
|
|
|
17 |
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
18 |
prompt_style = None
|
19 |
|
20 |
+
def __init__(self, prompt_style=PromptStyle.instruct.value):
|
21 |
+
self.prompt_style = prompt_style if prompt_style else PromptStyle.instruct.value
|
22 |
self.match_prompt_style()
|
23 |
|
24 |
def match_prompt_style(self):
|
src/axolotl/utils/models.py
CHANGED
@@ -211,12 +211,12 @@ def load_model(
|
|
211 |
try:
|
212 |
if is_llama_derived_model and "LlamaTokenizer" in globals():
|
213 |
tokenizer = LlamaTokenizer.from_pretrained(
|
214 |
-
|
215 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
216 |
)
|
217 |
else:
|
218 |
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(
|
219 |
-
|
220 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
221 |
)
|
222 |
except:
|
|
|
211 |
try:
|
212 |
if is_llama_derived_model and "LlamaTokenizer" in globals():
|
213 |
tokenizer = LlamaTokenizer.from_pretrained(
|
214 |
+
base_model_config,
|
215 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
216 |
)
|
217 |
else:
|
218 |
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(
|
219 |
+
base_model_config,
|
220 |
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
221 |
)
|
222 |
except:
|