DontPlanToEnd commited on
Commit
5d0a24d
Β·
verified Β·
1 Parent(s): 204dcb4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -22
app.py CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
3
  import numpy as np
4
  from functools import partial
5
  from gradio_rangeslider import RangeSlider
 
6
 
7
  custom_css = """
8
  .tab-nav button {
@@ -42,12 +43,32 @@ custom_css = """
42
  UGI_COLS = ['#P', 'Model', 'UGI πŸ†', 'W/10 πŸ‘', 'Unruly', 'Internet', 'Stats', 'Writing', 'PolContro']
43
  WRITING_STYLE_COLS = ['#P', 'Model', 'Reg+MyScore πŸ†', 'Reg+Int πŸ†', 'MyScore πŸ†', 'ASSS⬇️', 'SMOG⬆️', 'Yule⬇️']
44
  ANIME_RATING_COLS = ['#P', 'Model', 'Score πŸ†', 'Dif', 'Cor', 'Std']
 
45
 
46
  # Load the leaderboard data from a CSV file
47
  def load_leaderboard_data(csv_file_path):
48
  try:
49
  df = pd.read_csv(csv_file_path)
50
- df['Model'] = df.apply(lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"], axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  df.drop(columns=['Link'], inplace=True)
52
 
53
  # Round numeric columns to 3 decimal places
@@ -61,30 +82,30 @@ def load_leaderboard_data(csv_file_path):
61
  return df
62
  except Exception as e:
63
  print(f"Error loading CSV file: {e}")
64
- return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS)
65
 
66
  # Update the leaderboard table based on the search query and parameter range filters
67
- def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list, w10_range: tuple) -> pd.DataFrame:
68
  filtered_df = df.copy()
69
  if param_ranges:
70
  param_mask = pd.Series(False, index=filtered_df.index)
71
  for param_range in param_ranges:
72
  if param_range == '~2':
73
- param_mask |= (filtered_df['Params'] < 2.5)
74
  elif param_range == '~4':
75
- param_mask |= ((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6))
76
  elif param_range == '~8':
77
- param_mask |= ((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5))
78
  elif param_range == '~13':
79
- param_mask |= ((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16))
80
  elif param_range == '~20':
81
- param_mask |= ((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28))
82
  elif param_range == '~34':
83
- param_mask |= ((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40))
84
  elif param_range == '~50':
85
- param_mask |= ((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 65))
86
  elif param_range == '~70+':
87
- param_mask |= (filtered_df['Params'] >= 65)
88
  filtered_df = filtered_df[param_mask]
89
 
90
  if query:
@@ -94,6 +115,17 @@ def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list
94
  if 'W/10 πŸ‘' in filtered_df.columns:
95
  filtered_df = filtered_df[(filtered_df['W/10 πŸ‘'] >= w10_range[0]) & (filtered_df['W/10 πŸ‘'] <= w10_range[1])]
96
 
 
 
 
 
 
 
 
 
 
 
 
97
  return filtered_df[columns]
98
 
99
  # Define the Gradio interface
@@ -129,13 +161,21 @@ with GraInter:
129
  )
130
  with gr.Column(scale=2):
131
  w10_range = RangeSlider(minimum=0, maximum=10, value=(0, 10), step=0.1, label="W/10 Range")
 
 
 
 
 
 
 
 
132
 
133
  # Load the initial leaderboard data
134
  leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
135
 
136
  with gr.Tabs():
137
  with gr.TabItem("UGI-Leaderboard"):
138
- datatypes_ugi = ['html' if col == 'Model' else 'str' for col in UGI_COLS]
139
  leaderboard_table_ugi = gr.Dataframe(
140
  value=leaderboard_df[UGI_COLS],
141
  datatype=datatypes_ugi,
@@ -170,7 +210,7 @@ with GraInter:
170
 
171
  with gr.TabItem("Writing Style"):
172
  leaderboard_df_ws = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
173
- datatypes_ws = ['html' if col == 'Model' else 'str' for col in WRITING_STYLE_COLS]
174
  leaderboard_table_ws = gr.Dataframe(
175
  value=leaderboard_df_ws[WRITING_STYLE_COLS],
176
  datatype=datatypes_ws,
@@ -210,7 +250,7 @@ with GraInter:
210
  leaderboard_df_arp_na = leaderboard_df_arp[leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
211
  leaderboard_df_arp = leaderboard_df_arp[~leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
212
 
213
- datatypes_arp = ['html' if col == 'Model' else 'str' for col in ANIME_RATING_COLS]
214
 
215
  leaderboard_table_arp = gr.Dataframe(
216
  value=leaderboard_df_arp[ANIME_RATING_COLS],
@@ -248,36 +288,42 @@ with GraInter:
248
  **NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
249
  """)
250
 
251
- def update_all_tables(query, param_ranges, w10_range):
252
- ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS, w10_range)
253
 
254
  ws_df = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
255
- ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS, w10_range)
256
 
257
  arp_df = leaderboard_df.sort_values(by='Score πŸ†', ascending=False)
258
  arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
259
  arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
260
 
261
- arp_table = update_table(arp_df, query, param_ranges, ANIME_RATING_COLS, w10_range)
262
- arp_na_table = update_table(arp_df_na, query, param_ranges, ANIME_RATING_COLS, w10_range).fillna('NA')
263
 
264
  return ugi_table, ws_table, arp_table, arp_na_table
265
 
266
  search_bar.change(
267
  fn=update_all_tables,
268
- inputs=[search_bar, filter_columns_size, w10_range],
269
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
270
  )
271
 
272
  filter_columns_size.change(
273
  fn=update_all_tables,
274
- inputs=[search_bar, filter_columns_size, w10_range],
275
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
276
  )
277
 
278
  w10_range.change(
279
  fn=update_all_tables,
280
- inputs=[search_bar, filter_columns_size, w10_range],
 
 
 
 
 
 
281
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
282
  )
283
 
 
3
  import numpy as np
4
  from functools import partial
5
  from gradio_rangeslider import RangeSlider
6
+ from datetime import datetime, timedelta
7
 
8
  custom_css = """
9
  .tab-nav button {
 
43
  UGI_COLS = ['#P', 'Model', 'UGI πŸ†', 'W/10 πŸ‘', 'Unruly', 'Internet', 'Stats', 'Writing', 'PolContro']
44
  WRITING_STYLE_COLS = ['#P', 'Model', 'Reg+MyScore πŸ†', 'Reg+Int πŸ†', 'MyScore πŸ†', 'ASSS⬇️', 'SMOG⬆️', 'Yule⬇️']
45
  ANIME_RATING_COLS = ['#P', 'Model', 'Score πŸ†', 'Dif', 'Cor', 'Std']
46
+ ADDITIONAL_COLS = ['Release Date', 'Date Added', 'Active Params', 'Total Params']
47
 
48
  # Load the leaderboard data from a CSV file
49
  def load_leaderboard_data(csv_file_path):
50
  try:
51
  df = pd.read_csv(csv_file_path)
52
+
53
+ # Convert date columns to datetime
54
+ for col in ['Release Date', 'Date Added']:
55
+ df[col] = pd.to_datetime(df[col], errors='coerce')
56
+
57
+ # Calculate the date two weeks ago from today
58
+ two_weeks_ago = datetime.now() - timedelta(days=9)
59
+
60
+ # Add πŸ†• to the model name if Date Added is within the last two weeks
61
+ df['Model'] = df.apply(
62
+ lambda row: f'πŸ†• {row["Model"]}' if pd.notna(row["Date Added"]) and row["Date Added"] >= two_weeks_ago else row["Model"],
63
+ axis=1
64
+ )
65
+
66
+ # Add hyperlink to the model name
67
+ df['Model'] = df.apply(
68
+ lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"],
69
+ axis=1
70
+ )
71
+
72
  df.drop(columns=['Link'], inplace=True)
73
 
74
  # Round numeric columns to 3 decimal places
 
82
  return df
83
  except Exception as e:
84
  print(f"Error loading CSV file: {e}")
85
+ return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS + ADDITIONAL_COLS)
86
 
87
  # Update the leaderboard table based on the search query and parameter range filters
88
+ def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list, w10_range: tuple, additional_cols: list) -> pd.DataFrame:
89
  filtered_df = df.copy()
90
  if param_ranges:
91
  param_mask = pd.Series(False, index=filtered_df.index)
92
  for param_range in param_ranges:
93
  if param_range == '~2':
94
+ param_mask |= (filtered_df['Total Params'] < 2.5)
95
  elif param_range == '~4':
96
+ param_mask |= ((filtered_df['Total Params'] >= 2.5) & (filtered_df['Total Params'] < 6))
97
  elif param_range == '~8':
98
+ param_mask |= ((filtered_df['Total Params'] >= 6) & (filtered_df['Total Params'] < 9.5))
99
  elif param_range == '~13':
100
+ param_mask |= ((filtered_df['Total Params'] >= 9.5) & (filtered_df['Total Params'] < 16))
101
  elif param_range == '~20':
102
+ param_mask |= ((filtered_df['Total Params'] >= 16) & (filtered_df['Total Params'] < 28))
103
  elif param_range == '~34':
104
+ param_mask |= ((filtered_df['Total Params'] >= 28) & (filtered_df['Total Params'] < 40))
105
  elif param_range == '~50':
106
+ param_mask |= ((filtered_df['Total Params'] >= 40) & (filtered_df['Total Params'] < 65))
107
  elif param_range == '~70+':
108
+ param_mask |= (filtered_df['Total Params'] >= 65)
109
  filtered_df = filtered_df[param_mask]
110
 
111
  if query:
 
115
  if 'W/10 πŸ‘' in filtered_df.columns:
116
  filtered_df = filtered_df[(filtered_df['W/10 πŸ‘'] >= w10_range[0]) & (filtered_df['W/10 πŸ‘'] <= w10_range[1])]
117
 
118
+ # Add selected additional columns
119
+ columns = columns + [col for col in additional_cols if col in ADDITIONAL_COLS]
120
+
121
+ # Ensure date columns are sorted as dates and then formatted as strings
122
+ if 'Release Date' in columns:
123
+ filtered_df['Release Date'] = pd.to_datetime(filtered_df['Release Date'], errors='coerce')
124
+ filtered_df['Release Date'] = filtered_df['Release Date'].dt.strftime('%Y-%m-%d')
125
+ if 'Date Added' in columns:
126
+ filtered_df['Date Added'] = pd.to_datetime(filtered_df['Date Added'], errors='coerce')
127
+ filtered_df['Date Added'] = filtered_df['Date Added'].dt.strftime('%Y-%m-%d')
128
+
129
  return filtered_df[columns]
130
 
131
  # Define the Gradio interface
 
161
  )
162
  with gr.Column(scale=2):
163
  w10_range = RangeSlider(minimum=0, maximum=10, value=(0, 10), step=0.1, label="W/10 Range")
164
+ with gr.Row():
165
+ additional_columns = gr.CheckboxGroup(
166
+ label="Additional Columns",
167
+ choices=ADDITIONAL_COLS,
168
+ value=[],
169
+ interactive=True,
170
+ elem_id="additional-columns",
171
+ )
172
 
173
  # Load the initial leaderboard data
174
  leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
175
 
176
  with gr.Tabs():
177
  with gr.TabItem("UGI-Leaderboard"):
178
+ datatypes_ugi = ['html' if col == 'Model' else 'str' for col in UGI_COLS + ADDITIONAL_COLS]
179
  leaderboard_table_ugi = gr.Dataframe(
180
  value=leaderboard_df[UGI_COLS],
181
  datatype=datatypes_ugi,
 
210
 
211
  with gr.TabItem("Writing Style"):
212
  leaderboard_df_ws = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
213
+ datatypes_ws = ['html' if col == 'Model' else 'str' for col in WRITING_STYLE_COLS + ADDITIONAL_COLS]
214
  leaderboard_table_ws = gr.Dataframe(
215
  value=leaderboard_df_ws[WRITING_STYLE_COLS],
216
  datatype=datatypes_ws,
 
250
  leaderboard_df_arp_na = leaderboard_df_arp[leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
251
  leaderboard_df_arp = leaderboard_df_arp[~leaderboard_df_arp[['Dif', 'Cor']].isna().any(axis=1)]
252
 
253
+ datatypes_arp = ['html' if col == 'Model' else 'str' for col in ANIME_RATING_COLS + ADDITIONAL_COLS]
254
 
255
  leaderboard_table_arp = gr.Dataframe(
256
  value=leaderboard_df_arp[ANIME_RATING_COLS],
 
288
  **NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
289
  """)
290
 
291
+ def update_all_tables(query, param_ranges, w10_range, additional_cols):
292
+ ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS, w10_range, additional_cols)
293
 
294
  ws_df = leaderboard_df.sort_values(by='Reg+MyScore πŸ†', ascending=False)
295
+ ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS, w10_range, additional_cols)
296
 
297
  arp_df = leaderboard_df.sort_values(by='Score πŸ†', ascending=False)
298
  arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
299
  arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
300
 
301
+ arp_table = update_table(arp_df, query, param_ranges, ANIME_RATING_COLS, w10_range, additional_cols)
302
+ arp_na_table = update_table(arp_df_na, query, param_ranges, ANIME_RATING_COLS, w10_range, additional_cols).fillna('NA')
303
 
304
  return ugi_table, ws_table, arp_table, arp_na_table
305
 
306
  search_bar.change(
307
  fn=update_all_tables,
308
+ inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
309
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
310
  )
311
 
312
  filter_columns_size.change(
313
  fn=update_all_tables,
314
+ inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
315
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
316
  )
317
 
318
  w10_range.change(
319
  fn=update_all_tables,
320
+ inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
321
+ outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
322
+ )
323
+
324
+ additional_columns.change(
325
+ fn=update_all_tables,
326
+ inputs=[search_bar, filter_columns_size, w10_range, additional_columns],
327
  outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
328
  )
329