Spaces:
Runtime error
Runtime error
from collections import defaultdict | |
from dataclasses import dataclass | |
from typing import Dict, List | |
import numpy as np | |
import pandas as pd | |
from datasets import load_dataset | |
from src.assets.text_content import PLOT_1_TITLE, PLOT_2_TITLE, PLOT_3_TITLE, PLOT_4_TITLE | |
from src.utils_display import make_clickable_model, EloEvalColumn | |
from .visualizations import ( | |
get_bootstrap_result, | |
switch_model_a_b, | |
visualize_battle_count, | |
visualize_bootstrap_scores, | |
visualize_pairwise_win_fraction, | |
visualize_rating_count, | |
) | |
class EloEvalResult: | |
model: str | |
gpt_4_all: int | |
human_all: int | |
human_instruct: int | |
human_code_instruct: int | |
tie_allowed: bool | |
def to_dict(self): | |
base_model = f"{self.model}" | |
data_dict = {} | |
data_dict[EloEvalColumn.model.name] = make_clickable_model(base_model) | |
data_dict[EloEvalColumn.gpt4.name] = self.gpt_4_all | |
data_dict[EloEvalColumn.human_all.name] = self.human_all | |
data_dict[EloEvalColumn.human_instruct.name] = self.human_instruct | |
data_dict[EloEvalColumn.human_code_instruct.name] = self.human_code_instruct | |
return data_dict | |
def create_eval_df(df, tie_allowed): | |
responses = [] | |
for _, row in df.iterrows(): | |
if row["status"] == "canceled": | |
continue | |
rating = row["response"]["annotations"]["Preference"] | |
if rating == "NaN": | |
continue | |
scores = row["response"]["responses"] | |
if any(s["Preference"] == "" for s in scores): | |
continue | |
response = { | |
"id": row["task_id"], | |
"prompt": row["params"]["templateVariables"]["prompt"], | |
"model_a": row["params"]["templateVariables"]["modela"], | |
"model_b": row["params"]["templateVariables"]["modelb"], | |
"response_a": row["params"]["templateVariables"]["response1"], | |
"response_b": row["params"]["templateVariables"]["response2"], | |
"rating": int(rating), | |
"ratings": [np.array([s["Preference"] for s in scores], dtype=np.int32)], | |
} | |
if tie_allowed: | |
response["win"] = ( | |
"model_a" | |
if response["rating"] < 4 | |
else "model_b" | |
if response["rating"] > 5 | |
else "tie" | |
) | |
else: | |
response["win"] = "model_a" if response["rating"] < 5 else "model_b" | |
responses.append(response) | |
return pd.DataFrame(responses) | |
def create_eval_df_for_gpt(df, tie_allowed): | |
responses = [] | |
for _, row in df.iterrows(): | |
response = { | |
"id": row["review_id"], | |
"prompt": row["question"], | |
"model_a": row["model1"], | |
"model_b": row["model2"], | |
"response_a": row["answer1"], | |
"response_b": row["answer2"], | |
"rating": row["score"][0], | |
} | |
if tie_allowed: | |
response["win"] = ( | |
"model_a" | |
if response["rating"] < 4 | |
else "model_b" | |
if response["rating"] > 5 | |
else "tie" | |
) | |
else: | |
response["win"] = "model_a" if response["rating"] < 5 else "model_b" | |
responses.append(response) | |
return pd.DataFrame(responses) | |
# Compute the Elo rating for each model | |
def compute_elo(df, k=32, scale=400, base=10, initial_rating=1000): | |
rating = defaultdict(lambda: initial_rating) | |
for _, model_a, model_b, win in df[["model_a", "model_b", "win"]].itertuples(): | |
ra = rating[model_a] | |
rb = rating[model_b] | |
ea = 1 / (1 + base ** ((rb - ra) / scale)) | |
eb = 1 / (1 + base ** ((ra - rb) / scale)) | |
if win == "model_a": | |
sa = 1 | |
elif win == "model_b": | |
sa = 0 | |
elif win == "tie" or win == "tie (bothbad)": | |
sa = 0.5 | |
else: | |
raise Exception(f"unexpected vote {win}") | |
rating[model_a] += k * (sa - ea) | |
rating[model_b] += k * (1 - sa - eb) | |
return rating | |
def convert_rating_from_float_to_int(df): | |
return {model: int(rating) for model, rating in compute_elo(df).items()} | |
def get_elo_results(df_instruct, df_code_instruct, tie_allowed): | |
df_all = pd.concat([df_instruct, df_code_instruct]) | |
df_gpt_4 = load_dataset( | |
"gpt_4_evals/data/", | |
split="train", | |
revision="e007baaf6e505731c08a0bc1a833a1f8f8cb8846", | |
).to_pandas() | |
dfs = [df_instruct, df_code_instruct, df_all] | |
elo_ratings = [ | |
convert_rating_from_float_to_int(create_eval_df(df, tie_allowed=tie_allowed)) | |
for df in dfs | |
] | |
gpt_4_elo_ratings = convert_rating_from_float_to_int( | |
create_eval_df_for_gpt(df_gpt_4, tie_allowed=tie_allowed) | |
) | |
elo_ratings.append(gpt_4_elo_ratings) | |
results = [ | |
EloEvalResult( | |
model=model_name, | |
gpt_4_all=elo_ratings[3][model_name], | |
human_all=elo_ratings[2][model_name], | |
human_instruct=elo_ratings[0][model_name], | |
human_code_instruct=elo_ratings[1][model_name], | |
tie_allowed=tie_allowed, | |
) | |
for model_name in elo_ratings[0].keys() | |
] | |
return results | |
def get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed) -> List[Dict]: | |
eval_results = get_elo_results(df_instruct, df_code_instruct, tie_allowed) | |
return [r.to_dict() for r in eval_results] | |
def get_elo_plots(df_instruct, df_code_instruct, tie_allowed): | |
df_instruct = create_eval_df(df_instruct, tie_allowed=tie_allowed) | |
df_code_instruct = create_eval_df(df_code_instruct, tie_allowed=tie_allowed) | |
df_all = pd.concat([df_instruct, df_code_instruct]) | |
game = df_all[["model_a", "model_b", "win"]] | |
game_switch = switch_model_a_b(game) | |
plot_1 = visualize_pairwise_win_fraction(game_switch, PLOT_1_TITLE) | |
plot_2 = visualize_battle_count(game_switch, PLOT_2_TITLE) | |
BOOTSTRAP_ROUNDS = 1000 | |
if "bootstrap_elo_lu" not in globals(): | |
bootstrap_elo_lu = get_bootstrap_result( | |
game_switch, compute_elo, BOOTSTRAP_ROUNDS | |
) | |
plot_3 = visualize_bootstrap_scores(bootstrap_elo_lu, PLOT_3_TITLE) | |
plot_4 = visualize_rating_count(game, PLOT_4_TITLE) | |
return plot_1, plot_2, plot_3, plot_4 | |