Truong / MMAudio-main /transformers /tests /tokenization /test_tokenization_utils.py
Doaneer's picture
Upload 5065 files
e0be88b verified
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
ruff: isort: skip_file
"""
import os
import pickle
import tempfile
import unittest
from typing import Callable, Optional
import numpy as np
from transformers import (
BatchEncoding,
BertTokenizer,
BertTokenizerFast,
LlamaTokenizerFast,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
TensorType,
TokenSpan,
is_tokenizers_available,
)
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.testing_utils import (
CaptureStderr,
require_flax,
require_sentencepiece,
require_tf,
require_tokenizers,
require_torch,
slow,
)
if is_tokenizers_available():
import tokenizers
from tokenizers import Tokenizer
from tokenizers.models import WordPiece
class TokenizerUtilsTest(unittest.TestCase):
def check_tokenizer_from_pretrained(self, tokenizer_class):
s3_models = list(tokenizer_class.max_model_input_sizes.keys())
for model_name in s3_models[:1]:
tokenizer = tokenizer_class.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, tokenizer_class)
self.assertIsInstance(tokenizer, PreTrainedTokenizer)
for special_tok in tokenizer.all_special_tokens:
self.assertIsInstance(special_tok, str)
special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
self.assertIsInstance(special_tok_id, int)
def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
batch_encoding_str = pickle.dumps(be_original)
self.assertIsNotNone(batch_encoding_str)
be_restored = pickle.loads(batch_encoding_str)
# Ensure is_fast is correctly restored
self.assertEqual(be_restored.is_fast, be_original.is_fast)
# Ensure encodings are potentially correctly restored
if be_original.is_fast:
self.assertIsNotNone(be_restored.encodings)
else:
self.assertIsNone(be_restored.encodings)
# Ensure the keys are the same
for original_v, restored_v in zip(be_original.values(), be_restored.values()):
if equal_op:
self.assertTrue(equal_op(restored_v, original_v))
else:
self.assertEqual(restored_v, original_v)
@slow
def test_pretrained_tokenizers(self):
self.check_tokenizer_from_pretrained(GPT2Tokenizer)
def test_tensor_type_from_str(self):
self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
self.assertEqual(TensorType("np"), TensorType.NUMPY)
@require_tokenizers
def test_batch_encoding_pickle(self):
import numpy as np
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
# Python no tensor
with self.subTest("BatchEncoding (Python, return_tensors=None)"):
self.assert_dump_and_restore(tokenizer_p("Small example to encode"))
with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
self.assert_dump_and_restore(
tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
)
with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
self.assert_dump_and_restore(tokenizer_r("Small example to encode"))
with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
self.assert_dump_and_restore(
tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
)
@require_tf
@require_tokenizers
def test_batch_encoding_pickle_tf(self):
import tensorflow as tf
def tf_array_equals(t1, t2):
return tf.reduce_all(tf.equal(t1, t2))
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
self.assert_dump_and_restore(
tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
)
with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
self.assert_dump_and_restore(
tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
)
@require_torch
@require_tokenizers
def test_batch_encoding_pickle_pt(self):
import torch
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
self.assert_dump_and_restore(
tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
)
with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
self.assert_dump_and_restore(
tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
)
@require_tokenizers
def test_batch_encoding_is_fast(self):
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
with self.subTest("Python Tokenizer"):
self.assertFalse(tokenizer_p("Small example to_encode").is_fast)
with self.subTest("Rust Tokenizer"):
self.assertTrue(tokenizer_r("Small example to_encode").is_fast)
@require_tokenizers
def test_batch_encoding_word_to_tokens(self):
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True)
self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2))
self.assertEqual(encoded.word_to_tokens(1), None)
self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3))
def test_batch_encoding_with_labels(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="np")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="np")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
@require_torch
def test_batch_encoding_with_labels_pt(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="pt")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="pt")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
@require_tf
def test_batch_encoding_with_labels_tf(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="tf")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="tf")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
@require_flax
def test_batch_encoding_with_labels_jax(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="jax")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="jax")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
def test_padding_accepts_tensors(self):
features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
batch = tokenizer.pad(features, padding=True)
self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
batch = tokenizer.pad(features, padding=True, return_tensors="np")
self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
@require_tokenizers
def test_decoding_single_token(self):
for tokenizer_class in [BertTokenizer, BertTokenizerFast]:
with self.subTest(f"{tokenizer_class}"):
tokenizer = tokenizer_class.from_pretrained("google-bert/bert-base-cased")
token_id = 2300
decoded_flat = tokenizer.decode(token_id)
decoded_list = tokenizer.decode([token_id])
self.assertEqual(decoded_flat, "Force")
self.assertEqual(decoded_list, "Force")
token_id = 0
decoded_flat = tokenizer.decode(token_id)
decoded_list = tokenizer.decode([token_id])
self.assertEqual(decoded_flat, "[PAD]")
self.assertEqual(decoded_list, "[PAD]")
last_item_id = tokenizer.vocab_size - 1
decoded_flat = tokenizer.decode(last_item_id)
decoded_list = tokenizer.decode([last_item_id])
self.assertEqual(decoded_flat, "##:")
self.assertEqual(decoded_list, "##:")
def test_extra_special_tokens_multimodal(self):
special_tokens_list = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
"additional_special_tokens",
]
llama_tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b")
llama_tokenizer.extra_special_tokens = {
"boi_token": "<image_start>",
"eoi_token": "<image_end>",
"image_token": "<image>",
}
self.assertListEqual(llama_tokenizer.SPECIAL_TOKENS_ATTRIBUTES, special_tokens_list)
with tempfile.TemporaryDirectory() as tmpdirname:
llama_tokenizer.save_pretrained(tmpdirname)
# load back and check we have extra special tokens set
loaded_tokenizer = LlamaTokenizerFast.from_pretrained(tmpdirname)
multimodal_special_tokens_list = special_tokens_list + ["boi_token", "eoi_token", "image_token"]
self.assertListEqual(loaded_tokenizer.SPECIAL_TOKENS_ATTRIBUTES, multimodal_special_tokens_list)
# We set an image_token_id before, so we can get an "image_token" as str that matches the id
self.assertTrue(loaded_tokenizer.image_token == "<image>")
self.assertTrue(loaded_tokenizer.image_token_id == loaded_tokenizer.convert_tokens_to_ids("<image>"))
# save one more time and make sure the image token can get loaded back
with tempfile.TemporaryDirectory() as tmpdirname:
loaded_tokenizer.save_pretrained(tmpdirname)
loaded_tokenizer_with_extra_tokens = LlamaTokenizerFast.from_pretrained(tmpdirname)
self.assertTrue(loaded_tokenizer_with_extra_tokens.image_token == "<image>")
# test that we can also indicate extra tokens during load time
extra_special_tokens = {
"boi_token": "<image_start>",
"eoi_token": "<image_end>",
"image_token": "<image>",
}
tokenizer = LlamaTokenizerFast.from_pretrained(
"huggyllama/llama-7b", extra_special_tokens=extra_special_tokens
)
self.assertTrue(tokenizer.image_token == "<image>")
self.assertTrue(tokenizer.image_token_id == loaded_tokenizer.convert_tokens_to_ids("<image>"))
@require_tokenizers
def test_decoding_skip_special_tokens(self):
for tokenizer_class in [BertTokenizer, BertTokenizerFast]:
with self.subTest(f"{tokenizer_class}"):
tokenizer = tokenizer_class.from_pretrained("google-bert/bert-base-cased")
tokenizer.add_tokens(["ஐ"], special_tokens=True)
# test special token with other tokens, skip the special tokens
sentence = "This is a beautiful flower ஐ"
ids = tokenizer(sentence)["input_ids"]
decoded_sent = tokenizer.decode(ids, skip_special_tokens=True)
self.assertEqual(decoded_sent, "This is a beautiful flower")
# test special token with other tokens, do not skip the special tokens
ids = tokenizer(sentence)["input_ids"]
decoded_sent = tokenizer.decode(ids, skip_special_tokens=False)
self.assertEqual(decoded_sent, "[CLS] This is a beautiful flower ஐ [SEP]")
# test special token stand alone, skip the special tokens
sentence = "ஐ"
ids = tokenizer(sentence)["input_ids"]
decoded_sent = tokenizer.decode(ids, skip_special_tokens=True)
self.assertEqual(decoded_sent, "")
# test special token stand alone, do not skip the special tokens
ids = tokenizer(sentence)["input_ids"]
decoded_sent = tokenizer.decode(ids, skip_special_tokens=False)
self.assertEqual(decoded_sent, "[CLS] ஐ [SEP]")
# test single special token alone, skip
pad_id = 0
decoded_sent = tokenizer.decode(pad_id, skip_special_tokens=True)
self.assertEqual(decoded_sent, "")
# test single special token alone, do not skip
decoded_sent = tokenizer.decode(pad_id, skip_special_tokens=False)
self.assertEqual(decoded_sent, "[PAD]")
@require_torch
def test_padding_accepts_tensors_pt(self):
import torch
features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
batch = tokenizer.pad(features, padding=True)
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
batch = tokenizer.pad(features, padding=True, return_tensors="pt")
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
@require_tf
def test_padding_accepts_tensors_tf(self):
import tensorflow as tf
features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
batch = tokenizer.pad(features, padding=True)
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
batch = tokenizer.pad(features, padding=True, return_tensors="tf")
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
@require_tokenizers
def test_instantiation_from_tokenizers(self):
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer)
@require_tokenizers
def test_instantiation_from_tokenizers_json_file(self):
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
with tempfile.TemporaryDirectory() as tmpdirname:
bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json"))
PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json"))
def test_len_tokenizer(self):
for tokenizer_class in [BertTokenizer, BertTokenizerFast]:
with self.subTest(f"{tokenizer_class}"):
tokenizer = tokenizer_class.from_pretrained("bert-base-uncased")
added_tokens_size = len(tokenizer.added_tokens_decoder)
self.assertEqual(len(tokenizer), tokenizer.vocab_size)
tokenizer.add_tokens(["<test_token>"])
self.assertEqual(len(tokenizer), tokenizer.vocab_size + 1)
self.assertEqual(len(tokenizer.added_tokens_decoder), added_tokens_size + 1)
self.assertEqual(len(tokenizer.added_tokens_encoder), added_tokens_size + 1)
@require_sentencepiece
def test_sentencepiece_cohabitation(self):
from sentencepiece import sentencepiece_model_pb2 as _original_protobuf # noqa: F401
from transformers.convert_slow_tokenizer import import_protobuf # noqa: F401
# Now this will try to import sentencepiece_model_pb2_new.py. This should not fail even if the protobuf
# was already imported.
import_protobuf()
def test_training_new_tokenizer_edge_cases(self):
_tokenizer = Tokenizer(tokenizers.models.BPE(vocab={"a": 1, "b": 2, "ab": 3}, merges=[("a", "b")]))
_tokenizer.pre_tokenizer = None
tokenizer = PreTrainedTokenizerFast(tokenizer_object=_tokenizer)
toy_text_iterator = ("a" for _ in range(1000))
tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)
_tokenizer.normalizer = None
tokenizer = PreTrainedTokenizerFast(tokenizer_object=_tokenizer)
toy_text_iterator = ("a" for _ in range(1000))
tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)
_tokenizer.post_processor = None
tokenizer = PreTrainedTokenizerFast(tokenizer_object=_tokenizer)
toy_text_iterator = ("a" for _ in range(1000))
tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)