Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -693,178 +693,271 @@ def nutri_call():
|
|
| 693 |
|
| 694 |
|
| 695 |
|
| 696 |
-
from tabulate import tabulate
|
| 697 |
import numpy as np
|
|
|
|
| 698 |
|
| 699 |
# Глобальные параметры
|
| 700 |
-
TOTAL_NITROGEN = 120.0
|
| 701 |
-
NO3_RATIO = 8.0
|
| 702 |
-
NH4_RATIO = 1.0
|
| 703 |
-
VOLUME_LITERS = 100
|
| 704 |
|
| 705 |
-
# Базовый профиль
|
| 706 |
BASE_PROFILE = {
|
| 707 |
-
"P": 50,
|
| 708 |
-
"
|
| 709 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 710 |
}
|
| 711 |
|
| 712 |
-
|
| 713 |
-
NUTRIENT_CONTENT = {
|
| 714 |
"Кальциевая селитра": {"N (NO3-)": 0.11863, "Ca": 0.16972},
|
| 715 |
"Калий азотнокислый": {"N (NO3-)": 0.136, "K": 0.382},
|
| 716 |
"Калий сернокислый": {"K": 0.44874, "S": 0.18401},
|
| 717 |
"Аммоний азотнокислый": {"N (NO3-)": 0.17499, "N (NH4+)": 0.17499},
|
| 718 |
"Сульфат магния": {"Mg": 0.09861, "S": 0.13010},
|
| 719 |
"Монофосфат калия": {"P": 0.218, "K": 0.275},
|
| 720 |
-
"Сульфат кальция": {"Ca": 0.23, "S": 0.186}
|
|
|
|
| 721 |
}
|
| 722 |
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
'
|
| 726 |
-
'Ca': 0.0016, 'S': 0.0014,
|
| 727 |
'N (NO3-)': 0.0017, 'N (NH4+)': 0.0019
|
| 728 |
}
|
| 729 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 730 |
class NutrientCalculator:
|
| 731 |
-
def __init__(self,
|
| 732 |
-
self.volume =
|
| 733 |
-
self.
|
| 734 |
-
self.
|
| 735 |
-
|
| 736 |
-
|
|
|
|
| 737 |
self.total_ec = 0.0
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
self.
|
| 742 |
-
|
| 743 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 744 |
def calculate(self):
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
self.
|
| 749 |
-
|
| 750 |
-
# 2. Вносим NH4
|
| 751 |
-
nh4_needed = self.target['N (NH4+)'] - self.actual['N (NH4+)']
|
| 752 |
-
if nh4_needed > 0:
|
| 753 |
-
self._apply_fert("Аммоний азотнокислый", "N (NH4+)", nh4_needed)
|
| 754 |
-
|
| 755 |
-
# 3. Компенсируем NO3
|
| 756 |
-
no3_needed = self.target['N (NO3-)'] - self.actual['N (NO3-)']
|
| 757 |
-
if no3_needed > 0:
|
| 758 |
-
self._apply_fert("Калий азотнокислый", "N (NO3-)", no3_needed)
|
| 759 |
-
|
| 760 |
-
# 4. Вносим фосфор
|
| 761 |
-
p_needed = self.target['P'] - self.actual['P']
|
| 762 |
-
if p_needed > 0:
|
| 763 |
-
self._apply_fert("Монофосфат калия", "P", p_needed)
|
| 764 |
-
|
| 765 |
-
# 5. Компенсируем магний
|
| 766 |
-
mg_needed = self.target['Mg'] - self.actual['Mg']
|
| 767 |
-
if mg_needed > 0:
|
| 768 |
-
self._apply_fert("Сульфат магния", "Mg", mg_needed)
|
| 769 |
-
|
| 770 |
-
# 6. Корректируем калий и серу
|
| 771 |
-
self._balance_k_s()
|
| 772 |
-
|
| 773 |
-
return self._prepare_results()
|
| 774 |
-
|
| 775 |
-
def _apply_fert(self, name, element, needed_ppm):
|
| 776 |
-
content = NUTRIENT_CONTENT[name][element]
|
| 777 |
-
grams = (needed_ppm * self.volume) / (content * 1000)
|
| 778 |
-
|
| 779 |
-
if name not in self.results:
|
| 780 |
-
self.results[name] = {'граммы': 0, 'вклад': {}}
|
| 781 |
-
|
| 782 |
-
self.results[name]['граммы'] += grams
|
| 783 |
-
|
| 784 |
-
for el, val in NUTRIENT_CONTENT[name].items():
|
| 785 |
-
added = grams * val * 1000 / self.volume
|
| 786 |
-
self.actual[el] += added
|
| 787 |
-
self.total_ec += added * EC_COEFF.get(el, 0)
|
| 788 |
|
| 789 |
-
if
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
#
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
formatted[name] = {
|
| 821 |
-
'граммы': round(data['граммы'], 3),
|
| 822 |
-
'миллиграммы': int(data['граммы'] * 1000),
|
| 823 |
-
'вклад в EC': round(sum(v * EC_COEFF.get(k, 0)
|
| 824 |
-
for k, v in data['вклад'].items()), 3),
|
| 825 |
-
'добавит': [f"{k}: {round(v, 1)} ppm" for k, v in data['вклад'].items()]
|
| 826 |
}
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
print("\n" + "="*60)
|
| 831 |
-
print("ПРОФИЛЬ ПИТАТЕЛЬНОГО РАСТВОРА (ИТОГО):")
|
| 832 |
-
print("="*60)
|
| 833 |
-
print(tabulate([[k, round(v, 1)] for k, v in self.actual.items()],
|
| 834 |
-
headers=["Элемент", "ppm"]))
|
| 835 |
-
|
| 836 |
-
print("\n" + "="*60)
|
| 837 |
-
print(f"РАСЧЕТ ДЛЯ {self.volume} ЛИТРОВ")
|
| 838 |
-
print("="*60)
|
| 839 |
-
print(f"Общая концентрация: {round(sum(self.actual.values()), 1)} ppm")
|
| 840 |
-
print(f"EC: {round(self.total_ec, 2)} mS/cm")
|
| 841 |
-
|
| 842 |
-
print("\nРЕКОМЕНДУЕМЫЕ УДОБРЕНИЯ:")
|
| 843 |
-
fert_table = []
|
| 844 |
-
for name, data in self._format_fertilizers().items():
|
| 845 |
-
fert_table.append([
|
| 846 |
-
name,
|
| 847 |
-
data['граммы'],
|
| 848 |
-
data['миллиграммы'],
|
| 849 |
-
data['вклад в EC'],
|
| 850 |
-
"\n".join(data['добавит'])
|
| 851 |
-
])
|
| 852 |
-
print(tabulate(fert_table,
|
| 853 |
-
headers=["Удобрение", "Граммы", "Миллиграммы", "EC", "Добавит"]))
|
| 854 |
-
|
| 855 |
-
if self._prepare_results()['deficits']:
|
| 856 |
-
print("\nОСТАТОЧНЫЙ ДЕФИЦИТ:")
|
| 857 |
-
for el, val in self._prepare_results()['deficits'].items():
|
| 858 |
-
print(f" {el}: {round(val, 1)} ppm")
|
| 859 |
-
else:
|
| 860 |
-
print("\nВсе элементы покрыты полностью")
|
| 861 |
|
| 862 |
-
#
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 867 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 868 |
|
| 869 |
|
| 870 |
|
|
|
|
| 693 |
|
| 694 |
|
| 695 |
|
|
|
|
| 696 |
import numpy as np
|
| 697 |
+
from tabulate import tabulate
|
| 698 |
|
| 699 |
# Глобальные параметры
|
| 700 |
+
TOTAL_NITROGEN = 120.0 # Общее количество азота
|
| 701 |
+
NO3_RATIO = 8.0 # Соотношение NO3:NH4
|
| 702 |
+
NH4_RATIO = 1.0 # Соотношение NH4:NO3
|
| 703 |
+
VOLUME_LITERS = 100 # Объем раствора
|
| 704 |
|
|
|
|
| 705 |
BASE_PROFILE = {
|
| 706 |
+
"P": 50, # Фосфор
|
| 707 |
+
"K": 210, # Калий
|
| 708 |
+
"Mg": 120, # Магний (высокий уровень)
|
| 709 |
+
"Ca": 150, # Кальций
|
| 710 |
+
"S": 50, # Сера
|
| 711 |
+
"N (NO3-)": 0, # Рассчитывается автоматически
|
| 712 |
+
"N (NH4+)": 0 # Рассчитывается автоматически
|
| 713 |
}
|
| 714 |
|
| 715 |
+
NUTRIENT_CONTENT_IN_FERTILIZERS = {
|
|
|
|
| 716 |
"Кальциевая селитра": {"N (NO3-)": 0.11863, "Ca": 0.16972},
|
| 717 |
"Калий азотнокислый": {"N (NO3-)": 0.136, "K": 0.382},
|
| 718 |
"Калий сернокислый": {"K": 0.44874, "S": 0.18401},
|
| 719 |
"Аммоний азотнокислый": {"N (NO3-)": 0.17499, "N (NH4+)": 0.17499},
|
| 720 |
"Сульфат магния": {"Mg": 0.09861, "S": 0.13010},
|
| 721 |
"Монофосфат калия": {"P": 0.218, "K": 0.275},
|
| 722 |
+
"Сульфат кальция": {"Ca": 0.23, "S": 0.186},
|
| 723 |
+
"Кольцевая селитра": {"N (NO3-)": 0.15, "Ca": 0.20} # Новое удобрение
|
| 724 |
}
|
| 725 |
|
| 726 |
+
EC_COEFFICIENTS = {
|
| 727 |
+
'P': 0.0012, 'K': 0.0018, 'Mg': 0.0015,
|
| 728 |
+
'Ca': 0.0016, 'S': 0.0014,
|
|
|
|
| 729 |
'N (NO3-)': 0.0017, 'N (NH4+)': 0.0019
|
| 730 |
}
|
| 731 |
|
| 732 |
+
nutrients_stencil = [
|
| 733 |
+
"N (NO3-)", "N (NH4+)", "P", "K", "Mg", "Ca", "S"
|
| 734 |
+
]
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
class Composition:
|
| 738 |
+
def __init__(self, name='', vector=None):
|
| 739 |
+
self.name = name
|
| 740 |
+
if vector is None:
|
| 741 |
+
self.vector = np.zeros(len(nutrients_stencil))
|
| 742 |
+
else:
|
| 743 |
+
if len(vector) != len(nutrients_stencil):
|
| 744 |
+
raise ValueError(f"Vector length ({len(vector)}) does not match nutrients stencil length ({len(nutrients_stencil)}).")
|
| 745 |
+
self.vector = np.array(vector)
|
| 746 |
+
|
| 747 |
+
@classmethod
|
| 748 |
+
def from_dict(cls, composition_dict):
|
| 749 |
+
if not composition_dict:
|
| 750 |
+
raise ValueError("Empty composition dictionary provided.")
|
| 751 |
+
name, nutrients_dict = tuple(composition_dict.items())[0]
|
| 752 |
+
vector = np.zeros(len(nutrients_stencil))
|
| 753 |
+
for i, nutrient in enumerate(nutrients_stencil):
|
| 754 |
+
if nutrient in nutrients_dict:
|
| 755 |
+
vector[i] = nutrients_dict[nutrient]
|
| 756 |
+
return cls(name, vector)
|
| 757 |
+
|
| 758 |
+
def __add__(self, other):
|
| 759 |
+
if not isinstance(other, Composition):
|
| 760 |
+
raise TypeError("Can only add Composition objects.")
|
| 761 |
+
name = f'{self.name} + {other.name}'
|
| 762 |
+
vector = self.vector + other.vector
|
| 763 |
+
return Composition(name, vector)
|
| 764 |
+
|
| 765 |
+
def __repr__(self):
|
| 766 |
+
return self.table()
|
| 767 |
+
|
| 768 |
+
def table(self, sparse=True, ref=None, tablefmt='simple'):
|
| 769 |
+
description = f'Composition: {self.name}'
|
| 770 |
+
nutrients = np.array(nutrients_stencil)
|
| 771 |
+
vector = self.vector
|
| 772 |
+
if ref is not None:
|
| 773 |
+
if not isinstance(ref, Composition):
|
| 774 |
+
raise TypeError("Reference must be a Composition object.")
|
| 775 |
+
vector_ref = ref.vector
|
| 776 |
+
else:
|
| 777 |
+
vector_ref = np.zeros(len(nutrients_stencil))
|
| 778 |
+
if sparse:
|
| 779 |
+
mask_nonzero = (vector != 0) | (vector_ref != 0)
|
| 780 |
+
nutrients = nutrients[mask_nonzero]
|
| 781 |
+
vector = vector[mask_nonzero]
|
| 782 |
+
vector_ref = vector_ref[mask_nonzero]
|
| 783 |
+
table_dict = {
|
| 784 |
+
'Nutrient': nutrients,
|
| 785 |
+
'Ratio': vector,
|
| 786 |
+
'Amount mg/kg': 10**6 * vector,
|
| 787 |
+
}
|
| 788 |
+
if ref is not None:
|
| 789 |
+
description += f'\nReference: {ref.name}'
|
| 790 |
+
table_dict['Diff mg/kg'] = 10**6 * (vector - vector_ref)
|
| 791 |
+
table = tabulate(table_dict, headers='keys', tablefmt=tablefmt)
|
| 792 |
+
return '\n\n'.join((description, table))
|
| 793 |
+
|
| 794 |
+
|
| 795 |
class NutrientCalculator:
|
| 796 |
+
def __init__(self, volume_liters=1.0):
|
| 797 |
+
self.volume = volume_liters
|
| 798 |
+
self.target_profile = BASE_PROFILE.copy()
|
| 799 |
+
self.fertilizers = {
|
| 800 |
+
name: Composition.from_dict({name: content})
|
| 801 |
+
for name, content in NUTRIENT_CONTENT_IN_FERTILIZERS.items()
|
| 802 |
+
}
|
| 803 |
self.total_ec = 0.0
|
| 804 |
+
self.best_solution = None
|
| 805 |
+
self.min_difference = float('inf')
|
| 806 |
+
self.max_recursion_depth = 1000
|
| 807 |
+
self.current_depth = 0
|
| 808 |
+
|
| 809 |
+
# Расчёт азота
|
| 810 |
+
total_parts = NO3_RATIO + NH4_RATIO
|
| 811 |
+
self.target_profile['N (NO3-)'] = TOTAL_NITROGEN * (NO3_RATIO / total_parts)
|
| 812 |
+
self.target_profile['N (NH4+)'] = TOTAL_NITROGEN * (NH4_RATIO / total_parts)
|
| 813 |
+
|
| 814 |
+
# Целевой профиль как объект Composition
|
| 815 |
+
self.target_composition = Composition('Target Profile', list(self.target_profile.values()))
|
| 816 |
+
|
| 817 |
def calculate(self):
|
| 818 |
+
try:
|
| 819 |
+
self.actual_profile = {k: 0.0 for k in self.target_profile}
|
| 820 |
+
self.results = {}
|
| 821 |
+
self.current_depth = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 822 |
|
| 823 |
+
if self._backtrack_search():
|
| 824 |
+
print("Оптимальная комбинация найдена!")
|
| 825 |
+
return self.best_solution
|
| 826 |
+
else:
|
| 827 |
+
print("Идеальное решение не найдено. Возвращаю лучшее найденное решение.")
|
| 828 |
+
return self.best_solution or {"error": "Не удалось найти подходящую комбинацию"}
|
| 829 |
+
|
| 830 |
+
except Exception as e:
|
| 831 |
+
print(f"Ошибка при расчёте: {str(e)}")
|
| 832 |
+
raise
|
| 833 |
+
|
| 834 |
+
def _backtrack_search(self, fertilizer_index=0, step=1.0):
|
| 835 |
+
self.current_depth += 1
|
| 836 |
+
if self.current_depth > self.max_recursion_depth:
|
| 837 |
+
return False
|
| 838 |
+
|
| 839 |
+
# Текущий профиль как объект Composition
|
| 840 |
+
current_composition = Composition('Current Profile', list(self.actual_profile.values()))
|
| 841 |
+
current_diff = self._calculate_difference(current_composition)
|
| 842 |
+
|
| 843 |
+
print(f"\nТекущая разница: {current_diff:.2f}")
|
| 844 |
+
print("Текущий профиль:")
|
| 845 |
+
print(current_composition)
|
| 846 |
+
|
| 847 |
+
if current_diff < self.min_difference:
|
| 848 |
+
self.min_difference = current_diff
|
| 849 |
+
self.best_solution = {
|
| 850 |
+
"results": self._copy_results(),
|
| 851 |
+
"actual_profile": self.actual_profile.copy(),
|
| 852 |
+
"total_ec": self.total_ec,
|
| 853 |
+
"difference": current_diff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 854 |
}
|
| 855 |
+
|
| 856 |
+
if current_diff < 1.0: # Допустимая погрешность
|
| 857 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 858 |
|
| 859 |
+
# Пробуем добавлять удобрения с текущего индекса
|
| 860 |
+
for i in range(fertilizer_index, len(self.fertilizers)):
|
| 861 |
+
fert_name = list(self.fertilizers.keys())[i]
|
| 862 |
+
fert_composition = self.fertilizers[fert_name]
|
| 863 |
+
|
| 864 |
+
print(f"\nПроверяю удобрение: {fert_name}")
|
| 865 |
+
|
| 866 |
+
# Проверяем, можно ли применить удобрение
|
| 867 |
+
if not self._can_apply_fertilizer(fert_composition):
|
| 868 |
+
print(f"Удобрение {fert_name} не подходит (превышает целевые значения).")
|
| 869 |
+
continue
|
| 870 |
+
|
| 871 |
+
print(f"Добавляю удобрение: {fert_name}, количество: {step:.2f} г")
|
| 872 |
|
| 873 |
+
# Пробуем добавить удобрение с текущим шагом
|
| 874 |
+
self._apply_fertilizer(fert_name, step)
|
| 875 |
+
|
| 876 |
+
# Рекурсивно продолжаем поиск
|
| 877 |
+
if self._backtrack_search(i, step):
|
| 878 |
+
return True
|
| 879 |
+
|
| 880 |
+
# Если не получилось - откатываемся
|
| 881 |
+
print(f"Откатываю удобрение: {fert_name}, количество: {step:.2f} г")
|
| 882 |
+
self._remove_fertilizer(fert_name, step)
|
| 883 |
+
|
| 884 |
+
# Пробуем уменьшить шаг для более точного поиска
|
| 885 |
+
if step > 0.1 and current_diff > 5.0:
|
| 886 |
+
print(f"Уменьшаю шаг до {step / 2:.2f} г")
|
| 887 |
+
if self._backtrack_search(i, step / 2):
|
| 888 |
+
return True
|
| 889 |
+
|
| 890 |
+
return False
|
| 891 |
+
|
| 892 |
+
def _can_apply_fertilizer(self, fert_composition):
|
| 893 |
+
"""Проверяет, можно ли применить удобрение без перебора"""
|
| 894 |
+
for element, content in zip(nutrients_stencil, fert_composition.vector):
|
| 895 |
+
added_ppm = (1 * content * 1000) / self.volume
|
| 896 |
+
if self.actual_profile[element] + added_ppm > self.target_profile[element] + 0.5: # Уменьшаем допустимую погрешность
|
| 897 |
+
return False
|
| 898 |
+
return True
|
| 899 |
+
|
| 900 |
+
def _apply_fertilizer(self, fert_name, amount):
|
| 901 |
+
"""Добавляет указанное количество удобрения"""
|
| 902 |
+
fert_composition = self.fertilizers[fert_name]
|
| 903 |
+
scaled_composition = amount * fert_composition
|
| 904 |
+
|
| 905 |
+
if fert_name not in self.results:
|
| 906 |
+
self.results[fert_name] = {
|
| 907 |
+
'граммы': 0.0,
|
| 908 |
+
'миллиграммы': 0,
|
| 909 |
+
'вклад в EC': 0.0
|
| 910 |
+
}
|
| 911 |
+
|
| 912 |
+
self.results[fert_name]['граммы'] += amount
|
| 913 |
+
self.results[fert_name]['миллиграммы'] += int(amount * 1000)
|
| 914 |
+
|
| 915 |
+
for i, nutrient in enumerate(nutrients_stencil):
|
| 916 |
+
added_ppm = scaled_composition.vector[i] * 1000 / self.volume
|
| 917 |
+
self.actual_profile[nutrient] += added_ppm
|
| 918 |
+
|
| 919 |
+
def _remove_fertilizer(self, fert_name, amount):
|
| 920 |
+
"""Удаляет указанное количество удобрения"""
|
| 921 |
+
fert_composition = self.fertilizers[fert_name]
|
| 922 |
+
scaled_composition = amount * fert_composition
|
| 923 |
+
|
| 924 |
+
if fert_name in self.results:
|
| 925 |
+
self.results[fert_name]['граммы'] -= amount
|
| 926 |
+
self.results[fert_name]['миллиграммы'] -= int(amount * 1000)
|
| 927 |
+
|
| 928 |
+
for i, nutrient in enumerate(nutrients_stencil):
|
| 929 |
+
removed_ppm = scaled_composition.vector[i] * 1000 / self.volume
|
| 930 |
+
self.actual_profile[nutrient] -= removed_ppm
|
| 931 |
+
|
| 932 |
+
if self.results[fert_name]['граммы'] <= 0.001:
|
| 933 |
+
del self.results[fert_name]
|
| 934 |
+
|
| 935 |
+
def _calculate_difference(self, current_composition):
|
| 936 |
+
"""Вычисляет общее отклонение от целевого профиля"""
|
| 937 |
+
diff_vector = self.target_composition.vector - current_composition.vector
|
| 938 |
+
return np.sum(np.abs(diff_vector))
|
| 939 |
+
|
| 940 |
+
def generate_report(self):
|
| 941 |
+
"""Генерация отчета о питательном растворе"""
|
| 942 |
+
try:
|
| 943 |
+
actual_composition = Composition('Actual Profile', list(self.actual_profile.values()))
|
| 944 |
+
report = actual_composition.table(sparse=True, ref=self.target_composition)
|
| 945 |
+
return report
|
| 946 |
+
except Exception as e:
|
| 947 |
+
print(f"Ошибка при выводе отчёта: {str(e)}")
|
| 948 |
+
raise
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
if __name__ == "__main__":
|
| 952 |
+
try:
|
| 953 |
+
calculator = NutrientCalculator(volume_liters=VOLUME_LITERS)
|
| 954 |
+
solution = calculator.calculate()
|
| 955 |
+
if solution:
|
| 956 |
+
print(calculator.generate_report())
|
| 957 |
+
else:
|
| 958 |
+
print("Решение не найдено.")
|
| 959 |
+
except Exception as e:
|
| 960 |
+
print(f"Критическая ошибка: {str(e)}")
|
| 961 |
|
| 962 |
|
| 963 |
|