Spaces:
Runtime error
Runtime error
import gradio as gr | |
from annotator.util import resize_image, HWC3 | |
model_canny = None | |
def canny(img, res, l, h): | |
img = resize_image(HWC3(img), res) | |
global model_canny | |
if model_canny is None: | |
from annotator.canny import CannyDetector | |
model_canny = CannyDetector() | |
result = model_canny(img, l, h) | |
return [result] | |
model_hed = None | |
def hed(img, res): | |
img = resize_image(HWC3(img), res) | |
global model_hed | |
if model_hed is None: | |
from annotator.hed import HEDdetector | |
model_hed = HEDdetector() | |
result = model_hed(img) | |
return [result] | |
model_mlsd = None | |
def mlsd(img, res, thr_v, thr_d): | |
img = resize_image(HWC3(img), res) | |
global model_mlsd | |
if model_mlsd is None: | |
from annotator.mlsd import MLSDdetector | |
model_mlsd = MLSDdetector() | |
result = model_mlsd(img, thr_v, thr_d) | |
return [result] | |
model_midas = None | |
def midas(img, res, a): | |
img = resize_image(HWC3(img), res) | |
global model_midas | |
if model_midas is None: | |
from annotator.midas import MidasDetector | |
model_midas = MidasDetector() | |
results = model_midas(img, a) | |
return results | |
model_openpose = None | |
def openpose(img, res, has_hand): | |
img = resize_image(HWC3(img), res) | |
global model_openpose | |
if model_openpose is None: | |
from annotator.openpose import OpenposeDetector | |
model_openpose = OpenposeDetector() | |
result, _ = model_openpose(img, has_hand) | |
return [result] | |
model_uniformer = None | |
def uniformer(img, res): | |
img = resize_image(HWC3(img), res) | |
global model_uniformer | |
if model_uniformer is None: | |
from annotator.uniformer import UniformerDetector | |
model_uniformer = UniformerDetector() | |
result = model_uniformer(img) | |
return [result] | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## Canny Edge") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1) | |
high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1) | |
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) | |
run_button = gr.Button(label="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") | |
run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery]) | |
with gr.Row(): | |
gr.Markdown("## HED Edge") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) | |
run_button = gr.Button(label="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") | |
run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery]) | |
with gr.Row(): | |
gr.Markdown("## MLSD Edge") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01) | |
distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01) | |
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64) | |
run_button = gr.Button(label="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") | |
run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery]) | |
with gr.Row(): | |
gr.Markdown("## MIDAS Depth and Normal") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
alpha = gr.Slider(label="alpha", minimum=0.1, maximum=20.0, value=6.2, step=0.01) | |
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64) | |
run_button = gr.Button(label="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") | |
run_button.click(fn=midas, inputs=[input_image, resolution, alpha], outputs=[gallery]) | |
with gr.Row(): | |
gr.Markdown("## Openpose") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
hand = gr.Checkbox(label='detect hand', value=False) | |
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) | |
run_button = gr.Button(label="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") | |
run_button.click(fn=openpose, inputs=[input_image, resolution, hand], outputs=[gallery]) | |
with gr.Row(): | |
gr.Markdown("## Uniformer Segmentation") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64) | |
run_button = gr.Button(label="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto") | |
run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery]) | |
block.launch(server_name='0.0.0.0') | |