Dkapsis's picture
manager tools
ed20377
from PIL import Image
import base64
from io import BytesIO
import json
import os
import requests
from typing import Optional
from huggingface_hub import InferenceClient
from transformers import AutoProcessor
from smolagents import Tool
import uuid
import mimetypes
from dotenv import load_dotenv
load_dotenv(override=True)
idefics_processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-chatty")
def process_images_and_text(image_path, query, client):
messages = [
{
"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": query},
]
},
]
prompt_with_template = idefics_processor.apply_chat_template(messages, add_generation_prompt=True)
# load images from local directory
# encode images to strings which can be sent to the endpoint
def encode_local_image(image_path):
# load image
image = Image.open(image_path).convert('RGB')
# Convert the image to a base64 string
buffer = BytesIO()
image.save(buffer, format="JPEG") # Use the appropriate format (e.g., JPEG, PNG)
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
# add string formatting required by the endpoint
image_string = f"data:image/jpeg;base64,{base64_image}"
return image_string
image_string = encode_local_image(image_path)
prompt_with_images = prompt_with_template.replace("<image>", "![]({}) ").format(image_string)
payload = {
"inputs": prompt_with_images,
"parameters": {
"return_full_text": False,
"max_new_tokens": 200,
}
}
return json.loads(client.post(json=payload).decode())[0]
# Function to encode the image
def encode_image(image_path):
if image_path.startswith("http"):
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
request_kwargs = {
"headers": {"User-Agent": user_agent},
"stream": True,
}
# Send a HTTP request to the URL
response = requests.get(image_path, **request_kwargs)
response.raise_for_status()
content_type = response.headers.get("content-type", "")
extension = mimetypes.guess_extension(content_type)
if extension is None:
extension = ".download"
fname = str(uuid.uuid4()) + extension
download_path = os.path.abspath(os.path.join("downloads", fname))
with open(download_path, "wb") as fh:
for chunk in response.iter_content(chunk_size=512):
fh.write(chunk)
image_path = download_path
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"
}
def resize_image(image_path):
img = Image.open(image_path)
width, height = img.size
img = img.resize((int(width / 2), int(height / 2)))
new_image_path = f"resized_{image_path}"
img.save(new_image_path)
return new_image_path
class VisualQATool(Tool):
name = "visualizer"
description = "A tool that can answer questions about attached images."
inputs = {
"question": {
"description": "the question to answer",
"type": "string",
"nullable": True,
},
"image_path": {
"description": "The path to the image on which to answer the question",
"type": "string",
},
}
output_type = "string"
client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty")
def forward(self, image_path: str, question: Optional[str] = None) -> str:
add_note = False
if not question:
add_note = True
question = "Please write a detailed caption for this image."
try:
output = process_images_and_text(image_path, question, self.client)
except Exception as e:
print(e)
if "Payload Too Large" in str(e):
new_image_path = resize_image(image_path)
output = process_images_and_text(new_image_path, question, self.client)
if add_note:
output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}"
return output
# ////////////////////////////////////////////////////////////////////////
# import base64
# import json
# import os
# import uuid
# import mimetypes
# from io import BytesIO
# from typing import Optional
# from PIL import Image
# from dotenv import load_dotenv
# import requests
# from smolagents import Tool
# from huggingface_hub import InferenceClient
# load_dotenv()
# # === UTILS ===
# def encode_local_image(image_path):
# image = Image.open(image_path).convert("RGB")
# buffer = BytesIO()
# image.save(buffer, format="JPEG")
# base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
# return f"data:image/jpeg;base64,{base64_image}"
# def encode_image(image_path):
# if image_path.startswith("http"):
# user_agent = (
# "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
# "(KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36"
# )
# response = requests.get(image_path, headers={"User-Agent": user_agent}, stream=True)
# response.raise_for_status()
# ext = mimetypes.guess_extension(response.headers.get("content-type", ""))
# fname = str(uuid.uuid4()) + (ext or ".jpg")
# os.makedirs("downloads", exist_ok=True)
# local_path = os.path.join("downloads", fname)
# with open(local_path, "wb") as f:
# for chunk in response.iter_content(chunk_size=1024):
# f.write(chunk)
# image_path = local_path
# with open(image_path, "rb") as img:
# return base64.b64encode(img.read()).decode("utf-8")
# def resize_image(image_path):
# img = Image.open(image_path)
# width, height = img.size
# img = img.resize((int(width / 2), int(height / 2)))
# new_path = f"resized_{os.path.basename(image_path)}"
# img.save(new_path)
# return new_path
# # === IDEFICS2 Tool ===
# class VisualQATool(Tool):
# name = "visualizer"
# description = "A tool that can answer questions about attached images using IDEFICS2."
# inputs = {
# "question": {
# "description": "The question to answer",
# "type": "string",
# "nullable": True,
# },
# "image_path": {
# "description": "Path to the image (local or downloaded)",
# "type": "string",
# },
# }
# output_type = "string"
# client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty")
# def forward(self, image_path: str, question: Optional[str] = None) -> str:
# add_note = False
# if not question:
# add_note = True
# question = "Please write a detailed caption for this image."
# image_string = encode_local_image(image_path)
# prompt = f"![]({image_string})\n\n{question}"
# payload = {
# "inputs": prompt,
# "parameters": {
# "return_full_text": False,
# "max_new_tokens": 200,
# },
# }
# try:
# result = json.loads(self.client.post(json=payload).decode())[0]
# except Exception as e:
# if "Payload Too Large" in str(e):
# resized = resize_image(image_path)
# image_string = encode_local_image(resized)
# prompt = f"![]({image_string})\n\n{question}"
# payload["inputs"] = prompt
# result = json.loads(self.client.post(json=payload).decode())[0]
# else:
# raise e
# return (
# f"You did not provide a particular question, so here is a detailed caption for the image: {result}"
# if add_note else result
# )