Spaces:
Runtime error
Runtime error
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from .lora.peft import PeftAdapterMixin | |
from diffusers.models.attention_processor import AttentionProcessor | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
#from .controlnet import BaseOutput, zero_module | |
from diffusers.utils import BaseOutput | |
from .embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from .transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock | |
import numpy as np | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |
def get_1d_rotary_pos_embed( | |
dim: int, | |
pos: Union[np.ndarray, int], | |
theta: float = 10000.0, | |
use_real=False, | |
linear_factor=1.0, | |
ntk_factor=1.0, | |
repeat_interleave_real=True, | |
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux) | |
): | |
""" | |
Precompute the frequency tensor for complex exponentials (cis) with given dimensions. | |
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end | |
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64 | |
data type. | |
Args: | |
dim (`int`): Dimension of the frequency tensor. | |
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar | |
theta (`float`, *optional*, defaults to 10000.0): | |
Scaling factor for frequency computation. Defaults to 10000.0. | |
use_real (`bool`, *optional*): | |
If True, return real part and imaginary part separately. Otherwise, return complex numbers. | |
linear_factor (`float`, *optional*, defaults to 1.0): | |
Scaling factor for the context extrapolation. Defaults to 1.0. | |
ntk_factor (`float`, *optional*, defaults to 1.0): | |
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0. | |
repeat_interleave_real (`bool`, *optional*, defaults to `True`): | |
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`. | |
Otherwise, they are concateanted with themselves. | |
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`): | |
the dtype of the frequency tensor. | |
Returns: | |
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2] | |
""" | |
assert dim % 2 == 0 | |
if isinstance(pos, int): | |
pos = torch.arange(pos) | |
if isinstance(pos, np.ndarray): | |
pos = torch.from_numpy(pos) # type: ignore # [S] | |
theta = theta * ntk_factor | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype)[: (dim // 2)] / dim)) / linear_factor # [D/2] | |
freqs = freqs.to(pos.device) | |
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2] | |
if use_real and repeat_interleave_real: | |
# flux, hunyuan-dit, cogvideox | |
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D] | |
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D] | |
return freqs_cos, freqs_sin | |
elif use_real: | |
# stable audio | |
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D] | |
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D] | |
return freqs_cos, freqs_sin | |
else: | |
# lumina | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2] | |
return freqs_cis | |
class FluxPosEmbed(nn.Module): | |
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11 | |
def __init__(self, theta: int, axes_dim: List[int]): | |
super().__init__() | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: torch.Tensor) -> torch.Tensor: | |
n_axes = ids.shape[-1] | |
cos_out = [] | |
sin_out = [] | |
pos = ids.squeeze().float() | |
is_mps = ids.device.type == "mps" | |
freqs_dtype = torch.float32 if is_mps else torch.float64 | |
for i in range(n_axes): | |
cos, sin = get_1d_rotary_pos_embed( | |
self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype | |
) | |
cos_out.append(cos) | |
sin_out.append(sin) | |
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device) | |
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device) | |
return freqs_cos, freqs_sin | |
class FluxControlNetOutput(BaseOutput): | |
controlnet_block_samples: Tuple[torch.Tensor] | |
controlnet_single_block_samples: Tuple[torch.Tensor] | |
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
patch_size: int = 1, | |
in_channels: int = 64, | |
num_layers: int = 19, | |
num_single_layers: int = 38, | |
attention_head_dim: int = 128, | |
num_attention_heads: int = 24, | |
joint_attention_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
guidance_embeds: bool = False, | |
axes_dims_rope: List[int] = [16, 56, 56], | |
num_mode: int = None, | |
): | |
super().__init__() | |
self.out_channels = in_channels | |
self.inner_dim = num_attention_heads * attention_head_dim | |
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) | |
text_time_guidance_cls = ( | |
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings | |
) | |
self.time_text_embed = text_time_guidance_cls( | |
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim | |
) | |
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) | |
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
FluxTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
) | |
for i in range(num_layers) | |
] | |
) | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
FluxSingleTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
) | |
for i in range(num_single_layers) | |
] | |
) | |
# controlnet_blocks | |
self.controlnet_blocks = nn.ModuleList([]) | |
for _ in range(len(self.transformer_blocks)): | |
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) | |
self.controlnet_single_blocks = nn.ModuleList([]) | |
for _ in range(len(self.single_transformer_blocks)): | |
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) | |
self.union = num_mode is not None | |
if self.union: | |
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim) | |
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim)) | |
self.gradient_checkpointing = False | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self): | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def from_transformer( | |
cls, | |
transformer, | |
num_layers: int = 4, | |
num_single_layers: int = 10, | |
attention_head_dim: int = 128, | |
num_attention_heads: int = 24, | |
load_weights_from_transformer=True, | |
): | |
config = transformer.config | |
config["num_layers"] = num_layers | |
config["num_single_layers"] = num_single_layers | |
config["attention_head_dim"] = attention_head_dim | |
config["num_attention_heads"] = num_attention_heads | |
controlnet = cls(**config) | |
if load_weights_from_transformer: | |
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) | |
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) | |
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict()) | |
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict()) | |
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) | |
controlnet.single_transformer_blocks.load_state_dict( | |
transformer.single_transformer_blocks.state_dict(), strict=False | |
) | |
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder) | |
return controlnet | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
controlnet_cond: torch.Tensor, | |
controlnet_mode: torch.Tensor = None, | |
conditioning_scale: float = 1.0, | |
encoder_hidden_states: torch.Tensor = None, | |
t5_encoder_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`FluxTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
controlnet_cond (`torch.Tensor`): | |
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
controlnet_mode (`torch.Tensor`): | |
The mode tensor of shape `(batch_size, 1)`. | |
conditioning_scale (`float`, defaults to `1.0`): | |
The scale factor for ControlNet outputs. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
hidden_states = self.x_embedder(hidden_states) | |
# add | |
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond) | |
timestep = timestep.to(hidden_states.dtype) * 1000 | |
if guidance is not None: | |
guidance = guidance.to(hidden_states.dtype) * 1000 | |
else: | |
guidance = None | |
temb = ( | |
self.time_text_embed(timestep, pooled_projections) | |
if guidance is None | |
else self.time_text_embed(timestep, guidance, pooled_projections) | |
) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
if t5_encoder_hidden_states is not None: | |
encoder_hidden_states = torch.cat([encoder_hidden_states, t5_encoder_hidden_states], dim=1) | |
if txt_ids.ndim == 3: | |
logger.warning( | |
"Passing `txt_ids` 3d torch.Tensor is deprecated." | |
"Please remove the batch dimension and pass it as a 2d torch Tensor" | |
) | |
txt_ids = txt_ids[0] | |
if self.union: | |
# union mode | |
if controlnet_mode is None: | |
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union") | |
# union mode emb | |
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode) | |
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1) | |
txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0) | |
if img_ids.ndim == 3: | |
logger.warning( | |
"Passing `img_ids` 3d torch.Tensor is deprecated." | |
"Please remove the batch dimension and pass it as a 2d torch Tensor" | |
) | |
img_ids = img_ids[0] | |
ids = torch.cat((txt_ids, img_ids), dim=0) | |
image_rotary_emb = self.pos_embed(ids) | |
block_samples = () | |
for index_block, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
) | |
block_samples = block_samples + (hidden_states,) | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
single_block_samples = () | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
) | |
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],) | |
# controlnet block | |
controlnet_block_samples = () | |
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks): | |
block_sample = controlnet_block(block_sample) | |
controlnet_block_samples = controlnet_block_samples + (block_sample,) | |
controlnet_single_block_samples = () | |
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks): | |
single_block_sample = controlnet_block(single_block_sample) | |
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,) | |
# scaling | |
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples] | |
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples] | |
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples | |
controlnet_single_block_samples = ( | |
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples | |
) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (controlnet_block_samples, controlnet_single_block_samples) | |
return FluxControlNetOutput( | |
controlnet_block_samples=controlnet_block_samples, | |
controlnet_single_block_samples=controlnet_single_block_samples, | |
) | |
class FluxMultiControlNetModel(ModelMixin): | |
r""" | |
`FluxMultiControlNetModel` wrapper class for Multi-FluxControlNetModel | |
This module is a wrapper for multiple instances of the `FluxControlNetModel`. The `forward()` API is designed to be | |
compatible with `FluxControlNetModel`. | |
Args: | |
controlnets (`List[FluxControlNetModel]`): | |
Provides additional conditioning to the unet during the denoising process. You must set multiple | |
`FluxControlNetModel` as a list. | |
""" | |
def __init__(self, controlnets): | |
super().__init__() | |
self.nets = nn.ModuleList(controlnets) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
controlnet_cond: List[torch.tensor], | |
controlnet_mode: List[torch.tensor], | |
conditioning_scale: List[float], | |
encoder_hidden_states: torch.Tensor = None, | |
t5_encoder_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> Union[FluxControlNetOutput, Tuple]: | |
# ControlNet-Union with multiple conditions | |
# only load one ControlNet for saving memories | |
if len(self.nets) == 1 and self.nets[0].union: | |
controlnet = self.nets[0] | |
for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)): | |
block_samples, single_block_samples = controlnet( | |
hidden_states=hidden_states, | |
controlnet_cond=image, | |
controlnet_mode=mode[:, None], | |
conditioning_scale=scale, | |
timestep=timestep, | |
guidance=guidance, | |
pooled_projections=pooled_projections, | |
encoder_hidden_states=encoder_hidden_states, | |
t5_encoder_hidden_states=t5_encoder_hidden_states, | |
txt_ids=txt_ids, | |
img_ids=img_ids, | |
joint_attention_kwargs=joint_attention_kwargs, | |
return_dict=return_dict, | |
) | |
# merge samples | |
if i == 0: | |
control_block_samples = block_samples | |
control_single_block_samples = single_block_samples | |
else: | |
control_block_samples = [ | |
control_block_sample + block_sample | |
for control_block_sample, block_sample in zip(control_block_samples, block_samples) | |
] | |
control_single_block_samples = [ | |
control_single_block_sample + block_sample | |
for control_single_block_sample, block_sample in zip( | |
control_single_block_samples, single_block_samples | |
) | |
] | |
# Regular Multi-ControlNets | |
# load all ControlNets into memories | |
else: | |
for i, (image, mode, scale, controlnet) in enumerate( | |
zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets) | |
): | |
block_samples, single_block_samples = controlnet( | |
hidden_states=hidden_states, | |
controlnet_cond=image, | |
controlnet_mode=mode[:, None], | |
conditioning_scale=scale, | |
timestep=timestep, | |
guidance=guidance, | |
pooled_projections=pooled_projections, | |
encoder_hidden_states=encoder_hidden_states, | |
txt_ids=txt_ids, | |
img_ids=img_ids, | |
joint_attention_kwargs=joint_attention_kwargs, | |
return_dict=return_dict, | |
) | |
# merge samples | |
if i == 0: | |
control_block_samples = block_samples | |
control_single_block_samples = single_block_samples | |
else: | |
if block_samples is not None and control_block_samples is not None: | |
control_block_samples = [ | |
control_block_sample + block_sample | |
for control_block_sample, block_sample in zip(control_block_samples, block_samples) | |
] | |
if single_block_samples is not None and control_single_block_samples is not None: | |
control_single_block_samples = [ | |
control_single_block_sample + block_sample | |
for control_single_block_sample, block_sample in zip( | |
control_single_block_samples, single_block_samples | |
) | |
] | |
return control_block_samples, control_single_block_samples |