Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import evaluate | |
| from datasets import load_dataset | |
| from transformers import ( | |
| MT5ForConditionalGeneration, | |
| MT5Tokenizer, | |
| Seq2SeqTrainingArguments, | |
| Seq2SeqTrainer, | |
| DataCollatorForSeq2Seq | |
| ) | |
| # Load metrics | |
| cer_metric = evaluate.load("cer") | |
| wer_metric = evaluate.load("wer") | |
| model_nm = "google/mt5-small" | |
| tokenizer = MT5Tokenizer.from_pretrained(model_nm) | |
| model = MT5ForConditionalGeneration.from_pretrained(model_nm) | |
| def compute_metrics(eval_preds): | |
| preds, labels = eval_preds | |
| if isinstance(preds, tuple): | |
| preds = preds[0] | |
| decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
| # Replace -100 in labels as we can't decode them | |
| labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
| decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
| cer = cer_metric.compute(predictions=decoded_preds, references=decoded_labels) | |
| wer = wer_metric.compute(predictions=decoded_preds, references=decoded_labels) | |
| return {"cer": cer, "wer": wer} | |
| def tokenize_fn(batch): | |
| inputs = tokenizer(batch['source'], padding="max_length", truncation=True, max_length=64) | |
| labels = tokenizer(batch['target'], padding="max_length", truncation=True, max_length=64) | |
| inputs["labels"] = labels["input_ids"] | |
| return inputs | |
| # Load and process data | |
| dataset = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'val.csv'}) | |
| tokenized_dataset = dataset.map(tokenize_fn, batched=True) | |
| args = Seq2SeqTrainingArguments( | |
| output_dir="./translit-results", | |
| evaluation_strategy="epoch", | |
| learning_rate=2e-4, | |
| per_device_train_batch_size=16, | |
| per_device_eval_batch_size=16, | |
| weight_decay=0.01, | |
| save_total_limit=2, | |
| num_train_epochs=3, | |
| predict_with_generate=True, | |
| fp16=True, # Set to False if not using GPU | |
| logging_steps=100, | |
| ) | |
| trainer = Seq2SeqTrainer( | |
| model=model, | |
| args=args, | |
| train_dataset=tokenized_dataset["train"], | |
| eval_dataset=tokenized_dataset["test"], | |
| tokenizer=tokenizer, | |
| data_collator=DataCollatorForSeq2Seq(tokenizer, model=model), | |
| compute_metrics=compute_metrics | |
| ) | |
| trainer.train() | |
| model.save_pretrained("./final_model") | |
| tokenizer.save_pretrained("./final_model") |