Spaces:
Runtime error
Runtime error
Create training/train.py
Browse files- training/train.py +71 -0
training/train.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import evaluate
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import (
|
| 5 |
+
MT5ForConditionalGeneration,
|
| 6 |
+
MT5Tokenizer,
|
| 7 |
+
Seq2SeqTrainingArguments,
|
| 8 |
+
Seq2SeqTrainer,
|
| 9 |
+
DataCollatorForSeq2Seq
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
# Load metrics
|
| 13 |
+
cer_metric = evaluate.load("cer")
|
| 14 |
+
wer_metric = evaluate.load("wer")
|
| 15 |
+
|
| 16 |
+
model_nm = "google/mt5-small"
|
| 17 |
+
tokenizer = MT5Tokenizer.from_pretrained(model_nm)
|
| 18 |
+
model = MT5ForConditionalGeneration.from_pretrained(model_nm)
|
| 19 |
+
|
| 20 |
+
def compute_metrics(eval_preds):
|
| 21 |
+
preds, labels = eval_preds
|
| 22 |
+
if isinstance(preds, tuple):
|
| 23 |
+
preds = preds[0]
|
| 24 |
+
|
| 25 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
| 26 |
+
# Replace -100 in labels as we can't decode them
|
| 27 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
| 28 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
| 29 |
+
|
| 30 |
+
cer = cer_metric.compute(predictions=decoded_preds, references=decoded_labels)
|
| 31 |
+
wer = wer_metric.compute(predictions=decoded_preds, references=decoded_labels)
|
| 32 |
+
|
| 33 |
+
return {"cer": cer, "wer": wer}
|
| 34 |
+
|
| 35 |
+
def tokenize_fn(batch):
|
| 36 |
+
inputs = tokenizer(batch['source'], padding="max_length", truncation=True, max_length=64)
|
| 37 |
+
labels = tokenizer(batch['target'], padding="max_length", truncation=True, max_length=64)
|
| 38 |
+
inputs["labels"] = labels["input_ids"]
|
| 39 |
+
return inputs
|
| 40 |
+
|
| 41 |
+
# Load and process data
|
| 42 |
+
dataset = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'val.csv'})
|
| 43 |
+
tokenized_dataset = dataset.map(tokenize_fn, batched=True)
|
| 44 |
+
|
| 45 |
+
args = Seq2SeqTrainingArguments(
|
| 46 |
+
output_dir="./translit-results",
|
| 47 |
+
evaluation_strategy="epoch",
|
| 48 |
+
learning_rate=2e-4,
|
| 49 |
+
per_device_train_batch_size=16,
|
| 50 |
+
per_device_eval_batch_size=16,
|
| 51 |
+
weight_decay=0.01,
|
| 52 |
+
save_total_limit=2,
|
| 53 |
+
num_train_epochs=3,
|
| 54 |
+
predict_with_generate=True,
|
| 55 |
+
fp16=True, # Set to False if not using GPU
|
| 56 |
+
logging_steps=100,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
trainer = Seq2SeqTrainer(
|
| 60 |
+
model=model,
|
| 61 |
+
args=args,
|
| 62 |
+
train_dataset=tokenized_dataset["train"],
|
| 63 |
+
eval_dataset=tokenized_dataset["test"],
|
| 64 |
+
tokenizer=tokenizer,
|
| 65 |
+
data_collator=DataCollatorForSeq2Seq(tokenizer, model=model),
|
| 66 |
+
compute_metrics=compute_metrics
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
trainer.train()
|
| 70 |
+
model.save_pretrained("./final_model")
|
| 71 |
+
tokenizer.save_pretrained("./final_model")
|