DilshanKavinda's picture
add new files
9a2636b verified
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
import pickle5 as pickle
def create_model(data):
X = data.drop(['diagnosis'], axis=1)
y = data['diagnosis']
# scale the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
# split the data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# train the model
model = LogisticRegression()
model.fit(X_train, y_train)
# test model
y_pred = model.predict(X_test)
print('Accuracy of our model: ', accuracy_score(y_test, y_pred))
print("Classification report: \n", classification_report(y_test, y_pred))
return model, scaler
def get_clean_data():
data = pd.read_csv("data/data.csv")
data = data.drop(['Unnamed: 32', 'id'], axis=1)
data['diagnosis'] = data['diagnosis'].map({ 'M': 1, 'B': 0 })
return data
def main():
data = get_clean_data()
model, scaler = create_model(data)
with open('model/model.pkl', 'wb') as f:
pickle.dump(model, f)
with open('model/scaler.pkl', 'wb') as f:
pickle.dump(scaler, f)
if __name__ == '__main__':
main()