Spaces:
Runtime error
Runtime error
| import bisect | |
| import torch | |
| import torch.nn.functional as F | |
| import lpips | |
| perceptual_loss = lpips.LPIPS() | |
| def distance(img_a, img_b): | |
| # return perceptual_loss(img_a, img_b).item() | |
| return F.mse_loss(img_a, img_b).item() | |
| class AlphaScheduler: | |
| def __init__(self): | |
| ... | |
| def from_imgs(self, imgs): | |
| self.__num_values = len(imgs) | |
| self.__values = [0] | |
| for i in range(self.__num_values - 1): | |
| dis = distance(imgs[i], imgs[i + 1]) | |
| self.__values.append(dis) | |
| self.__values[i + 1] += self.__values[i] | |
| for i in range(self.__num_values): | |
| self.__values[i] /= self.__values[-1] | |
| def save(self, filename): | |
| torch.save(torch.tensor(self.__values), filename) | |
| def load(self, filename): | |
| self.__values = torch.load(filename).tolist() | |
| self.__num_values = len(self.__values) | |
| def get_x(self, y): | |
| assert y >= 0 and y <= 1 | |
| id = bisect.bisect_left(self.__values, y) | |
| id -= 1 | |
| if id < 0: | |
| id = 0 | |
| yl = self.__values[id] | |
| yr = self.__values[id + 1] | |
| xl = id * (1 / (self.__num_values - 1)) | |
| xr = (id + 1) * (1 / (self.__num_values - 1)) | |
| x = (y - yl) / (yr - yl) * (xr - xl) + xl | |
| return x | |
| def get_list(self, len=None): | |
| if len is None: | |
| len = self.__num_values | |
| ys = torch.linspace(0, 1, len) | |
| res = [self.get_x(y) for y in ys] | |
| return res | |