Spaces:
Runtime error
Runtime error
CSH-1220
commited on
Commit
·
d57e374
1
Parent(s):
35ff45f
Add application file
Browse files- APadapter/ap_adapter/__init__.py +0 -0
- APadapter/ap_adapter/attention_processor.py +623 -0
- app.py +72 -0
- audio_encoder/AudioMAE.py +424 -0
- audio_encoder/models_mae.py +738 -0
- audio_encoder/models_vit.py +243 -0
- pipeline/modeling_audioldm2.py +1546 -0
- pipeline/morph_pipeline_successed_ver1.py +1435 -0
- pipeline/pipeline_audioldm.py +597 -0
- pipeline/pipeline_audioldm2.py +1080 -0
- pipeline/style_transfer_pipeline.py +1012 -0
- utils/alpha_scheduler.py +54 -0
- utils/lora_utils_successed_ver1.py +700 -0
- utils/model_utils.py +86 -0
APadapter/ap_adapter/__init__.py
ADDED
File without changes
|
APadapter/ap_adapter/attention_processor.py
ADDED
@@ -0,0 +1,623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import copy
|
6 |
+
import os
|
7 |
+
class AttnProcessor(nn.Module):
|
8 |
+
r"""
|
9 |
+
Default processor for performing attention-related computations.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
hidden_size=None,
|
15 |
+
cross_attention_dim=None,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
def __call__(
|
20 |
+
self,
|
21 |
+
attn,
|
22 |
+
hidden_states,
|
23 |
+
encoder_hidden_states=None,
|
24 |
+
attention_mask=None,
|
25 |
+
temb=None,
|
26 |
+
):
|
27 |
+
residual = hidden_states
|
28 |
+
|
29 |
+
if attn.spatial_norm is not None:
|
30 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
31 |
+
|
32 |
+
input_ndim = hidden_states.ndim
|
33 |
+
|
34 |
+
if input_ndim == 4:
|
35 |
+
batch_size, channel, height, width = hidden_states.shape
|
36 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
37 |
+
|
38 |
+
batch_size, sequence_length, _ = (
|
39 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
40 |
+
)
|
41 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
42 |
+
|
43 |
+
if attn.group_norm is not None:
|
44 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
45 |
+
|
46 |
+
query = attn.to_q(hidden_states)
|
47 |
+
|
48 |
+
if encoder_hidden_states is None:
|
49 |
+
encoder_hidden_states = hidden_states
|
50 |
+
elif attn.norm_cross:
|
51 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
52 |
+
|
53 |
+
key = attn.to_k(encoder_hidden_states)
|
54 |
+
value = attn.to_v(encoder_hidden_states)
|
55 |
+
|
56 |
+
query = attn.head_to_batch_dim(query)
|
57 |
+
key = attn.head_to_batch_dim(key)
|
58 |
+
value = attn.head_to_batch_dim(value)
|
59 |
+
|
60 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
61 |
+
hidden_states = torch.bmm(attention_probs, value)
|
62 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
63 |
+
|
64 |
+
# linear proj
|
65 |
+
hidden_states = attn.to_out[0](hidden_states)
|
66 |
+
# dropout
|
67 |
+
hidden_states = attn.to_out[1](hidden_states)
|
68 |
+
|
69 |
+
if input_ndim == 4:
|
70 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
71 |
+
|
72 |
+
if attn.residual_connection:
|
73 |
+
hidden_states = hidden_states + residual
|
74 |
+
|
75 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
76 |
+
|
77 |
+
return hidden_states
|
78 |
+
|
79 |
+
|
80 |
+
class IPAttnProcessor(nn.Module):
|
81 |
+
r"""
|
82 |
+
Attention processor for IP-Adapater.
|
83 |
+
Args:
|
84 |
+
hidden_size (`int`):
|
85 |
+
The hidden size of the attention layer.
|
86 |
+
cross_attention_dim (`int`):
|
87 |
+
The number of channels in the `encoder_hidden_states`.
|
88 |
+
scale (`float`, defaults to 1.0):
|
89 |
+
the weight scale of image prompt.
|
90 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
91 |
+
The context length of the image features.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.hidden_size = hidden_size
|
98 |
+
self.cross_attention_dim = cross_attention_dim
|
99 |
+
self.scale = scale
|
100 |
+
self.num_tokens = num_tokens
|
101 |
+
|
102 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
103 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
104 |
+
|
105 |
+
def __call__(
|
106 |
+
self,
|
107 |
+
attn,
|
108 |
+
hidden_states,
|
109 |
+
encoder_hidden_states=None,
|
110 |
+
attention_mask=None,
|
111 |
+
temb=None,
|
112 |
+
):
|
113 |
+
residual = hidden_states
|
114 |
+
|
115 |
+
if attn.spatial_norm is not None:
|
116 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
117 |
+
|
118 |
+
input_ndim = hidden_states.ndim
|
119 |
+
|
120 |
+
if input_ndim == 4:
|
121 |
+
batch_size, channel, height, width = hidden_states.shape
|
122 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
123 |
+
encoder_hidden_states = encoder_hidden_states.squeeze(0)
|
124 |
+
batch_size, sequence_length, _ = (
|
125 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
126 |
+
)
|
127 |
+
|
128 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
129 |
+
|
130 |
+
if attn.group_norm is not None:
|
131 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
132 |
+
|
133 |
+
query = attn.to_q(hidden_states)
|
134 |
+
|
135 |
+
if encoder_hidden_states is None:
|
136 |
+
encoder_hidden_states = hidden_states
|
137 |
+
else:
|
138 |
+
# get encoder_hidden_states, ip_hidden_states
|
139 |
+
end_pos = encoder_hidden_states.shape[1]//2
|
140 |
+
encoder_hidden_states, ip_hidden_states = (
|
141 |
+
encoder_hidden_states[:, :end_pos, :],
|
142 |
+
encoder_hidden_states[:, end_pos:, :],
|
143 |
+
)
|
144 |
+
if attn.norm_cross:
|
145 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
146 |
+
|
147 |
+
key = attn.to_k(encoder_hidden_states)
|
148 |
+
value = attn.to_v(encoder_hidden_states)
|
149 |
+
|
150 |
+
query = attn.head_to_batch_dim(query)
|
151 |
+
key = attn.head_to_batch_dim(key)
|
152 |
+
value = attn.head_to_batch_dim(value)
|
153 |
+
|
154 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
155 |
+
hidden_states = torch.bmm(attention_probs, value)
|
156 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
157 |
+
|
158 |
+
# for ip-adapter
|
159 |
+
self.to_k_ip.weight = copy.deepcopy(attn.to_k.weight)
|
160 |
+
self.to_k_ip.bias = copy.deepcopy(attn.to_k.bias)
|
161 |
+
self.to_v_ip.weight = copy.deepcopy(attn.to_v.weight)
|
162 |
+
self.to_v_ip.bias = copy.deepcopy(attn.to_v.bias)
|
163 |
+
|
164 |
+
# Set the weights of self.to_k_ip to zero
|
165 |
+
# nn.init.zeros_(self.to_k_ip.weight)
|
166 |
+
|
167 |
+
# # Set the weights of self.to_v_ip to zero
|
168 |
+
# nn.init.zeros_(self.to_v_ip.weight)
|
169 |
+
|
170 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
171 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
172 |
+
|
173 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
174 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
175 |
+
|
176 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
177 |
+
self.attn_map = ip_attention_probs
|
178 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
179 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
180 |
+
|
181 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
182 |
+
|
183 |
+
# linear proj
|
184 |
+
hidden_states = attn.to_out[0](hidden_states)
|
185 |
+
# dropout
|
186 |
+
hidden_states = attn.to_out[1](hidden_states)
|
187 |
+
|
188 |
+
if input_ndim == 4:
|
189 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
190 |
+
|
191 |
+
if attn.residual_connection:
|
192 |
+
hidden_states = hidden_states + residual
|
193 |
+
|
194 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
195 |
+
|
196 |
+
return hidden_states
|
197 |
+
|
198 |
+
|
199 |
+
class AttnProcessor2_0(torch.nn.Module):
|
200 |
+
r"""
|
201 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
202 |
+
"""
|
203 |
+
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
hidden_size=None,
|
207 |
+
cross_attention_dim=None,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
211 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
212 |
+
|
213 |
+
|
214 |
+
def __call__(
|
215 |
+
self,
|
216 |
+
attn,
|
217 |
+
hidden_states,
|
218 |
+
encoder_hidden_states=None,
|
219 |
+
attention_mask=None,
|
220 |
+
temb=None,
|
221 |
+
):
|
222 |
+
residual = hidden_states
|
223 |
+
# print("encoder_hidden_states_attn",encoder_hidden_states.shape)
|
224 |
+
if attn.spatial_norm is not None:
|
225 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
226 |
+
|
227 |
+
input_ndim = hidden_states.ndim
|
228 |
+
# print("hidden_states",hidden_states.shape)
|
229 |
+
if input_ndim == 4:
|
230 |
+
batch_size, channel, height, width = hidden_states.shape
|
231 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
232 |
+
# encoder_hidden_states = encoder_hidden_states.squeeze(0)
|
233 |
+
# if encoder_hidden_states is None:
|
234 |
+
# # print(hidden_states.shape)
|
235 |
+
# pass
|
236 |
+
# else:
|
237 |
+
# print(encoder_hidden_states.shape)
|
238 |
+
# # encoder_hidden_states = encoder_hidden_states.squeeze(0)
|
239 |
+
if encoder_hidden_states is not None and encoder_hidden_states.dim() < 3:
|
240 |
+
encoder_hidden_states = encoder_hidden_states.unsqueeze(0)
|
241 |
+
batch_size, sequence_length, _ = (
|
242 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
243 |
+
)
|
244 |
+
|
245 |
+
if attention_mask is not None:
|
246 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
247 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
248 |
+
# (batch, heads, source_length, target_length)
|
249 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
250 |
+
|
251 |
+
if attn.group_norm is not None:
|
252 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
253 |
+
|
254 |
+
query = attn.to_q(hidden_states)
|
255 |
+
|
256 |
+
if encoder_hidden_states is None:
|
257 |
+
encoder_hidden_states = hidden_states
|
258 |
+
elif attn.norm_cross:
|
259 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
260 |
+
|
261 |
+
key = attn.to_k(encoder_hidden_states)
|
262 |
+
value = attn.to_v(encoder_hidden_states)
|
263 |
+
# print("encoder_hidden_states_attn",encoder_hidden_states.shape)
|
264 |
+
inner_dim = key.shape[-1]
|
265 |
+
head_dim = inner_dim // attn.heads
|
266 |
+
|
267 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
268 |
+
|
269 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
270 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
271 |
+
|
272 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
273 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
274 |
+
hidden_states = F.scaled_dot_product_attention(
|
275 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
276 |
+
)
|
277 |
+
|
278 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
279 |
+
hidden_states = hidden_states.to(query.dtype)
|
280 |
+
|
281 |
+
# linear proj
|
282 |
+
hidden_states = attn.to_out[0](hidden_states)
|
283 |
+
# dropout
|
284 |
+
hidden_states = attn.to_out[1](hidden_states)
|
285 |
+
|
286 |
+
if input_ndim == 4:
|
287 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
288 |
+
|
289 |
+
if attn.residual_connection:
|
290 |
+
hidden_states = hidden_states + residual
|
291 |
+
|
292 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
293 |
+
|
294 |
+
return hidden_states
|
295 |
+
|
296 |
+
|
297 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
298 |
+
r"""
|
299 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
hidden_size (`int`):
|
303 |
+
The hidden size of the attention layer.
|
304 |
+
cross_attention_dim (`int`):
|
305 |
+
The number of channels in the `encoder_hidden_states`.
|
306 |
+
num_tokens (`int`, defaults to 4):
|
307 |
+
The context length of the image features.
|
308 |
+
scale (`float`, defaults to 1.0):
|
309 |
+
the weight scale of image prompt.
|
310 |
+
"""
|
311 |
+
|
312 |
+
def __init__(self, hidden_size, name, cross_attention_dim=None, num_tokens=4, scale=1.0, do_copy = False):
|
313 |
+
super().__init__()
|
314 |
+
|
315 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
316 |
+
raise ImportError(
|
317 |
+
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
318 |
+
)
|
319 |
+
|
320 |
+
self.hidden_size = hidden_size
|
321 |
+
self.cross_attention_dim = cross_attention_dim
|
322 |
+
self.num_tokens = num_tokens
|
323 |
+
self.scale = scale
|
324 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
325 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
326 |
+
self.name = name
|
327 |
+
# Below is for copying the weight of the original weight to the \
|
328 |
+
if do_copy:
|
329 |
+
print("do copy")
|
330 |
+
current_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
331 |
+
# Go up one level to the parent directory
|
332 |
+
parent_dir = os.path.dirname(current_dir)
|
333 |
+
# Construct the path to the weights
|
334 |
+
k_weight_path = os.path.join(parent_dir, 'copied_cross_attention', f'{self.name}_k.bin')
|
335 |
+
v_weight_path = os.path.join(parent_dir, 'copied_cross_attention', f'{self.name}_v.bin')
|
336 |
+
# Load the weights
|
337 |
+
k_weight = torch.load(k_weight_path)
|
338 |
+
v_weight = torch.load(v_weight_path)
|
339 |
+
k_weight = k_weight.to(torch.float32)
|
340 |
+
v_weight = v_weight.to(torch.float32)
|
341 |
+
self.to_k_ip.weight = nn.Parameter(k_weight)
|
342 |
+
self.to_v_ip.weight = nn.Parameter(v_weight)
|
343 |
+
self.to_k_ip.weight.requires_grad = True
|
344 |
+
self.to_v_ip.weight.requires_grad = True
|
345 |
+
|
346 |
+
|
347 |
+
def __call__(
|
348 |
+
self,
|
349 |
+
attn,
|
350 |
+
hidden_states,
|
351 |
+
encoder_hidden_states=None,
|
352 |
+
attention_mask=None,
|
353 |
+
temb=None,
|
354 |
+
scale=1.0,
|
355 |
+
):
|
356 |
+
if scale != 1.0:
|
357 |
+
logger.warning("`scale` of IPAttnProcessor should be set by `set_ip_adapter_scale`.")
|
358 |
+
residual = hidden_states
|
359 |
+
# print("original encoder_hidden_states",encoder_hidden_states.shape)
|
360 |
+
if attn.spatial_norm is not None:
|
361 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
362 |
+
|
363 |
+
input_ndim = hidden_states.ndim
|
364 |
+
|
365 |
+
if input_ndim == 4:
|
366 |
+
batch_size, channel, height, width = hidden_states.shape
|
367 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
368 |
+
# print("hidden_states",hidden_states.shape)
|
369 |
+
# print("encoder_hidden_states",encoder_hidden_states.shape)
|
370 |
+
# encoder_hidden_states = encoder_hidden_states.squeeze(1)
|
371 |
+
if encoder_hidden_states is not None and encoder_hidden_states.dim() < 3:
|
372 |
+
encoder_hidden_states = encoder_hidden_states.unsqueeze(0)
|
373 |
+
# print("encoder_hidden_states",encoder_hidden_states.shape)
|
374 |
+
batch_size, sequence_length, _ = (
|
375 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
376 |
+
)
|
377 |
+
|
378 |
+
if attention_mask is not None:
|
379 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
380 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
381 |
+
# (batch, heads, source_length, target_length)
|
382 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
383 |
+
|
384 |
+
if attn.group_norm is not None:
|
385 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
386 |
+
|
387 |
+
query = attn.to_q(hidden_states)
|
388 |
+
|
389 |
+
if encoder_hidden_states is None:
|
390 |
+
encoder_hidden_states = hidden_states
|
391 |
+
elif attn.norm_cross:
|
392 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
393 |
+
# print("in norm cross")
|
394 |
+
# print("encoder_hidden_states",encoder_hidden_states.shape)
|
395 |
+
|
396 |
+
# split hidden states
|
397 |
+
# end_pos = encoder_hidden_states.shape[1]//2
|
398 |
+
# print("encoder_hidden_states.shape",encoder_hidden_states.shape)
|
399 |
+
# print("end_pos",end_pos)
|
400 |
+
encoder_hidden_states, ip_hidden_states = (
|
401 |
+
encoder_hidden_states[:, :self.num_tokens, :],
|
402 |
+
encoder_hidden_states[:, self.num_tokens:, :],
|
403 |
+
)
|
404 |
+
# print("encoder_hidden_states",encoder_hidden_states.shape)
|
405 |
+
# print("ip_hidden_states",ip_hidden_states.shape)
|
406 |
+
key = attn.to_k(encoder_hidden_states)
|
407 |
+
value = attn.to_v(encoder_hidden_states)
|
408 |
+
|
409 |
+
inner_dim = key.shape[-1]
|
410 |
+
head_dim = inner_dim // attn.heads
|
411 |
+
|
412 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
413 |
+
|
414 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
415 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
416 |
+
|
417 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
418 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
419 |
+
# print("query shape",query.shape)
|
420 |
+
# print("key shape",key.shape)
|
421 |
+
# print("value shape",value.shape)
|
422 |
+
# print("attention_mask",attention_mask)
|
423 |
+
|
424 |
+
if attention_mask != None:
|
425 |
+
target = attention_mask.shape
|
426 |
+
# print("target",target)
|
427 |
+
# print("attention_mask.shape",attention_mask.shape)
|
428 |
+
attention_mask = attention_mask.split(target[2], dim=3)[0]
|
429 |
+
hidden_states = F.scaled_dot_product_attention(
|
430 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
431 |
+
)
|
432 |
+
# print("hidden_states",hidden_states.shape)
|
433 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
434 |
+
hidden_states = hidden_states.to(query.dtype)
|
435 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
436 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
437 |
+
|
438 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
439 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
440 |
+
|
441 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
442 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
443 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
444 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
445 |
+
)
|
446 |
+
# print("query",query.shape)
|
447 |
+
# print("ip_key",ip_key.shape)
|
448 |
+
# print("ip_value",ip_value.shape)
|
449 |
+
# print("ip_hidden_states",ip_hidden_states.shape)
|
450 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
451 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
452 |
+
# print("hidden_states",hidden_states)
|
453 |
+
# print("ip_hidden_states",ip_hidden_states)
|
454 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
455 |
+
# print("ip_hidden_states",ip_hidden_states.shape)
|
456 |
+
# linear proj
|
457 |
+
hidden_states = attn.to_out[0](hidden_states)
|
458 |
+
# dropout
|
459 |
+
hidden_states = attn.to_out[1](hidden_states)
|
460 |
+
|
461 |
+
if input_ndim == 4:
|
462 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
463 |
+
|
464 |
+
if attn.residual_connection:
|
465 |
+
print("residual_connection")
|
466 |
+
hidden_states = hidden_states + residual
|
467 |
+
# print(residual)
|
468 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
469 |
+
|
470 |
+
return hidden_states
|
471 |
+
|
472 |
+
## for controlnet
|
473 |
+
class CNAttnProcessor:
|
474 |
+
r"""
|
475 |
+
Default processor for performing attention-related computations.
|
476 |
+
"""
|
477 |
+
|
478 |
+
def __init__(self, num_tokens=4):
|
479 |
+
self.num_tokens = num_tokens
|
480 |
+
|
481 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
482 |
+
residual = hidden_states
|
483 |
+
|
484 |
+
if attn.spatial_norm is not None:
|
485 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
486 |
+
|
487 |
+
input_ndim = hidden_states.ndim
|
488 |
+
|
489 |
+
if input_ndim == 4:
|
490 |
+
batch_size, channel, height, width = hidden_states.shape
|
491 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
492 |
+
|
493 |
+
batch_size, sequence_length, _ = (
|
494 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
495 |
+
)
|
496 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
497 |
+
|
498 |
+
if attn.group_norm is not None:
|
499 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
500 |
+
|
501 |
+
query = attn.to_q(hidden_states)
|
502 |
+
|
503 |
+
if encoder_hidden_states is None:
|
504 |
+
encoder_hidden_states = hidden_states
|
505 |
+
else:
|
506 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
507 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
508 |
+
if attn.norm_cross:
|
509 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
510 |
+
|
511 |
+
key = attn.to_k(encoder_hidden_states)
|
512 |
+
value = attn.to_v(encoder_hidden_states)
|
513 |
+
|
514 |
+
query = attn.head_to_batch_dim(query)
|
515 |
+
key = attn.head_to_batch_dim(key)
|
516 |
+
value = attn.head_to_batch_dim(value)
|
517 |
+
|
518 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
519 |
+
hidden_states = torch.bmm(attention_probs, value)
|
520 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
521 |
+
|
522 |
+
# linear proj
|
523 |
+
hidden_states = attn.to_out[0](hidden_states)
|
524 |
+
# dropout
|
525 |
+
hidden_states = attn.to_out[1](hidden_states)
|
526 |
+
|
527 |
+
if input_ndim == 4:
|
528 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
529 |
+
|
530 |
+
if attn.residual_connection:
|
531 |
+
hidden_states = hidden_states + residual
|
532 |
+
|
533 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
534 |
+
|
535 |
+
return hidden_states
|
536 |
+
|
537 |
+
|
538 |
+
class CNAttnProcessor2_0:
|
539 |
+
r"""
|
540 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(self, num_tokens=4):
|
544 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
545 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
546 |
+
self.num_tokens = num_tokens
|
547 |
+
|
548 |
+
def __call__(
|
549 |
+
self,
|
550 |
+
attn,
|
551 |
+
hidden_states,
|
552 |
+
encoder_hidden_states=None,
|
553 |
+
attention_mask=None,
|
554 |
+
temb=None,
|
555 |
+
):
|
556 |
+
residual = hidden_states
|
557 |
+
|
558 |
+
if attn.spatial_norm is not None:
|
559 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
560 |
+
|
561 |
+
input_ndim = hidden_states.ndim
|
562 |
+
|
563 |
+
if input_ndim == 4:
|
564 |
+
batch_size, channel, height, width = hidden_states.shape
|
565 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
566 |
+
|
567 |
+
batch_size, sequence_length, _ = (
|
568 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
569 |
+
)
|
570 |
+
|
571 |
+
if attention_mask is not None:
|
572 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
573 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
574 |
+
# (batch, heads, source_length, target_length)
|
575 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
576 |
+
|
577 |
+
if attn.group_norm is not None:
|
578 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
579 |
+
|
580 |
+
query = attn.to_q(hidden_states)
|
581 |
+
|
582 |
+
if encoder_hidden_states is None:
|
583 |
+
encoder_hidden_states = hidden_states
|
584 |
+
else:
|
585 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
586 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
587 |
+
if attn.norm_cross:
|
588 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
589 |
+
|
590 |
+
key = attn.to_k(encoder_hidden_states)
|
591 |
+
value = attn.to_v(encoder_hidden_states)
|
592 |
+
|
593 |
+
inner_dim = key.shape[-1]
|
594 |
+
head_dim = inner_dim // attn.heads
|
595 |
+
|
596 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
597 |
+
|
598 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
599 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
600 |
+
|
601 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
602 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
603 |
+
hidden_states = F.scaled_dot_product_attention(
|
604 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
605 |
+
)
|
606 |
+
|
607 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
608 |
+
hidden_states = hidden_states.to(query.dtype)
|
609 |
+
|
610 |
+
# linear proj
|
611 |
+
hidden_states = attn.to_out[0](hidden_states)
|
612 |
+
# dropout
|
613 |
+
hidden_states = attn.to_out[1](hidden_states)
|
614 |
+
|
615 |
+
if input_ndim == 4:
|
616 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
617 |
+
|
618 |
+
if attn.residual_connection:
|
619 |
+
hidden_states = hidden_states + residual
|
620 |
+
|
621 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
622 |
+
|
623 |
+
return hidden_states
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torchaudio
|
4 |
+
import torch
|
5 |
+
from pipeline.morph_pipeline_successed_ver1 import AudioLDM2MorphPipeline
|
6 |
+
|
7 |
+
pipeline = AudioLDM2MorphPipeline.from_pretrained("cvssp/audioldm2-large", torch_dtype=torch.float32)
|
8 |
+
pipeline.to("cuda")
|
9 |
+
|
10 |
+
def morph_audio(audio_file1, audio_file2, prompt1, prompt2, negative_prompt1="Low quality", negative_prompt2="Low quality"):
|
11 |
+
save_lora_dir = "output"
|
12 |
+
os.makedirs(save_lora_dir, exist_ok=True)
|
13 |
+
|
14 |
+
waveform, sample_rate = torchaudio.load(audio_file1)
|
15 |
+
duration = waveform.shape[1] / sample_rate
|
16 |
+
duration = int(duration)
|
17 |
+
|
18 |
+
_ = pipeline(
|
19 |
+
audio_file=audio_file1,
|
20 |
+
audio_file2=audio_file2,
|
21 |
+
audio_length_in_s=duration,
|
22 |
+
time_pooling=2,
|
23 |
+
freq_pooling=2,
|
24 |
+
prompt_1=prompt1,
|
25 |
+
prompt_2=prompt2,
|
26 |
+
negative_prompt_1=negative_prompt1,
|
27 |
+
negative_prompt_2=negative_prompt2,
|
28 |
+
save_lora_dir=save_lora_dir,
|
29 |
+
use_adain=True,
|
30 |
+
use_reschedule=True,
|
31 |
+
num_inference_steps=50,
|
32 |
+
lamd=0.6,
|
33 |
+
output_path=save_lora_dir,
|
34 |
+
num_frames=5,
|
35 |
+
fix_lora=None,
|
36 |
+
use_lora=True,
|
37 |
+
lora_steps=50,
|
38 |
+
noisy_latent_with_lora=True,
|
39 |
+
morphing_with_lora=True,
|
40 |
+
use_morph_prompt=True,
|
41 |
+
guidance_scale=7.5,
|
42 |
+
)
|
43 |
+
|
44 |
+
output_paths = [os.path.join(save_lora_dir, file) for file in os.listdir(save_lora_dir) if file.endswith(".wav")]
|
45 |
+
return output_paths
|
46 |
+
|
47 |
+
def interface(audio1, audio2, prompt1, prompt2):
|
48 |
+
output_paths = morph_audio(audio1, audio2, prompt1, prompt2)
|
49 |
+
return output_paths
|
50 |
+
|
51 |
+
# Gradio UI
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
gr.Markdown("### Audio Morphing Demo with AudioLDM2")
|
54 |
+
|
55 |
+
with gr.Row():
|
56 |
+
audio_file1 = gr.Audio(label="Upload Audio File 1", type="filepath")
|
57 |
+
audio_file2 = gr.Audio(label="Upload Audio File 2", type="filepath")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
prompt1 = gr.Textbox(label="Prompt for Audio File 1")
|
61 |
+
prompt2 = gr.Textbox(label="Prompt for Audio File 2")
|
62 |
+
|
63 |
+
output_audios = gr.Audio(label="Generated Morphing Audios", type="filepath", interactive=False)
|
64 |
+
morph_button = gr.Button("Generate Morphing Audio")
|
65 |
+
|
66 |
+
morph_button.click(
|
67 |
+
interface,
|
68 |
+
inputs=[audio_file1, audio_file2, prompt1, prompt2],
|
69 |
+
outputs=[output_audios]
|
70 |
+
)
|
71 |
+
|
72 |
+
demo.launch()
|
audio_encoder/AudioMAE.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Reference Repo: https://github.com/facebookresearch/AudioMAE
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from timm.models.layers import to_2tuple
|
8 |
+
from . import models_vit
|
9 |
+
from . import models_mae
|
10 |
+
import librosa
|
11 |
+
import librosa.display
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import numpy as np
|
14 |
+
import torchaudio
|
15 |
+
|
16 |
+
# model = mae_vit_base_patch16(in_chans=1, audio_exp=True, img_size=(1024, 128))
|
17 |
+
class Vanilla_AudioMAE(nn.Module):
|
18 |
+
"""Audio Masked Autoencoder (MAE) pre-trained on AudioSet (for AudioLDM2)"""
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
model = models_mae.__dict__["mae_vit_base_patch16"](
|
25 |
+
in_chans=1, audio_exp=True, img_size=(1024, 128)
|
26 |
+
)
|
27 |
+
|
28 |
+
checkpoint_path = '/Data/home/Dennis/DeepMIR-2024/Final_Project/AP-adapter/pretrained.pth'
|
29 |
+
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
30 |
+
msg = model.load_state_dict(checkpoint['model'], strict=False)
|
31 |
+
|
32 |
+
# Skip the missing keys of decoder modules (not required)
|
33 |
+
# print(f'Load AudioMAE from {checkpoint_path} / message: {msg}')
|
34 |
+
self.model = model.eval()
|
35 |
+
self.model = model.train()
|
36 |
+
|
37 |
+
def forward(self, x, mask_ratio=0.0, no_mask=False, no_average=False):
|
38 |
+
"""
|
39 |
+
x: mel fbank [Batch, 1, 1024 (T), 128 (F)]
|
40 |
+
mask_ratio: 'masking ratio (percentage of removed patches).'
|
41 |
+
"""
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
# embed: [B, 513, 768] for mask_ratio=0.0
|
45 |
+
if no_mask:
|
46 |
+
if no_average:
|
47 |
+
# raise RuntimeError("This function is deprecated")
|
48 |
+
embed = self.model.forward_encoder_no_random_mask_no_average(
|
49 |
+
x
|
50 |
+
) # mask_ratio
|
51 |
+
else:
|
52 |
+
embed = self.model.forward_encoder_no_mask(x) # mask_ratio
|
53 |
+
else:
|
54 |
+
raise RuntimeError("This function is deprecated")
|
55 |
+
embed, _, _, _ = self.model.forward_encoder(x, mask_ratio=mask_ratio)
|
56 |
+
return embed
|
57 |
+
import torchaudio
|
58 |
+
import numpy as np
|
59 |
+
import torch
|
60 |
+
|
61 |
+
# def roll_mag_aug(waveform):
|
62 |
+
# idx = np.random.randint(len(waveform))
|
63 |
+
# rolled_waveform = np.roll(waveform, idx)
|
64 |
+
# mag = np.random.beta(10, 10) + 0.5
|
65 |
+
# return torch.Tensor(rolled_waveform * mag)
|
66 |
+
|
67 |
+
def wav_to_fbank(filename, melbins, target_length, roll_mag_aug_flag=False):
|
68 |
+
waveform, sr = torchaudio.load(filename)
|
69 |
+
waveform = waveform - waveform.mean()
|
70 |
+
fbank = torchaudio.compliance.kaldi.fbank(
|
71 |
+
waveform,
|
72 |
+
htk_compat=True,
|
73 |
+
sample_frequency=sr,
|
74 |
+
use_energy=False,
|
75 |
+
window_type='hanning',
|
76 |
+
num_mel_bins=melbins,
|
77 |
+
dither=0.0,
|
78 |
+
frame_shift=10
|
79 |
+
)
|
80 |
+
|
81 |
+
n_frames = fbank.shape[0]
|
82 |
+
p = target_length - n_frames
|
83 |
+
|
84 |
+
# Cut and pad
|
85 |
+
if p > 0:
|
86 |
+
m = torch.nn.ZeroPad2d((0, 0, 0, p))
|
87 |
+
fbank = m(fbank)
|
88 |
+
elif p < 0:
|
89 |
+
fbank = fbank[0:target_length, :]
|
90 |
+
|
91 |
+
return fbank
|
92 |
+
|
93 |
+
# Example usage
|
94 |
+
import torch.nn.functional as F
|
95 |
+
class AudioMAEConditionCTPoolRand(nn.Module):
|
96 |
+
"""
|
97 |
+
audiomae = AudioMAEConditionCTPool2x2()
|
98 |
+
data = torch.randn((4, 1024, 128))
|
99 |
+
output = audiomae(data)
|
100 |
+
import ipdb;ipdb.set_trace()
|
101 |
+
exit(0)
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
time_pooling_factors=[1, 2, 4, 8],
|
107 |
+
freq_pooling_factors=[1, 2, 4, 8],
|
108 |
+
eval_time_pooling=8,
|
109 |
+
eval_freq_pooling=8,
|
110 |
+
mask_ratio=0.0,
|
111 |
+
regularization=False,
|
112 |
+
no_audiomae_mask=True,
|
113 |
+
no_audiomae_average=True,
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.device = None
|
117 |
+
self.time_pooling_factors = time_pooling_factors
|
118 |
+
self.freq_pooling_factors = freq_pooling_factors
|
119 |
+
self.no_audiomae_mask = no_audiomae_mask
|
120 |
+
self.no_audiomae_average = no_audiomae_average
|
121 |
+
|
122 |
+
self.eval_freq_pooling = eval_freq_pooling
|
123 |
+
self.eval_time_pooling = eval_time_pooling
|
124 |
+
self.mask_ratio = mask_ratio
|
125 |
+
self.use_reg = regularization
|
126 |
+
|
127 |
+
self.audiomae = Vanilla_AudioMAE()
|
128 |
+
self.audiomae.eval()
|
129 |
+
for p in self.audiomae.parameters():
|
130 |
+
p.requires_grad = False
|
131 |
+
|
132 |
+
# Required
|
133 |
+
def get_unconditional_condition(self, batchsize):
|
134 |
+
param = next(self.audiomae.parameters())
|
135 |
+
assert param.requires_grad == False
|
136 |
+
device = param.device
|
137 |
+
# time_pool, freq_pool = max(self.time_pooling_factors), max(self.freq_pooling_factors)
|
138 |
+
time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
|
139 |
+
self.eval_freq_pooling, 8
|
140 |
+
)
|
141 |
+
# time_pool = self.time_pooling_factors[np.random.choice(list(range(len(self.time_pooling_factors))))]
|
142 |
+
# freq_pool = self.freq_pooling_factors[np.random.choice(list(range(len(self.freq_pooling_factors))))]
|
143 |
+
token_num = int(512 / (time_pool * freq_pool))
|
144 |
+
return [
|
145 |
+
torch.zeros((batchsize, token_num, 768)).to(device).float(),
|
146 |
+
torch.ones((batchsize, token_num)).to(device).float(),
|
147 |
+
]
|
148 |
+
|
149 |
+
def pool(self, representation, time_pool=None, freq_pool=None):
|
150 |
+
assert representation.size(-1) == 768
|
151 |
+
representation = representation[:, 1:, :].transpose(1, 2)
|
152 |
+
# print("representation.shape",representation.shape)
|
153 |
+
bs, embedding_dim, token_num = representation.size()
|
154 |
+
representation = representation.reshape(bs, embedding_dim, 64, 8)
|
155 |
+
|
156 |
+
# if self.training:
|
157 |
+
# if time_pool is None and freq_pool is None:
|
158 |
+
# time_pool = min(
|
159 |
+
# 64,
|
160 |
+
# self.time_pooling_factors[
|
161 |
+
# np.random.choice(list(range(len(self.time_pooling_factors))))
|
162 |
+
# ],
|
163 |
+
# )
|
164 |
+
# # freq_pool = self.freq_pooling_factors[np.random.choice(list(range(len(self.freq_pooling_factors))))]
|
165 |
+
# freq_pool = min(8, time_pool) # TODO here I make some modification.
|
166 |
+
# else:
|
167 |
+
# time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
|
168 |
+
# self.eval_freq_pooling, 8
|
169 |
+
# )
|
170 |
+
|
171 |
+
self.avgpooling = nn.AvgPool2d(
|
172 |
+
kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
|
173 |
+
)
|
174 |
+
self.maxpooling = nn.MaxPool2d(
|
175 |
+
kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
|
176 |
+
)
|
177 |
+
|
178 |
+
pooled = (
|
179 |
+
self.avgpooling(representation) + self.maxpooling(representation)
|
180 |
+
) / 2 # [bs, embedding_dim, time_token_num, freq_token_num]
|
181 |
+
# print("pooled.shape",pooled.shape)
|
182 |
+
pooled = pooled.flatten(2).transpose(1, 2)
|
183 |
+
return pooled # [bs, token_num, embedding_dim]
|
184 |
+
|
185 |
+
def regularization(self, x):
|
186 |
+
assert x.size(-1) == 768
|
187 |
+
x = F.normalize(x, p=2, dim=-1)
|
188 |
+
return x
|
189 |
+
|
190 |
+
# Required
|
191 |
+
def forward(self, batch, time_pool=None, freq_pool=None):
|
192 |
+
assert batch.size(-2) == 1024 and batch.size(-1) == 128
|
193 |
+
|
194 |
+
if self.device is None:
|
195 |
+
self.device = next(self.audiomae.parameters()).device
|
196 |
+
|
197 |
+
batch = batch.unsqueeze(1).to(self.device)
|
198 |
+
with torch.no_grad():
|
199 |
+
representation = self.audiomae(
|
200 |
+
batch,
|
201 |
+
mask_ratio=self.mask_ratio,
|
202 |
+
no_mask=self.no_audiomae_mask,
|
203 |
+
no_average=self.no_audiomae_average,
|
204 |
+
)
|
205 |
+
representation = self.pool(representation, time_pool, freq_pool)
|
206 |
+
if self.use_reg:
|
207 |
+
representation = self.regularization(representation)
|
208 |
+
return [
|
209 |
+
representation,
|
210 |
+
torch.ones((representation.size(0), representation.size(1)))
|
211 |
+
.to(representation.device)
|
212 |
+
# .float(),
|
213 |
+
]
|
214 |
+
|
215 |
+
|
216 |
+
class AudioMAEConditionCTPoolRandTFSeparated(nn.Module):
|
217 |
+
"""
|
218 |
+
audiomae = AudioMAEConditionCTPool2x2()
|
219 |
+
data = torch.randn((4, 1024, 128))
|
220 |
+
output = audiomae(data)
|
221 |
+
import ipdb;ipdb.set_trace()
|
222 |
+
exit(0)
|
223 |
+
"""
|
224 |
+
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
time_pooling_factors=[8],
|
228 |
+
freq_pooling_factors=[8],
|
229 |
+
eval_time_pooling=8,
|
230 |
+
eval_freq_pooling=8,
|
231 |
+
mask_ratio=0.0,
|
232 |
+
regularization=False,
|
233 |
+
no_audiomae_mask=True,
|
234 |
+
no_audiomae_average=False,
|
235 |
+
):
|
236 |
+
super().__init__()
|
237 |
+
self.device = None
|
238 |
+
self.time_pooling_factors = time_pooling_factors
|
239 |
+
self.freq_pooling_factors = freq_pooling_factors
|
240 |
+
self.no_audiomae_mask = no_audiomae_mask
|
241 |
+
self.no_audiomae_average = no_audiomae_average
|
242 |
+
|
243 |
+
self.eval_freq_pooling = eval_freq_pooling
|
244 |
+
self.eval_time_pooling = eval_time_pooling
|
245 |
+
self.mask_ratio = mask_ratio
|
246 |
+
self.use_reg = regularization
|
247 |
+
|
248 |
+
self.audiomae = Vanilla_AudioMAE()
|
249 |
+
self.audiomae.eval()
|
250 |
+
for p in self.audiomae.parameters():
|
251 |
+
p.requires_grad = False
|
252 |
+
|
253 |
+
# Required
|
254 |
+
def get_unconditional_condition(self, batchsize):
|
255 |
+
param = next(self.audiomae.parameters())
|
256 |
+
assert param.requires_grad == False
|
257 |
+
device = param.device
|
258 |
+
# time_pool, freq_pool = max(self.time_pooling_factors), max(self.freq_pooling_factors)
|
259 |
+
time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
|
260 |
+
self.eval_freq_pooling, 8
|
261 |
+
)
|
262 |
+
# time_pool = self.time_pooling_factors[np.random.choice(list(range(len(self.time_pooling_factors))))]
|
263 |
+
# freq_pool = self.freq_pooling_factors[np.random.choice(list(range(len(self.freq_pooling_factors))))]
|
264 |
+
token_num = int(512 / (time_pool * freq_pool))
|
265 |
+
return [
|
266 |
+
torch.zeros((batchsize, token_num, 768)).to(device).float(),
|
267 |
+
torch.ones((batchsize, token_num)).to(device).float(),
|
268 |
+
]
|
269 |
+
|
270 |
+
def pool(self, representation, time_pool=None, freq_pool=None):
|
271 |
+
assert representation.size(-1) == 768
|
272 |
+
representation = representation[:, 1:, :].transpose(1, 2)
|
273 |
+
bs, embedding_dim, token_num = representation.size()
|
274 |
+
representation = representation.reshape(bs, embedding_dim, 64, 8)
|
275 |
+
|
276 |
+
# if self.training:
|
277 |
+
# if time_pool is None and freq_pool is None:
|
278 |
+
# time_pool = min(
|
279 |
+
# 64,
|
280 |
+
# self.time_pooling_factors[
|
281 |
+
# np.random.choice(list(range(len(self.time_pooling_factors))))
|
282 |
+
# ],
|
283 |
+
# )
|
284 |
+
# freq_pool = min(
|
285 |
+
# 8,
|
286 |
+
# self.freq_pooling_factors[
|
287 |
+
# np.random.choice(list(range(len(self.freq_pooling_factors))))
|
288 |
+
# ],
|
289 |
+
# )
|
290 |
+
# # freq_pool = min(8, time_pool) # TODO here I make some modification.
|
291 |
+
# else:
|
292 |
+
# time_pool, freq_pool = min(self.eval_time_pooling, 64), min(
|
293 |
+
# self.eval_freq_pooling, 8
|
294 |
+
# )
|
295 |
+
|
296 |
+
self.avgpooling = nn.AvgPool2d(
|
297 |
+
kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
|
298 |
+
)
|
299 |
+
self.maxpooling = nn.MaxPool2d(
|
300 |
+
kernel_size=(time_pool, freq_pool), stride=(time_pool, freq_pool)
|
301 |
+
)
|
302 |
+
|
303 |
+
pooled = (
|
304 |
+
self.avgpooling(representation) + self.maxpooling(representation)
|
305 |
+
) / 2 # [bs, embedding_dim, time_token_num, freq_token_num]
|
306 |
+
pooled = pooled.flatten(2).transpose(1, 2)
|
307 |
+
return pooled # [bs, token_num, embedding_dim]
|
308 |
+
|
309 |
+
def regularization(self, x):
|
310 |
+
assert x.size(-1) == 768
|
311 |
+
x = F.normalize(x, p=2, dim=-1)
|
312 |
+
return x
|
313 |
+
|
314 |
+
# Required
|
315 |
+
def forward(self, batch, time_pool=None, freq_pool=None):
|
316 |
+
assert batch.size(-2) == 1024 and batch.size(-1) == 128
|
317 |
+
|
318 |
+
if self.device is None:
|
319 |
+
self.device = batch.device
|
320 |
+
|
321 |
+
batch = batch.unsqueeze(1)
|
322 |
+
with torch.no_grad():
|
323 |
+
representation = self.audiomae(
|
324 |
+
batch,
|
325 |
+
mask_ratio=self.mask_ratio,
|
326 |
+
no_mask=self.no_audiomae_mask,
|
327 |
+
no_average=self.no_audiomae_average,
|
328 |
+
)
|
329 |
+
representation = self.pool(representation, time_pool, freq_pool)
|
330 |
+
if self.use_reg:
|
331 |
+
representation = self.regularization(representation)
|
332 |
+
return [
|
333 |
+
representation,
|
334 |
+
torch.ones((representation.size(0), representation.size(1)))
|
335 |
+
.to(representation.device)
|
336 |
+
.float(),
|
337 |
+
]
|
338 |
+
def apply_time_mask(spectrogram, mask_width_range=(1000, 1001), max_masks=2):
|
339 |
+
"""
|
340 |
+
Apply time masking to a spectrogram (PyTorch tensor).
|
341 |
+
|
342 |
+
:param spectrogram: A PyTorch tensor of shape (time_steps, frequency_bands)
|
343 |
+
:param mask_width_range: A tuple indicating the min and max width of the mask
|
344 |
+
:param max_masks: Maximum number of masks to apply
|
345 |
+
:return: Masked spectrogram
|
346 |
+
"""
|
347 |
+
time_steps, frequency_bands = spectrogram.shape
|
348 |
+
masked_spectrogram = spectrogram.clone()
|
349 |
+
|
350 |
+
for _ in range(max_masks):
|
351 |
+
mask_width = torch.randint(mask_width_range[0], mask_width_range[1], (1,)).item()
|
352 |
+
start_step = torch.randint(0, time_steps - mask_width, (1,)).item()
|
353 |
+
masked_spectrogram[100:1024, :] = 0 # or another constant value
|
354 |
+
|
355 |
+
return masked_spectrogram
|
356 |
+
|
357 |
+
def extract_kaldi_fbank_feature(waveform, sampling_rate, log_mel_spec= torch.zeros((1024, 128)), num_mels=128):
|
358 |
+
norm_mean = -4.2677393
|
359 |
+
norm_std = 4.5689974
|
360 |
+
if sampling_rate != 16000:
|
361 |
+
waveform_16k = torchaudio.functional.resample(
|
362 |
+
waveform, orig_freq=sampling_rate, new_freq=16000
|
363 |
+
)
|
364 |
+
else:
|
365 |
+
waveform_16k = waveform
|
366 |
+
waveform_16k = waveform_16k - waveform_16k.mean()
|
367 |
+
fbank = torchaudio.compliance.kaldi.fbank(
|
368 |
+
waveform_16k,
|
369 |
+
htk_compat=True,
|
370 |
+
sample_frequency=16000,
|
371 |
+
use_energy=False,
|
372 |
+
window_type="hanning",
|
373 |
+
num_mel_bins=num_mels,
|
374 |
+
dither=0.0,
|
375 |
+
frame_shift=10,
|
376 |
+
)
|
377 |
+
TARGET_LEN = log_mel_spec.size(0)
|
378 |
+
# cut and pad
|
379 |
+
n_frames = fbank.shape[0]
|
380 |
+
p = TARGET_LEN - n_frames
|
381 |
+
# print(TARGET_LEN)
|
382 |
+
# print(n_frames)
|
383 |
+
if p > 0:
|
384 |
+
m = torch.nn.ZeroPad2d((0, 0, 0, p))
|
385 |
+
fbank = m(fbank)
|
386 |
+
elif p < 0:
|
387 |
+
fbank = fbank[:TARGET_LEN, :]
|
388 |
+
fbank = (fbank - norm_mean) / (norm_std * 2)
|
389 |
+
# fbank = apply_time_mask(fbank)
|
390 |
+
return fbank
|
391 |
+
|
392 |
+
if __name__ == "__main__":
|
393 |
+
|
394 |
+
filename = '/home/fundwotsai/DreamSound/training_audio_v2/output_slice_18.wav'
|
395 |
+
waveform, sr = torchaudio.load(filename)
|
396 |
+
fbank = torch.zeros(
|
397 |
+
(1024, 128)
|
398 |
+
)
|
399 |
+
ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, 16000,fbank)
|
400 |
+
print(ta_kaldi_fbank.shape)
|
401 |
+
# melbins = 128 # Number of Mel bins
|
402 |
+
# target_length = 1024 # Number of frames
|
403 |
+
# fbank = wav_to_fbank(file_path, melbins, target_length, roll_mag_aug_flag=False)
|
404 |
+
# print(fbank.shape)
|
405 |
+
# # Convert to PyTorch tensor and reshape
|
406 |
+
mel_spect_tensor = torch.tensor(ta_kaldi_fbank).unsqueeze(0) # [Batch, Channel, Time, Frequency]
|
407 |
+
|
408 |
+
mel_spect_tensor = mel_spect_tensor.to("cuda")
|
409 |
+
# Save the figure
|
410 |
+
print("mel_spect_tensor111.shape",mel_spect_tensor.shape)
|
411 |
+
model = AudioMAEConditionCTPoolRand().cuda()
|
412 |
+
print("The first run")
|
413 |
+
embed = model(mel_spect_tensor, time_pool=1, freq_pool=1)
|
414 |
+
print(embed[0].shape)
|
415 |
+
|
416 |
+
# Reshape tensor for 2D pooling: treat each 768 as a channel
|
417 |
+
# Example usage
|
418 |
+
# Assuming the pooling operation reduces the second dimension from 513 to 8
|
419 |
+
|
420 |
+
|
421 |
+
torch.save(embed[0], "MAE_feature1_stride-no-pool.pt")
|
422 |
+
with open('output_tensor.txt', 'w') as f:
|
423 |
+
print(embed[0], file=f)
|
424 |
+
|
audio_encoder/models_mae.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# References:
|
8 |
+
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
9 |
+
# DeiT: https://github.com/facebookresearch/deit
|
10 |
+
# --------------------------------------------------------
|
11 |
+
|
12 |
+
from functools import partial
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import numpy as np
|
17 |
+
from timm.models.layers import to_2tuple
|
18 |
+
from timm.models.vision_transformer import Block
|
19 |
+
class PatchEmbed_org(nn.Module):
|
20 |
+
"""Image to Patch Embedding"""
|
21 |
+
|
22 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
23 |
+
super().__init__()
|
24 |
+
img_size = to_2tuple(img_size)
|
25 |
+
patch_size = to_2tuple(patch_size)
|
26 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
27 |
+
self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0])
|
28 |
+
self.img_size = img_size
|
29 |
+
self.patch_size = patch_size
|
30 |
+
self.num_patches = num_patches
|
31 |
+
|
32 |
+
self.proj = nn.Conv2d(
|
33 |
+
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
# print(x.shape)
|
38 |
+
B, C, H, W = x.shape
|
39 |
+
# FIXME look at relaxing size constraints
|
40 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
41 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
42 |
+
x = self.proj(x)
|
43 |
+
y = x.flatten(2).transpose(1, 2)
|
44 |
+
return y
|
45 |
+
|
46 |
+
|
47 |
+
class PatchEmbed_new(nn.Module):
|
48 |
+
"""Flexible Image to Patch Embedding"""
|
49 |
+
|
50 |
+
def __init__(
|
51 |
+
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=10
|
52 |
+
):
|
53 |
+
super().__init__()
|
54 |
+
img_size = to_2tuple(img_size)
|
55 |
+
patch_size = to_2tuple(patch_size)
|
56 |
+
stride = to_2tuple(stride)
|
57 |
+
|
58 |
+
self.img_size = img_size
|
59 |
+
self.patch_size = patch_size
|
60 |
+
|
61 |
+
self.proj = nn.Conv2d(
|
62 |
+
in_chans, embed_dim, kernel_size=patch_size, stride=stride
|
63 |
+
) # with overlapped patches
|
64 |
+
# self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
65 |
+
|
66 |
+
# self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0])
|
67 |
+
# self.num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
68 |
+
_, _, h, w = self.get_output_shape(img_size) # n, emb_dim, h, w
|
69 |
+
self.patch_hw = (h, w)
|
70 |
+
self.num_patches = h * w
|
71 |
+
|
72 |
+
def get_output_shape(self, img_size):
|
73 |
+
# todo: don't be lazy..
|
74 |
+
return self.proj(torch.randn(1, 1, img_size[0], img_size[1])).shape
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
B, C, H, W = x.shape
|
78 |
+
# FIXME look at relaxing size constraints
|
79 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
80 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
81 |
+
# x = self.proj(x).flatten(2).transpose(1, 2)
|
82 |
+
x = self.proj(x) # 32, 1, 1024, 128 -> 32, 768, 101, 12
|
83 |
+
x = x.flatten(2) # 32, 768, 101, 12 -> 32, 768, 1212
|
84 |
+
x = x.transpose(1, 2) # 32, 768, 1212 -> 32, 1212, 768
|
85 |
+
return x
|
86 |
+
|
87 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
88 |
+
"""
|
89 |
+
grid_size: int of the grid height and width
|
90 |
+
return:
|
91 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
92 |
+
"""
|
93 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
94 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
95 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
96 |
+
grid = np.stack(grid, axis=0)
|
97 |
+
|
98 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
99 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
100 |
+
if cls_token:
|
101 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
102 |
+
return pos_embed
|
103 |
+
|
104 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
105 |
+
"""
|
106 |
+
embed_dim: output dimension for each position
|
107 |
+
pos: a list of positions to be encoded: size (M,)
|
108 |
+
out: (M, D)
|
109 |
+
"""
|
110 |
+
assert embed_dim % 2 == 0
|
111 |
+
# omega = np.arange(embed_dim // 2, dtype=np.float)
|
112 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
113 |
+
omega /= embed_dim / 2.0
|
114 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
115 |
+
|
116 |
+
pos = pos.reshape(-1) # (M,)
|
117 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
118 |
+
|
119 |
+
emb_sin = np.sin(out) # (M, D/2)
|
120 |
+
emb_cos = np.cos(out) # (M, D/2)
|
121 |
+
|
122 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
123 |
+
return emb
|
124 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
125 |
+
assert embed_dim % 2 == 0
|
126 |
+
# print("embed_dim",embed_dim)
|
127 |
+
# print("[grid[0]",grid[0])
|
128 |
+
# print("[grid[1]",grid[1])
|
129 |
+
# use half of dimensions to encode grid_h
|
130 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
131 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
132 |
+
# print("emb_h",emb_h.shape)
|
133 |
+
# print("emb_w",emb_w.shape)
|
134 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
135 |
+
return emb
|
136 |
+
def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
|
137 |
+
"""
|
138 |
+
grid_size: int of the grid height and width
|
139 |
+
return:
|
140 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
141 |
+
"""
|
142 |
+
grid_h = np.arange(grid_size[0], dtype=np.float32)
|
143 |
+
grid_w = np.arange(grid_size[1], dtype=np.float32)
|
144 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
145 |
+
grid = np.stack(grid, axis=0)
|
146 |
+
|
147 |
+
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
|
148 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
149 |
+
if cls_token:
|
150 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
151 |
+
return pos_embed
|
152 |
+
|
153 |
+
class MaskedAutoencoderViT(nn.Module):
|
154 |
+
"""Masked Autoencoder with VisionTransformer backbone"""
|
155 |
+
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
img_size=224,
|
159 |
+
patch_size=16,
|
160 |
+
stride=10,
|
161 |
+
in_chans=3,
|
162 |
+
embed_dim=1024,
|
163 |
+
depth=24,
|
164 |
+
num_heads=16,
|
165 |
+
decoder_embed_dim=512,
|
166 |
+
decoder_depth=8,
|
167 |
+
decoder_num_heads=16,
|
168 |
+
mlp_ratio=4.0,
|
169 |
+
norm_layer=nn.LayerNorm,
|
170 |
+
norm_pix_loss=False,
|
171 |
+
audio_exp=False,
|
172 |
+
alpha=0.0,
|
173 |
+
temperature=0.2,
|
174 |
+
mode=0,
|
175 |
+
contextual_depth=8,
|
176 |
+
use_custom_patch=False,
|
177 |
+
split_pos=False,
|
178 |
+
pos_trainable=False,
|
179 |
+
use_nce=False,
|
180 |
+
beta=4.0,
|
181 |
+
decoder_mode=0,
|
182 |
+
mask_t_prob=0.6,
|
183 |
+
mask_f_prob=0.5,
|
184 |
+
mask_2d=False,
|
185 |
+
epoch=0,
|
186 |
+
no_shift=False,
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
|
190 |
+
self.audio_exp = audio_exp
|
191 |
+
self.embed_dim = embed_dim
|
192 |
+
self.decoder_embed_dim = decoder_embed_dim
|
193 |
+
# --------------------------------------------------------------------------
|
194 |
+
# MAE encoder specifics
|
195 |
+
if use_custom_patch:
|
196 |
+
print(
|
197 |
+
f"Use custom patch_emb with patch size: {patch_size}, stride: {stride}"
|
198 |
+
)
|
199 |
+
self.patch_embed = PatchEmbed_new(
|
200 |
+
img_size=img_size,
|
201 |
+
patch_size=patch_size,
|
202 |
+
in_chans=in_chans,
|
203 |
+
embed_dim=embed_dim,
|
204 |
+
stride=stride,
|
205 |
+
)
|
206 |
+
else:
|
207 |
+
self.patch_embed = PatchEmbed_org(img_size, patch_size, in_chans, embed_dim)
|
208 |
+
self.use_custom_patch = use_custom_patch
|
209 |
+
num_patches = self.patch_embed.num_patches
|
210 |
+
|
211 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
212 |
+
|
213 |
+
# self.split_pos = split_pos # not useful
|
214 |
+
self.pos_embed = nn.Parameter(
|
215 |
+
torch.zeros(1, num_patches + 1, embed_dim), requires_grad=pos_trainable
|
216 |
+
) # fixed sin-cos embedding
|
217 |
+
|
218 |
+
self.encoder_depth = depth
|
219 |
+
self.contextual_depth = contextual_depth
|
220 |
+
self.blocks = nn.ModuleList(
|
221 |
+
[
|
222 |
+
Block(
|
223 |
+
embed_dim,
|
224 |
+
num_heads,
|
225 |
+
mlp_ratio,
|
226 |
+
qkv_bias=True,
|
227 |
+
norm_layer=norm_layer,
|
228 |
+
) # qk_scale=None
|
229 |
+
for i in range(depth)
|
230 |
+
]
|
231 |
+
)
|
232 |
+
self.norm = norm_layer(embed_dim)
|
233 |
+
|
234 |
+
# --------------------------------------------------------------------------
|
235 |
+
# MAE decoder specifics
|
236 |
+
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
|
237 |
+
|
238 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
|
239 |
+
self.decoder_pos_embed = nn.Parameter(
|
240 |
+
torch.zeros(1, num_patches + 1, decoder_embed_dim),
|
241 |
+
requires_grad=pos_trainable,
|
242 |
+
) # fixed sin-cos embedding
|
243 |
+
|
244 |
+
self.no_shift = no_shift
|
245 |
+
|
246 |
+
self.decoder_mode = decoder_mode
|
247 |
+
if (
|
248 |
+
self.use_custom_patch
|
249 |
+
): # overlapped patches as in AST. Similar performance yet compute heavy
|
250 |
+
window_size = (6, 6)
|
251 |
+
feat_size = (102, 12)
|
252 |
+
else:
|
253 |
+
window_size = (4, 4)
|
254 |
+
feat_size = (64, 8)
|
255 |
+
if self.decoder_mode == 1:
|
256 |
+
decoder_modules = []
|
257 |
+
for index in range(16):
|
258 |
+
if self.no_shift:
|
259 |
+
shift_size = (0, 0)
|
260 |
+
else:
|
261 |
+
if (index % 2) == 0:
|
262 |
+
shift_size = (0, 0)
|
263 |
+
else:
|
264 |
+
shift_size = (2, 0)
|
265 |
+
# shift_size = tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size])
|
266 |
+
decoder_modules.append(
|
267 |
+
SwinTransformerBlock(
|
268 |
+
dim=decoder_embed_dim,
|
269 |
+
num_heads=16,
|
270 |
+
feat_size=feat_size,
|
271 |
+
window_size=window_size,
|
272 |
+
shift_size=shift_size,
|
273 |
+
mlp_ratio=mlp_ratio,
|
274 |
+
drop=0.0,
|
275 |
+
drop_attn=0.0,
|
276 |
+
drop_path=0.0,
|
277 |
+
extra_norm=False,
|
278 |
+
sequential_attn=False,
|
279 |
+
norm_layer=norm_layer, # nn.LayerNorm,
|
280 |
+
)
|
281 |
+
)
|
282 |
+
self.decoder_blocks = nn.ModuleList(decoder_modules)
|
283 |
+
else:
|
284 |
+
# Transfomer
|
285 |
+
self.decoder_blocks = nn.ModuleList(
|
286 |
+
[
|
287 |
+
Block(
|
288 |
+
decoder_embed_dim,
|
289 |
+
decoder_num_heads,
|
290 |
+
mlp_ratio,
|
291 |
+
qkv_bias=True,
|
292 |
+
norm_layer=norm_layer,
|
293 |
+
) # qk_scale=None,
|
294 |
+
for i in range(decoder_depth)
|
295 |
+
]
|
296 |
+
)
|
297 |
+
|
298 |
+
self.decoder_norm = norm_layer(decoder_embed_dim)
|
299 |
+
self.decoder_pred = nn.Linear(
|
300 |
+
decoder_embed_dim, patch_size**2 * in_chans, bias=True
|
301 |
+
) # decoder to patch
|
302 |
+
|
303 |
+
# --------------------------------------------------------------------------
|
304 |
+
|
305 |
+
self.norm_pix_loss = norm_pix_loss
|
306 |
+
|
307 |
+
self.patch_size = patch_size
|
308 |
+
self.stride = stride
|
309 |
+
|
310 |
+
# audio exps
|
311 |
+
self.alpha = alpha
|
312 |
+
self.T = temperature
|
313 |
+
self.mode = mode
|
314 |
+
self.use_nce = use_nce
|
315 |
+
self.beta = beta
|
316 |
+
|
317 |
+
self.log_softmax = nn.LogSoftmax(dim=-1)
|
318 |
+
|
319 |
+
self.mask_t_prob = mask_t_prob
|
320 |
+
self.mask_f_prob = mask_f_prob
|
321 |
+
self.mask_2d = mask_2d
|
322 |
+
|
323 |
+
self.epoch = epoch
|
324 |
+
|
325 |
+
self.initialize_weights()
|
326 |
+
|
327 |
+
def initialize_weights(self):
|
328 |
+
# initialization
|
329 |
+
# initialize (and freeze) pos_embed by sin-cos embedding
|
330 |
+
if self.audio_exp:
|
331 |
+
pos_embed = get_2d_sincos_pos_embed_flexible(
|
332 |
+
self.pos_embed.shape[-1], self.patch_embed.patch_hw, cls_token=True
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
pos_embed = get_2d_sincos_pos_embed(
|
336 |
+
self.pos_embed.shape[-1],
|
337 |
+
int(self.patch_embed.num_patches**0.5),
|
338 |
+
cls_token=True,
|
339 |
+
)
|
340 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
341 |
+
|
342 |
+
if self.audio_exp:
|
343 |
+
decoder_pos_embed = get_2d_sincos_pos_embed_flexible(
|
344 |
+
self.decoder_pos_embed.shape[-1],
|
345 |
+
self.patch_embed.patch_hw,
|
346 |
+
cls_token=True,
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
decoder_pos_embed = get_2d_sincos_pos_embed(
|
350 |
+
self.decoder_pos_embed.shape[-1],
|
351 |
+
int(self.patch_embed.num_patches**0.5),
|
352 |
+
cls_token=True,
|
353 |
+
)
|
354 |
+
self.decoder_pos_embed.data.copy_(
|
355 |
+
torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)
|
356 |
+
)
|
357 |
+
|
358 |
+
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
|
359 |
+
w = self.patch_embed.proj.weight.data
|
360 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
361 |
+
|
362 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
363 |
+
torch.nn.init.normal_(self.cls_token, std=0.02)
|
364 |
+
torch.nn.init.normal_(self.mask_token, std=0.02)
|
365 |
+
|
366 |
+
# initialize nn.Linear and nn.LayerNorm
|
367 |
+
self.apply(self._init_weights)
|
368 |
+
|
369 |
+
def _init_weights(self, m):
|
370 |
+
if isinstance(m, nn.Linear):
|
371 |
+
# we use xavier_uniform following official JAX ViT:
|
372 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
373 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
374 |
+
nn.init.constant_(m.bias, 0)
|
375 |
+
elif isinstance(m, nn.LayerNorm):
|
376 |
+
nn.init.constant_(m.bias, 0)
|
377 |
+
nn.init.constant_(m.weight, 1.0)
|
378 |
+
|
379 |
+
def patchify(self, imgs):
|
380 |
+
"""
|
381 |
+
imgs: (N, 3, H, W)
|
382 |
+
x: (N, L, patch_size**2 *3)
|
383 |
+
L = (H/p)*(W/p)
|
384 |
+
"""
|
385 |
+
p = self.patch_embed.patch_size[0]
|
386 |
+
# assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
|
387 |
+
|
388 |
+
if self.audio_exp:
|
389 |
+
if self.use_custom_patch: # overlapped patch
|
390 |
+
h, w = self.patch_embed.patch_hw
|
391 |
+
# todo: fixed h/w patch size and stride size. Make hw custom in the future
|
392 |
+
x = imgs.unfold(2, self.patch_size, self.stride).unfold(
|
393 |
+
3, self.patch_size, self.stride
|
394 |
+
) # n,1,H,W -> n,1,h,w,p,p
|
395 |
+
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
|
396 |
+
# x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
|
397 |
+
# x = torch.einsum('nchpwq->nhwpqc', x)
|
398 |
+
# x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
|
399 |
+
else:
|
400 |
+
h = imgs.shape[2] // p
|
401 |
+
w = imgs.shape[3] // p
|
402 |
+
# h,w = self.patch_embed.patch_hw
|
403 |
+
x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
|
404 |
+
x = torch.einsum("nchpwq->nhwpqc", x)
|
405 |
+
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
|
406 |
+
else:
|
407 |
+
h = w = imgs.shape[2] // p
|
408 |
+
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
|
409 |
+
x = torch.einsum("nchpwq->nhwpqc", x)
|
410 |
+
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
|
411 |
+
|
412 |
+
return x
|
413 |
+
|
414 |
+
def unpatchify(self, x):
|
415 |
+
"""
|
416 |
+
x: (N, L, patch_size**2 *3)
|
417 |
+
specs: (N, 1, H, W)
|
418 |
+
"""
|
419 |
+
p = self.patch_embed.patch_size[0]
|
420 |
+
h = 1024 // p
|
421 |
+
w = 128 // p
|
422 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, 1))
|
423 |
+
x = torch.einsum("nhwpqc->nchpwq", x)
|
424 |
+
specs = x.reshape(shape=(x.shape[0], 1, h * p, w * p))
|
425 |
+
return specs
|
426 |
+
|
427 |
+
def random_masking(self, x, mask_ratio):
|
428 |
+
"""
|
429 |
+
Perform per-sample random masking by per-sample shuffling.
|
430 |
+
Per-sample shuffling is done by argsort random noise.
|
431 |
+
x: [N, L, D], sequence
|
432 |
+
"""
|
433 |
+
N, L, D = x.shape # batch, length, dim
|
434 |
+
len_keep = int(L * (1 - mask_ratio))
|
435 |
+
|
436 |
+
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
|
437 |
+
|
438 |
+
# sort noise for each sample
|
439 |
+
ids_shuffle = torch.argsort(
|
440 |
+
noise, dim=1
|
441 |
+
) # ascend: small is keep, large is remove
|
442 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
443 |
+
|
444 |
+
# keep the first subset
|
445 |
+
ids_keep = ids_shuffle[:, :len_keep]
|
446 |
+
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
447 |
+
|
448 |
+
# generate the binary mask: 0 is keep, 1 is remove
|
449 |
+
mask = torch.ones([N, L], device=x.device)
|
450 |
+
mask[:, :len_keep] = 0
|
451 |
+
# unshuffle to get the binary mask
|
452 |
+
mask = torch.gather(mask, dim=1, index=ids_restore)
|
453 |
+
|
454 |
+
return x_masked, mask, ids_restore
|
455 |
+
|
456 |
+
def random_masking_2d(self, x, mask_t_prob, mask_f_prob):
|
457 |
+
"""
|
458 |
+
2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob)
|
459 |
+
Perform per-sample random masking by per-sample shuffling.
|
460 |
+
Per-sample shuffling is done by argsort random noise.
|
461 |
+
x: [N, L, D], sequence
|
462 |
+
"""
|
463 |
+
N, L, D = x.shape # batch, length, dim
|
464 |
+
if self.use_custom_patch: # overlapped patch
|
465 |
+
T = 101
|
466 |
+
F = 12
|
467 |
+
else:
|
468 |
+
T = 64
|
469 |
+
F = 8
|
470 |
+
# x = x.reshape(N, T, F, D)
|
471 |
+
len_keep_t = int(T * (1 - mask_t_prob))
|
472 |
+
len_keep_f = int(F * (1 - mask_f_prob))
|
473 |
+
|
474 |
+
# noise for mask in time
|
475 |
+
noise_t = torch.rand(N, T, device=x.device) # noise in [0, 1]
|
476 |
+
# sort noise for each sample aling time
|
477 |
+
ids_shuffle_t = torch.argsort(
|
478 |
+
noise_t, dim=1
|
479 |
+
) # ascend: small is keep, large is remove
|
480 |
+
ids_restore_t = torch.argsort(ids_shuffle_t, dim=1)
|
481 |
+
ids_keep_t = ids_shuffle_t[:, :len_keep_t]
|
482 |
+
# noise mask in freq
|
483 |
+
noise_f = torch.rand(N, F, device=x.device) # noise in [0, 1]
|
484 |
+
ids_shuffle_f = torch.argsort(
|
485 |
+
noise_f, dim=1
|
486 |
+
) # ascend: small is keep, large is remove
|
487 |
+
ids_restore_f = torch.argsort(ids_shuffle_f, dim=1)
|
488 |
+
ids_keep_f = ids_shuffle_f[:, :len_keep_f] #
|
489 |
+
|
490 |
+
# generate the binary mask: 0 is keep, 1 is remove
|
491 |
+
# mask in freq
|
492 |
+
mask_f = torch.ones(N, F, device=x.device)
|
493 |
+
mask_f[:, :len_keep_f] = 0
|
494 |
+
mask_f = (
|
495 |
+
torch.gather(mask_f, dim=1, index=ids_restore_f)
|
496 |
+
.unsqueeze(1)
|
497 |
+
.repeat(1, T, 1)
|
498 |
+
) # N,T,F
|
499 |
+
# mask in time
|
500 |
+
mask_t = torch.ones(N, T, device=x.device)
|
501 |
+
mask_t[:, :len_keep_t] = 0
|
502 |
+
mask_t = (
|
503 |
+
torch.gather(mask_t, dim=1, index=ids_restore_t)
|
504 |
+
.unsqueeze(1)
|
505 |
+
.repeat(1, F, 1)
|
506 |
+
.permute(0, 2, 1)
|
507 |
+
) # N,T,F
|
508 |
+
mask = 1 - (1 - mask_t) * (1 - mask_f) # N, T, F
|
509 |
+
|
510 |
+
# get masked x
|
511 |
+
id2res = torch.Tensor(list(range(N * T * F))).reshape(N, T, F).to(x.device)
|
512 |
+
id2res = id2res + 999 * mask # add a large value for masked elements
|
513 |
+
id2res2 = torch.argsort(id2res.flatten(start_dim=1))
|
514 |
+
ids_keep = id2res2.flatten(start_dim=1)[:, : len_keep_f * len_keep_t]
|
515 |
+
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
516 |
+
|
517 |
+
ids_restore = torch.argsort(id2res2.flatten(start_dim=1))
|
518 |
+
mask = mask.flatten(start_dim=1)
|
519 |
+
|
520 |
+
return x_masked, mask, ids_restore
|
521 |
+
|
522 |
+
def forward_encoder(self, x, mask_ratio, mask_2d=False):
|
523 |
+
# embed patches
|
524 |
+
x = self.patch_embed(x)
|
525 |
+
# add pos embed w/o cls token
|
526 |
+
x = x + self.pos_embed[:, 1:, :]
|
527 |
+
|
528 |
+
# masking: length -> length * mask_ratio
|
529 |
+
if mask_2d:
|
530 |
+
x, mask, ids_restore = self.random_masking_2d(
|
531 |
+
x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob
|
532 |
+
)
|
533 |
+
else:
|
534 |
+
x, mask, ids_restore = self.random_masking(x, mask_ratio)
|
535 |
+
|
536 |
+
# append cls token
|
537 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
538 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
539 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
540 |
+
|
541 |
+
# apply Transformer blocks
|
542 |
+
for blk in self.blocks:
|
543 |
+
x = blk(x)
|
544 |
+
x = self.norm(x)
|
545 |
+
|
546 |
+
return x, mask, ids_restore, None
|
547 |
+
|
548 |
+
def forward_encoder_no_random_mask_no_average(self, x):
|
549 |
+
# embed patches
|
550 |
+
x = self.patch_embed(x)
|
551 |
+
# add pos embed w/o cls token
|
552 |
+
x = x + self.pos_embed[:, 1:, :]
|
553 |
+
|
554 |
+
# masking: length -> length * mask_ratio
|
555 |
+
# if mask_2d:
|
556 |
+
# x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob=self.mask_t_prob, mask_f_prob=self.mask_f_prob)
|
557 |
+
# else:
|
558 |
+
# x, mask, ids_restore = self.random_masking(x, mask_ratio)
|
559 |
+
|
560 |
+
# append cls token
|
561 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
562 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
563 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
564 |
+
|
565 |
+
# apply Transformer blocks
|
566 |
+
for blk in self.blocks:
|
567 |
+
x = blk(x)
|
568 |
+
x = self.norm(x)
|
569 |
+
|
570 |
+
return x
|
571 |
+
|
572 |
+
def forward_encoder_no_mask(self, x):
|
573 |
+
# embed patches
|
574 |
+
x = self.patch_embed(x)
|
575 |
+
|
576 |
+
# add pos embed w/o cls token
|
577 |
+
x = x + self.pos_embed[:, 1:, :]
|
578 |
+
|
579 |
+
# masking: length -> length * mask_ratio
|
580 |
+
# x, mask, ids_restore = self.random_masking(x, mask_ratio)
|
581 |
+
# append cls token
|
582 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
583 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
584 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
585 |
+
|
586 |
+
# apply Transformer blocks
|
587 |
+
contextual_embs = []
|
588 |
+
for n, blk in enumerate(self.blocks):
|
589 |
+
x = blk(x)
|
590 |
+
if n > self.contextual_depth:
|
591 |
+
contextual_embs.append(self.norm(x))
|
592 |
+
# x = self.norm(x)
|
593 |
+
contextual_emb = torch.stack(contextual_embs, dim=0).mean(dim=0)
|
594 |
+
|
595 |
+
return contextual_emb
|
596 |
+
|
597 |
+
def forward_decoder(self, x, ids_restore):
|
598 |
+
# embed tokens
|
599 |
+
x = self.decoder_embed(x)
|
600 |
+
|
601 |
+
# append mask tokens to sequence
|
602 |
+
mask_tokens = self.mask_token.repeat(
|
603 |
+
x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1
|
604 |
+
)
|
605 |
+
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
|
606 |
+
x_ = torch.gather(
|
607 |
+
x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])
|
608 |
+
) # unshuffle
|
609 |
+
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
|
610 |
+
|
611 |
+
# add pos embed
|
612 |
+
x = x + self.decoder_pos_embed
|
613 |
+
|
614 |
+
if self.decoder_mode != 0:
|
615 |
+
B, L, D = x.shape
|
616 |
+
x = x[:, 1:, :]
|
617 |
+
if self.use_custom_patch:
|
618 |
+
x = x.reshape(B, 101, 12, D)
|
619 |
+
x = torch.cat([x, x[:, -1, :].unsqueeze(1)], dim=1) # hack
|
620 |
+
x = x.reshape(B, 1224, D)
|
621 |
+
if self.decoder_mode > 3: # mvit
|
622 |
+
x = self.decoder_blocks(x)
|
623 |
+
else:
|
624 |
+
# apply Transformer blocks
|
625 |
+
for blk in self.decoder_blocks:
|
626 |
+
x = blk(x)
|
627 |
+
x = self.decoder_norm(x)
|
628 |
+
|
629 |
+
# predictor projection
|
630 |
+
pred = self.decoder_pred(x)
|
631 |
+
|
632 |
+
# remove cls token
|
633 |
+
if self.decoder_mode != 0:
|
634 |
+
if self.use_custom_patch:
|
635 |
+
pred = pred.reshape(B, 102, 12, 256)
|
636 |
+
pred = pred[:, :101, :, :]
|
637 |
+
pred = pred.reshape(B, 1212, 256)
|
638 |
+
else:
|
639 |
+
pred = pred
|
640 |
+
else:
|
641 |
+
pred = pred[:, 1:, :]
|
642 |
+
return pred, None, None # emb, emb_pixel
|
643 |
+
|
644 |
+
def forward_loss(self, imgs, pred, mask, norm_pix_loss=False):
|
645 |
+
"""
|
646 |
+
imgs: [N, 3, H, W]
|
647 |
+
pred: [N, L, p*p*3]
|
648 |
+
mask: [N, L], 0 is keep, 1 is remove,
|
649 |
+
"""
|
650 |
+
target = self.patchify(imgs)
|
651 |
+
if norm_pix_loss:
|
652 |
+
mean = target.mean(dim=-1, keepdim=True)
|
653 |
+
var = target.var(dim=-1, keepdim=True)
|
654 |
+
target = (target - mean) / (var + 1.0e-6) ** 0.5
|
655 |
+
|
656 |
+
loss = (pred - target) ** 2
|
657 |
+
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
|
658 |
+
|
659 |
+
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
|
660 |
+
return loss
|
661 |
+
|
662 |
+
def forward(self, imgs, mask_ratio=0.8):
|
663 |
+
emb_enc, mask, ids_restore, _ = self.forward_encoder(
|
664 |
+
imgs, mask_ratio, mask_2d=self.mask_2d
|
665 |
+
)
|
666 |
+
pred, _, _ = self.forward_decoder(emb_enc, ids_restore) # [N, L, p*p*3]
|
667 |
+
loss_recon = self.forward_loss(
|
668 |
+
imgs, pred, mask, norm_pix_loss=self.norm_pix_loss
|
669 |
+
)
|
670 |
+
loss_contrastive = torch.FloatTensor([0.0]).cuda()
|
671 |
+
return loss_recon, pred, mask, loss_contrastive
|
672 |
+
|
673 |
+
|
674 |
+
def mae_vit_small_patch16_dec512d8b(**kwargs):
|
675 |
+
model = MaskedAutoencoderViT(
|
676 |
+
patch_size=16,
|
677 |
+
embed_dim=384,
|
678 |
+
depth=12,
|
679 |
+
num_heads=6,
|
680 |
+
decoder_embed_dim=512,
|
681 |
+
decoder_num_heads=16,
|
682 |
+
mlp_ratio=4,
|
683 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
684 |
+
**kwargs,
|
685 |
+
)
|
686 |
+
return model
|
687 |
+
|
688 |
+
|
689 |
+
def mae_vit_base_patch16_dec512d8b(**kwargs):
|
690 |
+
model = MaskedAutoencoderViT(
|
691 |
+
patch_size=16,
|
692 |
+
embed_dim=768,
|
693 |
+
depth=12,
|
694 |
+
num_heads=12,
|
695 |
+
decoder_embed_dim=512,
|
696 |
+
decoder_num_heads=16,
|
697 |
+
mlp_ratio=4,
|
698 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
699 |
+
**kwargs,
|
700 |
+
)
|
701 |
+
return model
|
702 |
+
|
703 |
+
|
704 |
+
def mae_vit_large_patch16_dec512d8b(**kwargs):
|
705 |
+
model = MaskedAutoencoderViT(
|
706 |
+
patch_size=16,
|
707 |
+
embed_dim=1024,
|
708 |
+
depth=24,
|
709 |
+
num_heads=16,
|
710 |
+
decoder_embed_dim=512,
|
711 |
+
decoder_num_heads=16,
|
712 |
+
mlp_ratio=4,
|
713 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
714 |
+
**kwargs,
|
715 |
+
)
|
716 |
+
return model
|
717 |
+
|
718 |
+
|
719 |
+
def mae_vit_huge_patch14_dec512d8b(**kwargs):
|
720 |
+
model = MaskedAutoencoderViT(
|
721 |
+
patch_size=14,
|
722 |
+
embed_dim=1280,
|
723 |
+
depth=32,
|
724 |
+
num_heads=16,
|
725 |
+
decoder_embed_dim=512,
|
726 |
+
decoder_num_heads=16,
|
727 |
+
mlp_ratio=4,
|
728 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
729 |
+
**kwargs,
|
730 |
+
)
|
731 |
+
return model
|
732 |
+
|
733 |
+
|
734 |
+
# set recommended archs
|
735 |
+
mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b # decoder: 512 dim, 8 blocks
|
736 |
+
mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b # decoder: 512 dim, 8 blocks
|
737 |
+
mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b # decoder: 512 dim, 8 blocks
|
738 |
+
mae_vit_small_patch16 = mae_vit_small_patch16_dec512d8b # decoder: 512 dim, 8 blocks
|
audio_encoder/models_vit.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# References:
|
8 |
+
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
9 |
+
# DeiT: https://github.com/facebookresearch/deit
|
10 |
+
# --------------------------------------------------------
|
11 |
+
|
12 |
+
from functools import partial
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import timm.models.vision_transformer
|
17 |
+
|
18 |
+
|
19 |
+
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
|
20 |
+
"""Vision Transformer with support for global average pooling"""
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self, global_pool=False, mask_2d=True, use_custom_patch=False, **kwargs
|
24 |
+
):
|
25 |
+
super(VisionTransformer, self).__init__(**kwargs)
|
26 |
+
|
27 |
+
self.global_pool = global_pool
|
28 |
+
if self.global_pool:
|
29 |
+
norm_layer = kwargs["norm_layer"]
|
30 |
+
embed_dim = kwargs["embed_dim"]
|
31 |
+
self.fc_norm = norm_layer(embed_dim)
|
32 |
+
del self.norm # remove the original norm
|
33 |
+
self.mask_2d = mask_2d
|
34 |
+
self.use_custom_patch = use_custom_patch
|
35 |
+
|
36 |
+
def forward_features(self, x):
|
37 |
+
B = x.shape[0]
|
38 |
+
x = self.patch_embed(x)
|
39 |
+
x = x + self.pos_embed[:, 1:, :]
|
40 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
41 |
+
cls_tokens = cls_token.expand(
|
42 |
+
B, -1, -1
|
43 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
44 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
45 |
+
x = self.pos_drop(x)
|
46 |
+
|
47 |
+
for blk in self.blocks:
|
48 |
+
x = blk(x)
|
49 |
+
|
50 |
+
if self.global_pool:
|
51 |
+
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
|
52 |
+
outcome = self.fc_norm(x)
|
53 |
+
else:
|
54 |
+
x = self.norm(x)
|
55 |
+
outcome = x[:, 0]
|
56 |
+
|
57 |
+
return outcome
|
58 |
+
|
59 |
+
def random_masking(self, x, mask_ratio):
|
60 |
+
"""
|
61 |
+
Perform per-sample random masking by per-sample shuffling.
|
62 |
+
Per-sample shuffling is done by argsort random noise.
|
63 |
+
x: [N, L, D], sequence
|
64 |
+
"""
|
65 |
+
N, L, D = x.shape # batch, length, dim
|
66 |
+
len_keep = int(L * (1 - mask_ratio))
|
67 |
+
|
68 |
+
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
|
69 |
+
|
70 |
+
# sort noise for each sample
|
71 |
+
ids_shuffle = torch.argsort(
|
72 |
+
noise, dim=1
|
73 |
+
) # ascend: small is keep, large is remove
|
74 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
75 |
+
|
76 |
+
# keep the first subset
|
77 |
+
ids_keep = ids_shuffle[:, :len_keep]
|
78 |
+
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
79 |
+
|
80 |
+
# generate the binary mask: 0 is keep, 1 is remove
|
81 |
+
mask = torch.ones([N, L], device=x.device)
|
82 |
+
mask[:, :len_keep] = 0
|
83 |
+
# unshuffle to get the binary mask
|
84 |
+
mask = torch.gather(mask, dim=1, index=ids_restore)
|
85 |
+
|
86 |
+
return x_masked, mask, ids_restore
|
87 |
+
|
88 |
+
def random_masking_2d(self, x, mask_t_prob, mask_f_prob):
|
89 |
+
"""
|
90 |
+
2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob)
|
91 |
+
Perform per-sample random masking by per-sample shuffling.
|
92 |
+
Per-sample shuffling is done by argsort random noise.
|
93 |
+
x: [N, L, D], sequence
|
94 |
+
"""
|
95 |
+
|
96 |
+
N, L, D = x.shape # batch, length, dim
|
97 |
+
if self.use_custom_patch:
|
98 |
+
# # for AS
|
99 |
+
T = 101 # 64,101
|
100 |
+
F = 12 # 8,12
|
101 |
+
# # for ESC
|
102 |
+
# T=50
|
103 |
+
# F=12
|
104 |
+
# for SPC
|
105 |
+
# T=12
|
106 |
+
# F=12
|
107 |
+
else:
|
108 |
+
# ## for AS
|
109 |
+
T = 64
|
110 |
+
F = 8
|
111 |
+
# ## for ESC
|
112 |
+
# T=32
|
113 |
+
# F=8
|
114 |
+
## for SPC
|
115 |
+
# T=8
|
116 |
+
# F=8
|
117 |
+
|
118 |
+
# mask T
|
119 |
+
x = x.reshape(N, T, F, D)
|
120 |
+
len_keep_T = int(T * (1 - mask_t_prob))
|
121 |
+
noise = torch.rand(N, T, device=x.device) # noise in [0, 1]
|
122 |
+
# sort noise for each sample
|
123 |
+
ids_shuffle = torch.argsort(
|
124 |
+
noise, dim=1
|
125 |
+
) # ascend: small is keep, large is remove
|
126 |
+
ids_keep = ids_shuffle[:, :len_keep_T]
|
127 |
+
index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, F, D)
|
128 |
+
# x_masked = torch.gather(x, dim=1, index=index)
|
129 |
+
# x_masked = x_masked.reshape(N,len_keep_T*F,D)
|
130 |
+
x = torch.gather(x, dim=1, index=index) # N, len_keep_T(T'), F, D
|
131 |
+
|
132 |
+
# mask F
|
133 |
+
# x = x.reshape(N, T, F, D)
|
134 |
+
x = x.permute(0, 2, 1, 3) # N T' F D => N F T' D
|
135 |
+
len_keep_F = int(F * (1 - mask_f_prob))
|
136 |
+
noise = torch.rand(N, F, device=x.device) # noise in [0, 1]
|
137 |
+
# sort noise for each sample
|
138 |
+
ids_shuffle = torch.argsort(
|
139 |
+
noise, dim=1
|
140 |
+
) # ascend: small is keep, large is remove
|
141 |
+
ids_keep = ids_shuffle[:, :len_keep_F]
|
142 |
+
# index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, T, D)
|
143 |
+
index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, len_keep_T, D)
|
144 |
+
x_masked = torch.gather(x, dim=1, index=index)
|
145 |
+
x_masked = x_masked.permute(0, 2, 1, 3) # N F' T' D => N T' F' D
|
146 |
+
# x_masked = x_masked.reshape(N,len_keep*T,D)
|
147 |
+
x_masked = x_masked.reshape(N, len_keep_F * len_keep_T, D)
|
148 |
+
|
149 |
+
return x_masked, None, None
|
150 |
+
|
151 |
+
def forward_features_mask(self, x, mask_t_prob, mask_f_prob):
|
152 |
+
B = x.shape[0] # 4,1,1024,128
|
153 |
+
x = self.patch_embed(x) # 4, 512, 768
|
154 |
+
|
155 |
+
x = x + self.pos_embed[:, 1:, :]
|
156 |
+
if self.random_masking_2d:
|
157 |
+
x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob, mask_f_prob)
|
158 |
+
else:
|
159 |
+
x, mask, ids_restore = self.random_masking(x, mask_t_prob)
|
160 |
+
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
161 |
+
cls_tokens = cls_token.expand(B, -1, -1)
|
162 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
163 |
+
x = self.pos_drop(x)
|
164 |
+
|
165 |
+
# apply Transformer blocks
|
166 |
+
for blk in self.blocks:
|
167 |
+
x = blk(x)
|
168 |
+
|
169 |
+
if self.global_pool:
|
170 |
+
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
|
171 |
+
outcome = self.fc_norm(x)
|
172 |
+
else:
|
173 |
+
x = self.norm(x)
|
174 |
+
outcome = x[:, 0]
|
175 |
+
|
176 |
+
return outcome
|
177 |
+
|
178 |
+
# overwrite original timm
|
179 |
+
def forward(self, x, v=None, mask_t_prob=0.0, mask_f_prob=0.0):
|
180 |
+
if mask_t_prob > 0.0 or mask_f_prob > 0.0:
|
181 |
+
x = self.forward_features_mask(
|
182 |
+
x, mask_t_prob=mask_t_prob, mask_f_prob=mask_f_prob
|
183 |
+
)
|
184 |
+
else:
|
185 |
+
x = self.forward_features(x)
|
186 |
+
x = self.head(x)
|
187 |
+
return x
|
188 |
+
|
189 |
+
|
190 |
+
def vit_small_patch16(**kwargs):
|
191 |
+
model = VisionTransformer(
|
192 |
+
patch_size=16,
|
193 |
+
embed_dim=384,
|
194 |
+
depth=12,
|
195 |
+
num_heads=6,
|
196 |
+
mlp_ratio=4,
|
197 |
+
qkv_bias=True,
|
198 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
199 |
+
**kwargs
|
200 |
+
)
|
201 |
+
return model
|
202 |
+
|
203 |
+
|
204 |
+
def vit_base_patch16(**kwargs):
|
205 |
+
model = VisionTransformer(
|
206 |
+
patch_size=16,
|
207 |
+
embed_dim=768,
|
208 |
+
depth=12,
|
209 |
+
num_heads=12,
|
210 |
+
mlp_ratio=4,
|
211 |
+
qkv_bias=True,
|
212 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
213 |
+
**kwargs
|
214 |
+
)
|
215 |
+
return model
|
216 |
+
|
217 |
+
|
218 |
+
def vit_large_patch16(**kwargs):
|
219 |
+
model = VisionTransformer(
|
220 |
+
patch_size=16,
|
221 |
+
embed_dim=1024,
|
222 |
+
depth=24,
|
223 |
+
num_heads=16,
|
224 |
+
mlp_ratio=4,
|
225 |
+
qkv_bias=True,
|
226 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
227 |
+
**kwargs
|
228 |
+
)
|
229 |
+
return model
|
230 |
+
|
231 |
+
|
232 |
+
def vit_huge_patch14(**kwargs):
|
233 |
+
model = VisionTransformer(
|
234 |
+
patch_size=14,
|
235 |
+
embed_dim=1280,
|
236 |
+
depth=32,
|
237 |
+
num_heads=16,
|
238 |
+
mlp_ratio=4,
|
239 |
+
qkv_bias=True,
|
240 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
241 |
+
**kwargs
|
242 |
+
)
|
243 |
+
return model
|
pipeline/modeling_audioldm2.py
ADDED
@@ -0,0 +1,1546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
# ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
# CROSS_ATTENTION_PROCESSORS,
|
28 |
+
SlicedAttnAddedKVProcessor,
|
29 |
+
AttnAddedKVProcessor2_0,
|
30 |
+
XFormersAttnAddedKVProcessor,
|
31 |
+
AttnProcessor2_0,
|
32 |
+
XFormersAttnProcessor,
|
33 |
+
SlicedAttnProcessor,
|
34 |
+
LoRAAttnProcessor,
|
35 |
+
LoRAAttnProcessor2_0,
|
36 |
+
LoRAXFormersAttnProcessor,
|
37 |
+
LoRAAttnAddedKVProcessor,
|
38 |
+
AttentionProcessor,
|
39 |
+
AttnAddedKVProcessor,
|
40 |
+
AttnProcessor,
|
41 |
+
)
|
42 |
+
|
43 |
+
ADDED_KV_ATTENTION_PROCESSORS = (
|
44 |
+
AttnAddedKVProcessor,
|
45 |
+
SlicedAttnAddedKVProcessor,
|
46 |
+
AttnAddedKVProcessor2_0,
|
47 |
+
XFormersAttnAddedKVProcessor,
|
48 |
+
LoRAAttnAddedKVProcessor,
|
49 |
+
)
|
50 |
+
CROSS_ATTENTION_PROCESSORS = (
|
51 |
+
AttnProcessor,
|
52 |
+
AttnProcessor2_0,
|
53 |
+
XFormersAttnProcessor,
|
54 |
+
SlicedAttnProcessor,
|
55 |
+
LoRAAttnProcessor,
|
56 |
+
LoRAAttnProcessor2_0,
|
57 |
+
LoRAXFormersAttnProcessor,
|
58 |
+
)
|
59 |
+
|
60 |
+
from diffusers.models.embeddings import (
|
61 |
+
TimestepEmbedding,
|
62 |
+
Timesteps,
|
63 |
+
)
|
64 |
+
from diffusers.models.modeling_utils import ModelMixin
|
65 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
66 |
+
# from diffusers.models.transformers.transformer_2d import Transformer2DModel
|
67 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
68 |
+
from diffusers.models.unet_2d_blocks import DownBlock2D, UpBlock2D
|
69 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
|
70 |
+
# from diffusers.models.unets.unet_2d_blocks import DownBlock2D, UpBlock2D
|
71 |
+
# from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
|
72 |
+
from diffusers.utils import BaseOutput, is_torch_version, logging
|
73 |
+
|
74 |
+
|
75 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
76 |
+
|
77 |
+
|
78 |
+
def add_special_tokens(hidden_states, attention_mask, sos_token, eos_token):
|
79 |
+
batch_size = hidden_states.shape[0]
|
80 |
+
|
81 |
+
if attention_mask is not None:
|
82 |
+
# Add two more steps to attn mask
|
83 |
+
new_attn_mask_step = attention_mask.new_ones((batch_size, 1))
|
84 |
+
attention_mask = torch.concat([new_attn_mask_step, attention_mask, new_attn_mask_step], dim=-1)
|
85 |
+
|
86 |
+
# Add the SOS / EOS tokens at the start / end of the sequence respectively
|
87 |
+
sos_token = sos_token.expand(batch_size, 1, -1)
|
88 |
+
eos_token = eos_token.expand(batch_size, 1, -1)
|
89 |
+
hidden_states = torch.concat([sos_token, hidden_states, eos_token], dim=1)
|
90 |
+
return hidden_states, attention_mask
|
91 |
+
|
92 |
+
|
93 |
+
@dataclass
|
94 |
+
class AudioLDM2ProjectionModelOutput(BaseOutput):
|
95 |
+
"""
|
96 |
+
Args:
|
97 |
+
Class for AudioLDM2 projection layer's outputs.
|
98 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
99 |
+
Sequence of hidden-states obtained by linearly projecting the hidden-states for each of the text
|
100 |
+
encoders and subsequently concatenating them together.
|
101 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
102 |
+
Mask to avoid performing attention on padding token indices, formed by concatenating the attention masks
|
103 |
+
for the two text encoders together. Mask values selected in `[0, 1]`:
|
104 |
+
|
105 |
+
- 1 for tokens that are **not masked**,
|
106 |
+
- 0 for tokens that are **masked**.
|
107 |
+
"""
|
108 |
+
|
109 |
+
hidden_states: torch.FloatTensor
|
110 |
+
attention_mask: Optional[torch.LongTensor] = None
|
111 |
+
|
112 |
+
|
113 |
+
class AudioLDM2ProjectionModel(ModelMixin, ConfigMixin):
|
114 |
+
"""
|
115 |
+
A simple linear projection model to map two text embeddings to a shared latent space. It also inserts learned
|
116 |
+
embedding vectors at the start and end of each text embedding sequence respectively. Each variable appended with
|
117 |
+
`_1` refers to that corresponding to the second text encoder. Otherwise, it is from the first.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
text_encoder_dim (`int`):
|
121 |
+
Dimensionality of the text embeddings from the first text encoder (CLAP).
|
122 |
+
text_encoder_1_dim (`int`):
|
123 |
+
Dimensionality of the text embeddings from the second text encoder (T5 or VITS).
|
124 |
+
langauge_model_dim (`int`):
|
125 |
+
Dimensionality of the text embeddings from the language model (GPT2).
|
126 |
+
"""
|
127 |
+
|
128 |
+
@register_to_config
|
129 |
+
def __init__(self, text_encoder_dim, text_encoder_1_dim, langauge_model_dim):
|
130 |
+
super().__init__()
|
131 |
+
# additional projection layers for each text encoder
|
132 |
+
self.projection = nn.Linear(text_encoder_dim, langauge_model_dim)
|
133 |
+
self.projection_1 = nn.Linear(text_encoder_1_dim, langauge_model_dim)
|
134 |
+
|
135 |
+
# learnable SOS / EOS token embeddings for each text encoder
|
136 |
+
self.sos_embed = nn.Parameter(torch.ones(langauge_model_dim))
|
137 |
+
self.eos_embed = nn.Parameter(torch.ones(langauge_model_dim))
|
138 |
+
|
139 |
+
self.sos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim))
|
140 |
+
self.eos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim))
|
141 |
+
|
142 |
+
def forward(
|
143 |
+
self,
|
144 |
+
hidden_states: Optional[torch.FloatTensor] = None,
|
145 |
+
hidden_states_1: Optional[torch.FloatTensor] = None,
|
146 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
147 |
+
attention_mask_1: Optional[torch.LongTensor] = None,
|
148 |
+
):
|
149 |
+
hidden_states = self.projection(hidden_states)
|
150 |
+
hidden_states, attention_mask = add_special_tokens(
|
151 |
+
hidden_states, attention_mask, sos_token=self.sos_embed, eos_token=self.eos_embed
|
152 |
+
)
|
153 |
+
|
154 |
+
hidden_states_1 = self.projection_1(hidden_states_1)
|
155 |
+
hidden_states_1, attention_mask_1 = add_special_tokens(
|
156 |
+
hidden_states_1, attention_mask_1, sos_token=self.sos_embed_1, eos_token=self.eos_embed_1
|
157 |
+
)
|
158 |
+
|
159 |
+
# concatenate clap and t5 text encoding
|
160 |
+
hidden_states = torch.cat([hidden_states, hidden_states_1], dim=1)
|
161 |
+
|
162 |
+
# concatenate attention masks
|
163 |
+
if attention_mask is None and attention_mask_1 is not None:
|
164 |
+
attention_mask = attention_mask_1.new_ones((hidden_states[:2]))
|
165 |
+
elif attention_mask is not None and attention_mask_1 is None:
|
166 |
+
attention_mask_1 = attention_mask.new_ones((hidden_states_1[:2]))
|
167 |
+
|
168 |
+
if attention_mask is not None and attention_mask_1 is not None:
|
169 |
+
attention_mask = torch.cat([attention_mask, attention_mask_1], dim=-1)
|
170 |
+
else:
|
171 |
+
attention_mask = None
|
172 |
+
|
173 |
+
return AudioLDM2ProjectionModelOutput(
|
174 |
+
hidden_states=hidden_states,
|
175 |
+
attention_mask=attention_mask,
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
class AudioLDM2UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
180 |
+
r"""
|
181 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
182 |
+
shaped output. Compared to the vanilla [`UNet2DConditionModel`], this variant optionally includes an additional
|
183 |
+
self-attention layer in each Transformer block, as well as multiple cross-attention layers. It also allows for up
|
184 |
+
to two cross-attention embeddings, `encoder_hidden_states` and `encoder_hidden_states_1`.
|
185 |
+
|
186 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
187 |
+
for all models (such as downloading or saving).
|
188 |
+
|
189 |
+
Parameters:
|
190 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
191 |
+
Height and width of input/output sample.
|
192 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
193 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
194 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
195 |
+
Whether to flip the sin to cos in the time embedding.
|
196 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
197 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
198 |
+
The tuple of downsample blocks to use.
|
199 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
200 |
+
Block type for middle of UNet, it can only be `UNetMidBlock2DCrossAttn` for AudioLDM2.
|
201 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
202 |
+
The tuple of upsample blocks to use.
|
203 |
+
only_cross_attention (`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
204 |
+
Whether to include self-attention in the basic transformer blocks, see
|
205 |
+
[`~models.attention.BasicTransformerBlock`].
|
206 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
207 |
+
The tuple of output channels for each block.
|
208 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
209 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
210 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
211 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
212 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
213 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
214 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
215 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
216 |
+
The dimension of the cross attention features.
|
217 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
218 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
219 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
220 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
221 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
222 |
+
num_attention_heads (`int`, *optional*):
|
223 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
224 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
225 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
226 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
227 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
228 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
229 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
230 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
231 |
+
class conditioning with `class_embed_type` equal to `None`.
|
232 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
233 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
234 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
235 |
+
An optional override for the dimension of the projected time embedding.
|
236 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
237 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
238 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
239 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
240 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
241 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
242 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
243 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
244 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
245 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
246 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
247 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
248 |
+
embeddings with the class embeddings.
|
249 |
+
"""
|
250 |
+
|
251 |
+
_supports_gradient_checkpointing = True
|
252 |
+
|
253 |
+
@register_to_config
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
sample_size: Optional[int] = None,
|
257 |
+
in_channels: int = 4,
|
258 |
+
out_channels: int = 4,
|
259 |
+
flip_sin_to_cos: bool = True,
|
260 |
+
freq_shift: int = 0,
|
261 |
+
down_block_types: Tuple[str] = (
|
262 |
+
"CrossAttnDownBlock2D",
|
263 |
+
"CrossAttnDownBlock2D",
|
264 |
+
"CrossAttnDownBlock2D",
|
265 |
+
"DownBlock2D",
|
266 |
+
),
|
267 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
268 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
269 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
270 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
271 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
272 |
+
downsample_padding: int = 1,
|
273 |
+
mid_block_scale_factor: float = 1,
|
274 |
+
act_fn: str = "silu",
|
275 |
+
norm_num_groups: Optional[int] = 32,
|
276 |
+
norm_eps: float = 1e-5,
|
277 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
278 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
279 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
280 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
281 |
+
use_linear_projection: bool = False,
|
282 |
+
class_embed_type: Optional[str] = None,
|
283 |
+
num_class_embeds: Optional[int] = None,
|
284 |
+
upcast_attention: bool = False,
|
285 |
+
resnet_time_scale_shift: str = "default",
|
286 |
+
time_embedding_type: str = "positional",
|
287 |
+
time_embedding_dim: Optional[int] = None,
|
288 |
+
time_embedding_act_fn: Optional[str] = None,
|
289 |
+
timestep_post_act: Optional[str] = None,
|
290 |
+
time_cond_proj_dim: Optional[int] = None,
|
291 |
+
conv_in_kernel: int = 3,
|
292 |
+
conv_out_kernel: int = 3,
|
293 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
294 |
+
class_embeddings_concat: bool = False,
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
|
298 |
+
self.sample_size = sample_size
|
299 |
+
|
300 |
+
if num_attention_heads is not None:
|
301 |
+
raise ValueError(
|
302 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
303 |
+
)
|
304 |
+
|
305 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
306 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
307 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
308 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
309 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
310 |
+
# which is why we correct for the naming here.
|
311 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
312 |
+
|
313 |
+
# Check inputs
|
314 |
+
if len(down_block_types) != len(up_block_types):
|
315 |
+
raise ValueError(
|
316 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
317 |
+
)
|
318 |
+
|
319 |
+
if len(block_out_channels) != len(down_block_types):
|
320 |
+
raise ValueError(
|
321 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
322 |
+
)
|
323 |
+
|
324 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
325 |
+
raise ValueError(
|
326 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
327 |
+
)
|
328 |
+
|
329 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
330 |
+
raise ValueError(
|
331 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
332 |
+
)
|
333 |
+
|
334 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
335 |
+
raise ValueError(
|
336 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
337 |
+
)
|
338 |
+
|
339 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
340 |
+
raise ValueError(
|
341 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
342 |
+
)
|
343 |
+
|
344 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
345 |
+
raise ValueError(
|
346 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
347 |
+
)
|
348 |
+
|
349 |
+
# input
|
350 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
351 |
+
self.conv_in = nn.Conv2d(
|
352 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
353 |
+
)
|
354 |
+
|
355 |
+
# time
|
356 |
+
if time_embedding_type == "positional":
|
357 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
358 |
+
|
359 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
360 |
+
timestep_input_dim = block_out_channels[0]
|
361 |
+
else:
|
362 |
+
raise ValueError(f"{time_embedding_type} does not exist. Please make sure to use `positional`.")
|
363 |
+
|
364 |
+
self.time_embedding = TimestepEmbedding(
|
365 |
+
timestep_input_dim,
|
366 |
+
time_embed_dim,
|
367 |
+
act_fn=act_fn,
|
368 |
+
post_act_fn=timestep_post_act,
|
369 |
+
cond_proj_dim=time_cond_proj_dim,
|
370 |
+
)
|
371 |
+
|
372 |
+
# class embedding
|
373 |
+
if class_embed_type is None and num_class_embeds is not None:
|
374 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
375 |
+
elif class_embed_type == "timestep":
|
376 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
377 |
+
elif class_embed_type == "identity":
|
378 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
379 |
+
elif class_embed_type == "projection":
|
380 |
+
if projection_class_embeddings_input_dim is None:
|
381 |
+
raise ValueError(
|
382 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
383 |
+
)
|
384 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
385 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
386 |
+
# 2. it projects from an arbitrary input dimension.
|
387 |
+
#
|
388 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
389 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
390 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
391 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
392 |
+
elif class_embed_type == "simple_projection":
|
393 |
+
if projection_class_embeddings_input_dim is None:
|
394 |
+
raise ValueError(
|
395 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
396 |
+
)
|
397 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
398 |
+
else:
|
399 |
+
self.class_embedding = None
|
400 |
+
|
401 |
+
if time_embedding_act_fn is None:
|
402 |
+
self.time_embed_act = None
|
403 |
+
else:
|
404 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
405 |
+
|
406 |
+
self.down_blocks = nn.ModuleList([])
|
407 |
+
self.up_blocks = nn.ModuleList([])
|
408 |
+
|
409 |
+
if isinstance(only_cross_attention, bool):
|
410 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
411 |
+
|
412 |
+
if isinstance(num_attention_heads, int):
|
413 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
414 |
+
|
415 |
+
if isinstance(cross_attention_dim, int):
|
416 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
417 |
+
|
418 |
+
if isinstance(layers_per_block, int):
|
419 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
420 |
+
|
421 |
+
if isinstance(transformer_layers_per_block, int):
|
422 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
423 |
+
|
424 |
+
if class_embeddings_concat:
|
425 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
426 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
427 |
+
# regular time embeddings
|
428 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
429 |
+
else:
|
430 |
+
blocks_time_embed_dim = time_embed_dim
|
431 |
+
|
432 |
+
# down
|
433 |
+
output_channel = block_out_channels[0]
|
434 |
+
for i, down_block_type in enumerate(down_block_types):
|
435 |
+
input_channel = output_channel
|
436 |
+
output_channel = block_out_channels[i]
|
437 |
+
is_final_block = i == len(block_out_channels) - 1
|
438 |
+
|
439 |
+
down_block = get_down_block(
|
440 |
+
down_block_type,
|
441 |
+
num_layers=layers_per_block[i],
|
442 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
443 |
+
in_channels=input_channel,
|
444 |
+
out_channels=output_channel,
|
445 |
+
temb_channels=blocks_time_embed_dim,
|
446 |
+
add_downsample=not is_final_block,
|
447 |
+
resnet_eps=norm_eps,
|
448 |
+
resnet_act_fn=act_fn,
|
449 |
+
resnet_groups=norm_num_groups,
|
450 |
+
cross_attention_dim=cross_attention_dim[i],
|
451 |
+
num_attention_heads=num_attention_heads[i],
|
452 |
+
downsample_padding=downsample_padding,
|
453 |
+
use_linear_projection=use_linear_projection,
|
454 |
+
only_cross_attention=only_cross_attention[i],
|
455 |
+
upcast_attention=upcast_attention,
|
456 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
457 |
+
)
|
458 |
+
self.down_blocks.append(down_block)
|
459 |
+
|
460 |
+
# mid
|
461 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
462 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
463 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
464 |
+
in_channels=block_out_channels[-1],
|
465 |
+
temb_channels=blocks_time_embed_dim,
|
466 |
+
resnet_eps=norm_eps,
|
467 |
+
resnet_act_fn=act_fn,
|
468 |
+
output_scale_factor=mid_block_scale_factor,
|
469 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
470 |
+
cross_attention_dim=cross_attention_dim[-1],
|
471 |
+
num_attention_heads=num_attention_heads[-1],
|
472 |
+
resnet_groups=norm_num_groups,
|
473 |
+
use_linear_projection=use_linear_projection,
|
474 |
+
upcast_attention=upcast_attention,
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
raise ValueError(
|
478 |
+
f"unknown mid_block_type : {mid_block_type}. Should be `UNetMidBlock2DCrossAttn` for AudioLDM2."
|
479 |
+
)
|
480 |
+
|
481 |
+
# count how many layers upsample the images
|
482 |
+
self.num_upsamplers = 0
|
483 |
+
|
484 |
+
# up
|
485 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
486 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
487 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
488 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
489 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
490 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
491 |
+
|
492 |
+
output_channel = reversed_block_out_channels[0]
|
493 |
+
for i, up_block_type in enumerate(up_block_types):
|
494 |
+
is_final_block = i == len(block_out_channels) - 1
|
495 |
+
|
496 |
+
prev_output_channel = output_channel
|
497 |
+
output_channel = reversed_block_out_channels[i]
|
498 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
499 |
+
|
500 |
+
# add upsample block for all BUT final layer
|
501 |
+
if not is_final_block:
|
502 |
+
add_upsample = True
|
503 |
+
self.num_upsamplers += 1
|
504 |
+
else:
|
505 |
+
add_upsample = False
|
506 |
+
|
507 |
+
up_block = get_up_block(
|
508 |
+
up_block_type,
|
509 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
510 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
511 |
+
in_channels=input_channel,
|
512 |
+
out_channels=output_channel,
|
513 |
+
prev_output_channel=prev_output_channel,
|
514 |
+
temb_channels=blocks_time_embed_dim,
|
515 |
+
add_upsample=add_upsample,
|
516 |
+
resnet_eps=norm_eps,
|
517 |
+
resnet_act_fn=act_fn,
|
518 |
+
resnet_groups=norm_num_groups,
|
519 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
520 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
521 |
+
use_linear_projection=use_linear_projection,
|
522 |
+
only_cross_attention=only_cross_attention[i],
|
523 |
+
upcast_attention=upcast_attention,
|
524 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
525 |
+
)
|
526 |
+
self.up_blocks.append(up_block)
|
527 |
+
prev_output_channel = output_channel
|
528 |
+
|
529 |
+
# out
|
530 |
+
if norm_num_groups is not None:
|
531 |
+
self.conv_norm_out = nn.GroupNorm(
|
532 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
533 |
+
)
|
534 |
+
|
535 |
+
self.conv_act = get_activation(act_fn)
|
536 |
+
|
537 |
+
else:
|
538 |
+
self.conv_norm_out = None
|
539 |
+
self.conv_act = None
|
540 |
+
|
541 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
542 |
+
self.conv_out = nn.Conv2d(
|
543 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
544 |
+
)
|
545 |
+
|
546 |
+
@property
|
547 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
548 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
549 |
+
r"""
|
550 |
+
Returns:
|
551 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
552 |
+
indexed by its weight name.
|
553 |
+
"""
|
554 |
+
# set recursively
|
555 |
+
processors = {}
|
556 |
+
|
557 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
558 |
+
if hasattr(module, "get_processor"):
|
559 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
560 |
+
|
561 |
+
for sub_name, child in module.named_children():
|
562 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
563 |
+
|
564 |
+
return processors
|
565 |
+
|
566 |
+
for name, module in self.named_children():
|
567 |
+
fn_recursive_add_processors(name, module, processors)
|
568 |
+
|
569 |
+
return processors
|
570 |
+
|
571 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
572 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
573 |
+
r"""
|
574 |
+
Sets the attention processor to use to compute attention.
|
575 |
+
|
576 |
+
Parameters:
|
577 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
578 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
579 |
+
for **all** `Attention` layers.
|
580 |
+
|
581 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
582 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
583 |
+
|
584 |
+
"""
|
585 |
+
count = len(self.attn_processors.keys())
|
586 |
+
|
587 |
+
if isinstance(processor, dict) and len(processor) != count:
|
588 |
+
raise ValueError(
|
589 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
590 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
591 |
+
)
|
592 |
+
|
593 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
594 |
+
if hasattr(module, "set_processor"):
|
595 |
+
if not isinstance(processor, dict):
|
596 |
+
module.set_processor(processor)
|
597 |
+
else:
|
598 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
599 |
+
|
600 |
+
for sub_name, child in module.named_children():
|
601 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
602 |
+
|
603 |
+
for name, module in self.named_children():
|
604 |
+
fn_recursive_attn_processor(name, module, processor)
|
605 |
+
# print(f"{processor}, Type: {type(processor)}")
|
606 |
+
|
607 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
608 |
+
def set_default_attn_processor(self):
|
609 |
+
"""
|
610 |
+
Disables custom attention processors and sets the default attention implementation.
|
611 |
+
"""
|
612 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
613 |
+
processor = AttnAddedKVProcessor()
|
614 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
615 |
+
processor = AttnProcessor()
|
616 |
+
else:
|
617 |
+
raise ValueError(
|
618 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
619 |
+
)
|
620 |
+
|
621 |
+
self.set_attn_processor(processor)
|
622 |
+
|
623 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
624 |
+
def set_attention_slice(self, slice_size):
|
625 |
+
r"""
|
626 |
+
Enable sliced attention computation.
|
627 |
+
|
628 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
629 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
630 |
+
|
631 |
+
Args:
|
632 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
633 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
634 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
635 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
636 |
+
must be a multiple of `slice_size`.
|
637 |
+
"""
|
638 |
+
sliceable_head_dims = []
|
639 |
+
|
640 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
641 |
+
if hasattr(module, "set_attention_slice"):
|
642 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
643 |
+
|
644 |
+
for child in module.children():
|
645 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
646 |
+
|
647 |
+
# retrieve number of attention layers
|
648 |
+
for module in self.children():
|
649 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
650 |
+
|
651 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
652 |
+
|
653 |
+
if slice_size == "auto":
|
654 |
+
# half the attention head size is usually a good trade-off between
|
655 |
+
# speed and memory
|
656 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
657 |
+
elif slice_size == "max":
|
658 |
+
# make smallest slice possible
|
659 |
+
slice_size = num_sliceable_layers * [1]
|
660 |
+
|
661 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
662 |
+
|
663 |
+
if len(slice_size) != len(sliceable_head_dims):
|
664 |
+
raise ValueError(
|
665 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
666 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
667 |
+
)
|
668 |
+
|
669 |
+
for i in range(len(slice_size)):
|
670 |
+
size = slice_size[i]
|
671 |
+
dim = sliceable_head_dims[i]
|
672 |
+
if size is not None and size > dim:
|
673 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
674 |
+
|
675 |
+
# Recursively walk through all the children.
|
676 |
+
# Any children which exposes the set_attention_slice method
|
677 |
+
# gets the message
|
678 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
679 |
+
if hasattr(module, "set_attention_slice"):
|
680 |
+
module.set_attention_slice(slice_size.pop())
|
681 |
+
|
682 |
+
for child in module.children():
|
683 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
684 |
+
|
685 |
+
reversed_slice_size = list(reversed(slice_size))
|
686 |
+
for module in self.children():
|
687 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
688 |
+
|
689 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel._set_gradient_checkpointing
|
690 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
691 |
+
if hasattr(module, "gradient_checkpointing"):
|
692 |
+
module.gradient_checkpointing = value
|
693 |
+
|
694 |
+
def forward(
|
695 |
+
self,
|
696 |
+
sample: torch.FloatTensor,
|
697 |
+
timestep: Union[torch.Tensor, float, int],
|
698 |
+
encoder_hidden_states: torch.Tensor,
|
699 |
+
class_labels: Optional[torch.Tensor] = None,
|
700 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
701 |
+
attention_mask: Optional[torch.Tensor] = None,
|
702 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
703 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
704 |
+
return_dict: bool = True,
|
705 |
+
encoder_hidden_states_1: Optional[torch.Tensor] = None,
|
706 |
+
encoder_attention_mask_1: Optional[torch.Tensor] = None,
|
707 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
708 |
+
r"""
|
709 |
+
The [`AudioLDM2UNet2DConditionModel`] forward method.
|
710 |
+
|
711 |
+
Args:
|
712 |
+
sample (`torch.FloatTensor`):
|
713 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
714 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
715 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
716 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
717 |
+
encoder_attention_mask (`torch.Tensor`):
|
718 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
719 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
720 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
721 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
722 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
723 |
+
tuple.
|
724 |
+
cross_attention_kwargs (`dict`, *optional*):
|
725 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
726 |
+
encoder_hidden_states_1 (`torch.FloatTensor`, *optional*):
|
727 |
+
A second set of encoder hidden states with shape `(batch, sequence_length_2, feature_dim_2)`. Can be
|
728 |
+
used to condition the model on a different set of embeddings to `encoder_hidden_states`.
|
729 |
+
encoder_attention_mask_1 (`torch.Tensor`, *optional*):
|
730 |
+
A cross-attention mask of shape `(batch, sequence_length_2)` is applied to `encoder_hidden_states_1`.
|
731 |
+
If `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
732 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
733 |
+
|
734 |
+
Returns:
|
735 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
736 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
737 |
+
a `tuple` is returned where the first element is the sample tensor.
|
738 |
+
"""
|
739 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
740 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
741 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
742 |
+
# on the fly if necessary.
|
743 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
744 |
+
|
745 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
746 |
+
forward_upsample_size = False
|
747 |
+
upsample_size = None
|
748 |
+
|
749 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
750 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
751 |
+
forward_upsample_size = True
|
752 |
+
|
753 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
754 |
+
# expects mask of shape:
|
755 |
+
# [batch, key_tokens]
|
756 |
+
# adds singleton query_tokens dimension:
|
757 |
+
# [batch, 1, key_tokens]
|
758 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
759 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
760 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
761 |
+
# if attention_mask is not None:
|
762 |
+
# # assume that mask is expressed as:
|
763 |
+
# # (1 = keep, 0 = discard)
|
764 |
+
# # convert mask into a bias that can be added to attention scores:
|
765 |
+
# # (keep = +0, discard = -10000.0)
|
766 |
+
# print("type of attention_mask",type(attention_mask))
|
767 |
+
# print("attention_mask",attention_mask)
|
768 |
+
# attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
769 |
+
# attention_mask = attention_mask.unsqueeze(1)
|
770 |
+
|
771 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
772 |
+
if encoder_attention_mask is not None:
|
773 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
774 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
775 |
+
|
776 |
+
if encoder_attention_mask_1 is not None:
|
777 |
+
encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0
|
778 |
+
encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1)
|
779 |
+
|
780 |
+
# 1. time
|
781 |
+
timesteps = timestep
|
782 |
+
if not torch.is_tensor(timesteps):
|
783 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
784 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
785 |
+
is_mps = sample.device.type == "mps"
|
786 |
+
if isinstance(timestep, float):
|
787 |
+
dtype = torch.float32 if is_mps else torch.float64
|
788 |
+
else:
|
789 |
+
dtype = torch.int32 if is_mps else torch.int64
|
790 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
791 |
+
elif len(timesteps.shape) == 0:
|
792 |
+
timesteps = timesteps[None].to(sample.device)
|
793 |
+
|
794 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
795 |
+
timesteps = timesteps.expand(sample.shape[0])
|
796 |
+
|
797 |
+
t_emb = self.time_proj(timesteps)
|
798 |
+
|
799 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
800 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
801 |
+
# there might be better ways to encapsulate this.
|
802 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
803 |
+
|
804 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
805 |
+
aug_emb = None
|
806 |
+
|
807 |
+
if self.class_embedding is not None:
|
808 |
+
if class_labels is None:
|
809 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
810 |
+
|
811 |
+
if self.config.class_embed_type == "timestep":
|
812 |
+
class_labels = self.time_proj(class_labels)
|
813 |
+
|
814 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
815 |
+
# there might be better ways to encapsulate this.
|
816 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
817 |
+
|
818 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
819 |
+
|
820 |
+
if self.config.class_embeddings_concat:
|
821 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
822 |
+
else:
|
823 |
+
emb = emb + class_emb
|
824 |
+
|
825 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
826 |
+
|
827 |
+
if self.time_embed_act is not None:
|
828 |
+
emb = self.time_embed_act(emb)
|
829 |
+
|
830 |
+
# 2. pre-process
|
831 |
+
sample = self.conv_in(sample)
|
832 |
+
|
833 |
+
# 3. down
|
834 |
+
down_block_res_samples = (sample,)
|
835 |
+
for downsample_block in self.down_blocks:
|
836 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
837 |
+
sample, res_samples = downsample_block(
|
838 |
+
hidden_states=sample,
|
839 |
+
temb=emb,
|
840 |
+
encoder_hidden_states=encoder_hidden_states,
|
841 |
+
attention_mask=attention_mask,
|
842 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
843 |
+
encoder_attention_mask=encoder_attention_mask,
|
844 |
+
encoder_hidden_states_1=encoder_hidden_states_1,
|
845 |
+
encoder_attention_mask_1=encoder_attention_mask_1,
|
846 |
+
)
|
847 |
+
else:
|
848 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
849 |
+
|
850 |
+
down_block_res_samples += res_samples
|
851 |
+
|
852 |
+
# 4. mid
|
853 |
+
if self.mid_block is not None:
|
854 |
+
sample = self.mid_block(
|
855 |
+
sample,
|
856 |
+
emb,
|
857 |
+
encoder_hidden_states=encoder_hidden_states,
|
858 |
+
attention_mask=attention_mask,
|
859 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
860 |
+
encoder_attention_mask=encoder_attention_mask,
|
861 |
+
encoder_hidden_states_1=encoder_hidden_states_1,
|
862 |
+
encoder_attention_mask_1=encoder_attention_mask_1,
|
863 |
+
)
|
864 |
+
|
865 |
+
# 5. up
|
866 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
867 |
+
is_final_block = i == len(self.up_blocks) - 1
|
868 |
+
|
869 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
870 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
871 |
+
|
872 |
+
# if we have not reached the final block and need to forward the
|
873 |
+
# upsample size, we do it here
|
874 |
+
if not is_final_block and forward_upsample_size:
|
875 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
876 |
+
|
877 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
878 |
+
sample = upsample_block(
|
879 |
+
hidden_states=sample,
|
880 |
+
temb=emb,
|
881 |
+
res_hidden_states_tuple=res_samples,
|
882 |
+
encoder_hidden_states=encoder_hidden_states,
|
883 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
884 |
+
upsample_size=upsample_size,
|
885 |
+
attention_mask=attention_mask,
|
886 |
+
encoder_attention_mask=encoder_attention_mask,
|
887 |
+
encoder_hidden_states_1=encoder_hidden_states_1,
|
888 |
+
encoder_attention_mask_1=encoder_attention_mask_1,
|
889 |
+
)
|
890 |
+
else:
|
891 |
+
sample = upsample_block(
|
892 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
893 |
+
)
|
894 |
+
|
895 |
+
# 6. post-process
|
896 |
+
if self.conv_norm_out:
|
897 |
+
sample = self.conv_norm_out(sample)
|
898 |
+
sample = self.conv_act(sample)
|
899 |
+
sample = self.conv_out(sample)
|
900 |
+
sample = torch.tensor(sample, requires_grad=True)
|
901 |
+
print(f'sample requires_grad: {sample.requires_grad}')
|
902 |
+
if not return_dict:
|
903 |
+
return (sample,)
|
904 |
+
|
905 |
+
return UNet2DConditionOutput(sample=sample)
|
906 |
+
|
907 |
+
|
908 |
+
def get_down_block(
|
909 |
+
down_block_type,
|
910 |
+
num_layers,
|
911 |
+
in_channels,
|
912 |
+
out_channels,
|
913 |
+
temb_channels,
|
914 |
+
add_downsample,
|
915 |
+
resnet_eps,
|
916 |
+
resnet_act_fn,
|
917 |
+
transformer_layers_per_block=1,
|
918 |
+
num_attention_heads=None,
|
919 |
+
resnet_groups=None,
|
920 |
+
cross_attention_dim=None,
|
921 |
+
downsample_padding=None,
|
922 |
+
use_linear_projection=False,
|
923 |
+
only_cross_attention=False,
|
924 |
+
upcast_attention=False,
|
925 |
+
resnet_time_scale_shift="default",
|
926 |
+
):
|
927 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
928 |
+
if down_block_type == "DownBlock2D":
|
929 |
+
return DownBlock2D(
|
930 |
+
num_layers=num_layers,
|
931 |
+
in_channels=in_channels,
|
932 |
+
out_channels=out_channels,
|
933 |
+
temb_channels=temb_channels,
|
934 |
+
add_downsample=add_downsample,
|
935 |
+
resnet_eps=resnet_eps,
|
936 |
+
resnet_act_fn=resnet_act_fn,
|
937 |
+
resnet_groups=resnet_groups,
|
938 |
+
downsample_padding=downsample_padding,
|
939 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
940 |
+
)
|
941 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
942 |
+
if cross_attention_dim is None:
|
943 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
944 |
+
return CrossAttnDownBlock2D(
|
945 |
+
num_layers=num_layers,
|
946 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
947 |
+
in_channels=in_channels,
|
948 |
+
out_channels=out_channels,
|
949 |
+
temb_channels=temb_channels,
|
950 |
+
add_downsample=add_downsample,
|
951 |
+
resnet_eps=resnet_eps,
|
952 |
+
resnet_act_fn=resnet_act_fn,
|
953 |
+
resnet_groups=resnet_groups,
|
954 |
+
downsample_padding=downsample_padding,
|
955 |
+
cross_attention_dim=cross_attention_dim,
|
956 |
+
num_attention_heads=num_attention_heads,
|
957 |
+
use_linear_projection=use_linear_projection,
|
958 |
+
only_cross_attention=only_cross_attention,
|
959 |
+
upcast_attention=upcast_attention,
|
960 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
961 |
+
)
|
962 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
963 |
+
|
964 |
+
|
965 |
+
def get_up_block(
|
966 |
+
up_block_type,
|
967 |
+
num_layers,
|
968 |
+
in_channels,
|
969 |
+
out_channels,
|
970 |
+
prev_output_channel,
|
971 |
+
temb_channels,
|
972 |
+
add_upsample,
|
973 |
+
resnet_eps,
|
974 |
+
resnet_act_fn,
|
975 |
+
transformer_layers_per_block=1,
|
976 |
+
num_attention_heads=None,
|
977 |
+
resnet_groups=None,
|
978 |
+
cross_attention_dim=None,
|
979 |
+
use_linear_projection=False,
|
980 |
+
only_cross_attention=False,
|
981 |
+
upcast_attention=False,
|
982 |
+
resnet_time_scale_shift="default",
|
983 |
+
):
|
984 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
985 |
+
if up_block_type == "UpBlock2D":
|
986 |
+
return UpBlock2D(
|
987 |
+
num_layers=num_layers,
|
988 |
+
in_channels=in_channels,
|
989 |
+
out_channels=out_channels,
|
990 |
+
prev_output_channel=prev_output_channel,
|
991 |
+
temb_channels=temb_channels,
|
992 |
+
add_upsample=add_upsample,
|
993 |
+
resnet_eps=resnet_eps,
|
994 |
+
resnet_act_fn=resnet_act_fn,
|
995 |
+
resnet_groups=resnet_groups,
|
996 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
997 |
+
)
|
998 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
999 |
+
if cross_attention_dim is None:
|
1000 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
1001 |
+
return CrossAttnUpBlock2D(
|
1002 |
+
num_layers=num_layers,
|
1003 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
1004 |
+
in_channels=in_channels,
|
1005 |
+
out_channels=out_channels,
|
1006 |
+
prev_output_channel=prev_output_channel,
|
1007 |
+
temb_channels=temb_channels,
|
1008 |
+
add_upsample=add_upsample,
|
1009 |
+
resnet_eps=resnet_eps,
|
1010 |
+
resnet_act_fn=resnet_act_fn,
|
1011 |
+
resnet_groups=resnet_groups,
|
1012 |
+
cross_attention_dim=cross_attention_dim,
|
1013 |
+
num_attention_heads=num_attention_heads,
|
1014 |
+
use_linear_projection=use_linear_projection,
|
1015 |
+
only_cross_attention=only_cross_attention,
|
1016 |
+
upcast_attention=upcast_attention,
|
1017 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
1018 |
+
)
|
1019 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
1020 |
+
|
1021 |
+
|
1022 |
+
class CrossAttnDownBlock2D(nn.Module):
|
1023 |
+
def __init__(
|
1024 |
+
self,
|
1025 |
+
in_channels: int,
|
1026 |
+
out_channels: int,
|
1027 |
+
temb_channels: int,
|
1028 |
+
dropout: float = 0.0,
|
1029 |
+
num_layers: int = 1,
|
1030 |
+
transformer_layers_per_block: int = 1,
|
1031 |
+
resnet_eps: float = 1e-6,
|
1032 |
+
resnet_time_scale_shift: str = "default",
|
1033 |
+
resnet_act_fn: str = "swish",
|
1034 |
+
resnet_groups: int = 32,
|
1035 |
+
resnet_pre_norm: bool = True,
|
1036 |
+
num_attention_heads=1,
|
1037 |
+
cross_attention_dim=1280,
|
1038 |
+
output_scale_factor=1.0,
|
1039 |
+
downsample_padding=1,
|
1040 |
+
add_downsample=True,
|
1041 |
+
use_linear_projection=False,
|
1042 |
+
only_cross_attention=False,
|
1043 |
+
upcast_attention=False,
|
1044 |
+
):
|
1045 |
+
super().__init__()
|
1046 |
+
resnets = []
|
1047 |
+
attentions = []
|
1048 |
+
|
1049 |
+
self.has_cross_attention = True
|
1050 |
+
self.num_attention_heads = num_attention_heads
|
1051 |
+
|
1052 |
+
if isinstance(cross_attention_dim, int):
|
1053 |
+
cross_attention_dim = (cross_attention_dim,)
|
1054 |
+
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4:
|
1055 |
+
raise ValueError(
|
1056 |
+
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention "
|
1057 |
+
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}"
|
1058 |
+
)
|
1059 |
+
self.cross_attention_dim = cross_attention_dim
|
1060 |
+
|
1061 |
+
for i in range(num_layers):
|
1062 |
+
in_channels = in_channels if i == 0 else out_channels
|
1063 |
+
resnets.append(
|
1064 |
+
ResnetBlock2D(
|
1065 |
+
in_channels=in_channels,
|
1066 |
+
out_channels=out_channels,
|
1067 |
+
temb_channels=temb_channels,
|
1068 |
+
eps=resnet_eps,
|
1069 |
+
groups=resnet_groups,
|
1070 |
+
dropout=dropout,
|
1071 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1072 |
+
non_linearity=resnet_act_fn,
|
1073 |
+
output_scale_factor=output_scale_factor,
|
1074 |
+
pre_norm=resnet_pre_norm,
|
1075 |
+
)
|
1076 |
+
)
|
1077 |
+
for j in range(len(cross_attention_dim)):
|
1078 |
+
attentions.append(
|
1079 |
+
Transformer2DModel(
|
1080 |
+
num_attention_heads,
|
1081 |
+
out_channels // num_attention_heads,
|
1082 |
+
in_channels=out_channels,
|
1083 |
+
num_layers=transformer_layers_per_block,
|
1084 |
+
cross_attention_dim=cross_attention_dim[j],
|
1085 |
+
norm_num_groups=resnet_groups,
|
1086 |
+
use_linear_projection=use_linear_projection,
|
1087 |
+
only_cross_attention=only_cross_attention,
|
1088 |
+
upcast_attention=upcast_attention,
|
1089 |
+
double_self_attention=True if cross_attention_dim[j] is None else False,
|
1090 |
+
)
|
1091 |
+
)
|
1092 |
+
self.attentions = nn.ModuleList(attentions)
|
1093 |
+
self.resnets = nn.ModuleList(resnets)
|
1094 |
+
|
1095 |
+
if add_downsample:
|
1096 |
+
self.downsamplers = nn.ModuleList(
|
1097 |
+
[
|
1098 |
+
Downsample2D(
|
1099 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
1100 |
+
)
|
1101 |
+
]
|
1102 |
+
)
|
1103 |
+
else:
|
1104 |
+
self.downsamplers = None
|
1105 |
+
|
1106 |
+
self.gradient_checkpointing = False
|
1107 |
+
|
1108 |
+
def forward(
|
1109 |
+
self,
|
1110 |
+
hidden_states: torch.FloatTensor,
|
1111 |
+
temb: Optional[torch.FloatTensor] = None,
|
1112 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1113 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1114 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1115 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1116 |
+
encoder_hidden_states_1: Optional[torch.FloatTensor] = None,
|
1117 |
+
encoder_attention_mask_1: Optional[torch.FloatTensor] = None,
|
1118 |
+
):
|
1119 |
+
output_states = ()
|
1120 |
+
num_layers = len(self.resnets)
|
1121 |
+
num_attention_per_layer = len(self.attentions) // num_layers
|
1122 |
+
|
1123 |
+
encoder_hidden_states_1 = (
|
1124 |
+
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states
|
1125 |
+
)
|
1126 |
+
encoder_attention_mask_1 = (
|
1127 |
+
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
for i in range(num_layers):
|
1131 |
+
if self.training and self.gradient_checkpointing:
|
1132 |
+
|
1133 |
+
def create_custom_forward(module, return_dict=None):
|
1134 |
+
def custom_forward(*inputs):
|
1135 |
+
if return_dict is not None:
|
1136 |
+
return module(*inputs, return_dict=return_dict)
|
1137 |
+
else:
|
1138 |
+
return module(*inputs)
|
1139 |
+
|
1140 |
+
return custom_forward
|
1141 |
+
|
1142 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1143 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1144 |
+
create_custom_forward(self.resnets[i]),
|
1145 |
+
hidden_states,
|
1146 |
+
temb,
|
1147 |
+
**ckpt_kwargs,
|
1148 |
+
)
|
1149 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1150 |
+
if cross_attention_dim is not None and idx <= 1:
|
1151 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1152 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1153 |
+
elif cross_attention_dim is not None and idx > 1:
|
1154 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1155 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1156 |
+
else:
|
1157 |
+
forward_encoder_hidden_states = None
|
1158 |
+
forward_encoder_attention_mask = None
|
1159 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1160 |
+
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False),
|
1161 |
+
hidden_states,
|
1162 |
+
forward_encoder_hidden_states,
|
1163 |
+
None, # timestep
|
1164 |
+
None, # class_labels
|
1165 |
+
cross_attention_kwargs,
|
1166 |
+
attention_mask,
|
1167 |
+
forward_encoder_attention_mask,
|
1168 |
+
**ckpt_kwargs,
|
1169 |
+
)[0]
|
1170 |
+
else:
|
1171 |
+
hidden_states = self.resnets[i](hidden_states, temb)
|
1172 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1173 |
+
if cross_attention_dim is not None and idx <= 1:
|
1174 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1175 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1176 |
+
elif cross_attention_dim is not None and idx > 1:
|
1177 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1178 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1179 |
+
else:
|
1180 |
+
forward_encoder_hidden_states = None
|
1181 |
+
forward_encoder_attention_mask = None
|
1182 |
+
hidden_states = self.attentions[i * num_attention_per_layer + idx](
|
1183 |
+
hidden_states,
|
1184 |
+
attention_mask=attention_mask,
|
1185 |
+
encoder_hidden_states=forward_encoder_hidden_states,
|
1186 |
+
encoder_attention_mask=forward_encoder_attention_mask,
|
1187 |
+
return_dict=False,
|
1188 |
+
)[0]
|
1189 |
+
|
1190 |
+
output_states = output_states + (hidden_states,)
|
1191 |
+
|
1192 |
+
if self.downsamplers is not None:
|
1193 |
+
for downsampler in self.downsamplers:
|
1194 |
+
hidden_states = downsampler(hidden_states)
|
1195 |
+
|
1196 |
+
output_states = output_states + (hidden_states,)
|
1197 |
+
|
1198 |
+
return hidden_states, output_states
|
1199 |
+
|
1200 |
+
|
1201 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
1202 |
+
def __init__(
|
1203 |
+
self,
|
1204 |
+
in_channels: int,
|
1205 |
+
temb_channels: int,
|
1206 |
+
dropout: float = 0.0,
|
1207 |
+
num_layers: int = 1,
|
1208 |
+
transformer_layers_per_block: int = 1,
|
1209 |
+
resnet_eps: float = 1e-6,
|
1210 |
+
resnet_time_scale_shift: str = "default",
|
1211 |
+
resnet_act_fn: str = "swish",
|
1212 |
+
resnet_groups: int = 32,
|
1213 |
+
resnet_pre_norm: bool = True,
|
1214 |
+
num_attention_heads=1,
|
1215 |
+
output_scale_factor=1.0,
|
1216 |
+
cross_attention_dim=1280,
|
1217 |
+
use_linear_projection=False,
|
1218 |
+
upcast_attention=False,
|
1219 |
+
):
|
1220 |
+
super().__init__()
|
1221 |
+
|
1222 |
+
self.has_cross_attention = True
|
1223 |
+
self.num_attention_heads = num_attention_heads
|
1224 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
1225 |
+
|
1226 |
+
if isinstance(cross_attention_dim, int):
|
1227 |
+
cross_attention_dim = (cross_attention_dim,)
|
1228 |
+
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4:
|
1229 |
+
raise ValueError(
|
1230 |
+
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention "
|
1231 |
+
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}"
|
1232 |
+
)
|
1233 |
+
self.cross_attention_dim = cross_attention_dim
|
1234 |
+
|
1235 |
+
# there is always at least one resnet
|
1236 |
+
resnets = [
|
1237 |
+
ResnetBlock2D(
|
1238 |
+
in_channels=in_channels,
|
1239 |
+
out_channels=in_channels,
|
1240 |
+
temb_channels=temb_channels,
|
1241 |
+
eps=resnet_eps,
|
1242 |
+
groups=resnet_groups,
|
1243 |
+
dropout=dropout,
|
1244 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1245 |
+
non_linearity=resnet_act_fn,
|
1246 |
+
output_scale_factor=output_scale_factor,
|
1247 |
+
pre_norm=resnet_pre_norm,
|
1248 |
+
)
|
1249 |
+
]
|
1250 |
+
attentions = []
|
1251 |
+
|
1252 |
+
for i in range(num_layers):
|
1253 |
+
for j in range(len(cross_attention_dim)):
|
1254 |
+
attentions.append(
|
1255 |
+
Transformer2DModel(
|
1256 |
+
num_attention_heads,
|
1257 |
+
in_channels // num_attention_heads,
|
1258 |
+
in_channels=in_channels,
|
1259 |
+
num_layers=transformer_layers_per_block,
|
1260 |
+
cross_attention_dim=cross_attention_dim[j],
|
1261 |
+
norm_num_groups=resnet_groups,
|
1262 |
+
use_linear_projection=use_linear_projection,
|
1263 |
+
upcast_attention=upcast_attention,
|
1264 |
+
double_self_attention=True if cross_attention_dim[j] is None else False,
|
1265 |
+
)
|
1266 |
+
)
|
1267 |
+
resnets.append(
|
1268 |
+
ResnetBlock2D(
|
1269 |
+
in_channels=in_channels,
|
1270 |
+
out_channels=in_channels,
|
1271 |
+
temb_channels=temb_channels,
|
1272 |
+
eps=resnet_eps,
|
1273 |
+
groups=resnet_groups,
|
1274 |
+
dropout=dropout,
|
1275 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1276 |
+
non_linearity=resnet_act_fn,
|
1277 |
+
output_scale_factor=output_scale_factor,
|
1278 |
+
pre_norm=resnet_pre_norm,
|
1279 |
+
)
|
1280 |
+
)
|
1281 |
+
|
1282 |
+
self.attentions = nn.ModuleList(attentions)
|
1283 |
+
self.resnets = nn.ModuleList(resnets)
|
1284 |
+
|
1285 |
+
self.gradient_checkpointing = False
|
1286 |
+
|
1287 |
+
def forward(
|
1288 |
+
self,
|
1289 |
+
hidden_states: torch.FloatTensor,
|
1290 |
+
temb: Optional[torch.FloatTensor] = None,
|
1291 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1292 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1293 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1294 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1295 |
+
encoder_hidden_states_1: Optional[torch.FloatTensor] = None,
|
1296 |
+
encoder_attention_mask_1: Optional[torch.FloatTensor] = None,
|
1297 |
+
) -> torch.FloatTensor:
|
1298 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
1299 |
+
num_attention_per_layer = len(self.attentions) // (len(self.resnets) - 1)
|
1300 |
+
|
1301 |
+
encoder_hidden_states_1 = (
|
1302 |
+
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states
|
1303 |
+
)
|
1304 |
+
encoder_attention_mask_1 = (
|
1305 |
+
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
for i in range(len(self.resnets[1:])):
|
1309 |
+
if self.training and self.gradient_checkpointing:
|
1310 |
+
|
1311 |
+
def create_custom_forward(module, return_dict=None):
|
1312 |
+
def custom_forward(*inputs):
|
1313 |
+
if return_dict is not None:
|
1314 |
+
return module(*inputs, return_dict=return_dict)
|
1315 |
+
else:
|
1316 |
+
return module(*inputs)
|
1317 |
+
|
1318 |
+
return custom_forward
|
1319 |
+
|
1320 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1321 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1322 |
+
if cross_attention_dim is not None and idx <= 1:
|
1323 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1324 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1325 |
+
elif cross_attention_dim is not None and idx > 1:
|
1326 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1327 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1328 |
+
else:
|
1329 |
+
forward_encoder_hidden_states = None
|
1330 |
+
forward_encoder_attention_mask = None
|
1331 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1332 |
+
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False),
|
1333 |
+
hidden_states,
|
1334 |
+
forward_encoder_hidden_states,
|
1335 |
+
None, # timestep
|
1336 |
+
None, # class_labels
|
1337 |
+
cross_attention_kwargs,
|
1338 |
+
attention_mask,
|
1339 |
+
forward_encoder_attention_mask,
|
1340 |
+
**ckpt_kwargs,
|
1341 |
+
)[0]
|
1342 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1343 |
+
create_custom_forward(self.resnets[i + 1]),
|
1344 |
+
hidden_states,
|
1345 |
+
temb,
|
1346 |
+
**ckpt_kwargs,
|
1347 |
+
)
|
1348 |
+
else:
|
1349 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1350 |
+
if cross_attention_dim is not None and idx <= 1:
|
1351 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1352 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1353 |
+
elif cross_attention_dim is not None and idx > 1:
|
1354 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1355 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1356 |
+
else:
|
1357 |
+
forward_encoder_hidden_states = None
|
1358 |
+
forward_encoder_attention_mask = None
|
1359 |
+
hidden_states = self.attentions[i * num_attention_per_layer + idx](
|
1360 |
+
hidden_states,
|
1361 |
+
attention_mask=attention_mask,
|
1362 |
+
encoder_hidden_states=forward_encoder_hidden_states,
|
1363 |
+
encoder_attention_mask=forward_encoder_attention_mask,
|
1364 |
+
return_dict=False,
|
1365 |
+
)[0]
|
1366 |
+
|
1367 |
+
hidden_states = self.resnets[i + 1](hidden_states, temb)
|
1368 |
+
|
1369 |
+
return hidden_states
|
1370 |
+
|
1371 |
+
|
1372 |
+
class CrossAttnUpBlock2D(nn.Module):
|
1373 |
+
def __init__(
|
1374 |
+
self,
|
1375 |
+
in_channels: int,
|
1376 |
+
out_channels: int,
|
1377 |
+
prev_output_channel: int,
|
1378 |
+
temb_channels: int,
|
1379 |
+
dropout: float = 0.0,
|
1380 |
+
num_layers: int = 1,
|
1381 |
+
transformer_layers_per_block: int = 1,
|
1382 |
+
resnet_eps: float = 1e-6,
|
1383 |
+
resnet_time_scale_shift: str = "default",
|
1384 |
+
resnet_act_fn: str = "swish",
|
1385 |
+
resnet_groups: int = 32,
|
1386 |
+
resnet_pre_norm: bool = True,
|
1387 |
+
num_attention_heads=1,
|
1388 |
+
cross_attention_dim=1280,
|
1389 |
+
output_scale_factor=1.0,
|
1390 |
+
add_upsample=True,
|
1391 |
+
use_linear_projection=False,
|
1392 |
+
only_cross_attention=False,
|
1393 |
+
upcast_attention=False,
|
1394 |
+
):
|
1395 |
+
super().__init__()
|
1396 |
+
resnets = []
|
1397 |
+
attentions = []
|
1398 |
+
|
1399 |
+
self.has_cross_attention = True
|
1400 |
+
self.num_attention_heads = num_attention_heads
|
1401 |
+
|
1402 |
+
if isinstance(cross_attention_dim, int):
|
1403 |
+
cross_attention_dim = (cross_attention_dim,)
|
1404 |
+
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4:
|
1405 |
+
raise ValueError(
|
1406 |
+
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention "
|
1407 |
+
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}"
|
1408 |
+
)
|
1409 |
+
self.cross_attention_dim = cross_attention_dim
|
1410 |
+
|
1411 |
+
for i in range(num_layers):
|
1412 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
1413 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
1414 |
+
|
1415 |
+
resnets.append(
|
1416 |
+
ResnetBlock2D(
|
1417 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1418 |
+
out_channels=out_channels,
|
1419 |
+
temb_channels=temb_channels,
|
1420 |
+
eps=resnet_eps,
|
1421 |
+
groups=resnet_groups,
|
1422 |
+
dropout=dropout,
|
1423 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1424 |
+
non_linearity=resnet_act_fn,
|
1425 |
+
output_scale_factor=output_scale_factor,
|
1426 |
+
pre_norm=resnet_pre_norm,
|
1427 |
+
)
|
1428 |
+
)
|
1429 |
+
for j in range(len(cross_attention_dim)):
|
1430 |
+
attentions.append(
|
1431 |
+
Transformer2DModel(
|
1432 |
+
num_attention_heads,
|
1433 |
+
out_channels // num_attention_heads,
|
1434 |
+
in_channels=out_channels,
|
1435 |
+
num_layers=transformer_layers_per_block,
|
1436 |
+
cross_attention_dim=cross_attention_dim[j],
|
1437 |
+
norm_num_groups=resnet_groups,
|
1438 |
+
use_linear_projection=use_linear_projection,
|
1439 |
+
only_cross_attention=only_cross_attention,
|
1440 |
+
upcast_attention=upcast_attention,
|
1441 |
+
double_self_attention=True if cross_attention_dim[j] is None else False,
|
1442 |
+
)
|
1443 |
+
)
|
1444 |
+
self.attentions = nn.ModuleList(attentions)
|
1445 |
+
self.resnets = nn.ModuleList(resnets)
|
1446 |
+
|
1447 |
+
if add_upsample:
|
1448 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
1449 |
+
else:
|
1450 |
+
self.upsamplers = None
|
1451 |
+
|
1452 |
+
self.gradient_checkpointing = False
|
1453 |
+
|
1454 |
+
def forward(
|
1455 |
+
self,
|
1456 |
+
hidden_states: torch.FloatTensor,
|
1457 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1458 |
+
temb: Optional[torch.FloatTensor] = None,
|
1459 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1460 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1461 |
+
upsample_size: Optional[int] = None,
|
1462 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1463 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1464 |
+
encoder_hidden_states_1: Optional[torch.FloatTensor] = None,
|
1465 |
+
encoder_attention_mask_1: Optional[torch.FloatTensor] = None,
|
1466 |
+
):
|
1467 |
+
num_layers = len(self.resnets)
|
1468 |
+
num_attention_per_layer = len(self.attentions) // num_layers
|
1469 |
+
|
1470 |
+
encoder_hidden_states_1 = (
|
1471 |
+
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states
|
1472 |
+
)
|
1473 |
+
encoder_attention_mask_1 = (
|
1474 |
+
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask
|
1475 |
+
)
|
1476 |
+
|
1477 |
+
for i in range(num_layers):
|
1478 |
+
# pop res hidden states
|
1479 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1480 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1481 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1482 |
+
|
1483 |
+
if self.training and self.gradient_checkpointing:
|
1484 |
+
|
1485 |
+
def create_custom_forward(module, return_dict=None):
|
1486 |
+
def custom_forward(*inputs):
|
1487 |
+
if return_dict is not None:
|
1488 |
+
return module(*inputs, return_dict=return_dict)
|
1489 |
+
else:
|
1490 |
+
return module(*inputs)
|
1491 |
+
|
1492 |
+
return custom_forward
|
1493 |
+
|
1494 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1495 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1496 |
+
create_custom_forward(self.resnets[i]),
|
1497 |
+
hidden_states,
|
1498 |
+
temb,
|
1499 |
+
**ckpt_kwargs,
|
1500 |
+
)
|
1501 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1502 |
+
if cross_attention_dim is not None and idx <= 1:
|
1503 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1504 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1505 |
+
elif cross_attention_dim is not None and idx > 1:
|
1506 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1507 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1508 |
+
else:
|
1509 |
+
forward_encoder_hidden_states = None
|
1510 |
+
forward_encoder_attention_mask = None
|
1511 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1512 |
+
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False),
|
1513 |
+
hidden_states,
|
1514 |
+
forward_encoder_hidden_states,
|
1515 |
+
None, # timestep
|
1516 |
+
None, # class_labels
|
1517 |
+
cross_attention_kwargs,
|
1518 |
+
attention_mask,
|
1519 |
+
forward_encoder_attention_mask,
|
1520 |
+
**ckpt_kwargs,
|
1521 |
+
)[0]
|
1522 |
+
else:
|
1523 |
+
hidden_states = self.resnets[i](hidden_states, temb)
|
1524 |
+
for idx, cross_attention_dim in enumerate(self.cross_attention_dim):
|
1525 |
+
if cross_attention_dim is not None and idx <= 1:
|
1526 |
+
forward_encoder_hidden_states = encoder_hidden_states
|
1527 |
+
forward_encoder_attention_mask = encoder_attention_mask
|
1528 |
+
elif cross_attention_dim is not None and idx > 1:
|
1529 |
+
forward_encoder_hidden_states = encoder_hidden_states_1
|
1530 |
+
forward_encoder_attention_mask = encoder_attention_mask_1
|
1531 |
+
else:
|
1532 |
+
forward_encoder_hidden_states = None
|
1533 |
+
forward_encoder_attention_mask = None
|
1534 |
+
hidden_states = self.attentions[i * num_attention_per_layer + idx](
|
1535 |
+
hidden_states,
|
1536 |
+
attention_mask=attention_mask,
|
1537 |
+
encoder_hidden_states=forward_encoder_hidden_states,
|
1538 |
+
encoder_attention_mask=forward_encoder_attention_mask,
|
1539 |
+
return_dict=False,
|
1540 |
+
)[0]
|
1541 |
+
|
1542 |
+
if self.upsamplers is not None:
|
1543 |
+
for upsampler in self.upsamplers:
|
1544 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
1545 |
+
|
1546 |
+
return hidden_states
|
pipeline/morph_pipeline_successed_ver1.py
ADDED
@@ -0,0 +1,1435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from audio_encoder.AudioMAE import AudioMAEConditionCTPoolRand, extract_kaldi_fbank_feature
|
2 |
+
import torchaudio
|
3 |
+
import torchaudio.transforms as T
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import inspect
|
6 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
7 |
+
from APadapter.ap_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
|
8 |
+
import random
|
9 |
+
import os
|
10 |
+
import scipy
|
11 |
+
import safetensors
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from transformers import (
|
15 |
+
ClapFeatureExtractor,
|
16 |
+
ClapModel,
|
17 |
+
GPT2Model,
|
18 |
+
RobertaTokenizer,
|
19 |
+
RobertaTokenizerFast,
|
20 |
+
SpeechT5HifiGan,
|
21 |
+
T5EncoderModel,
|
22 |
+
T5Tokenizer,
|
23 |
+
T5TokenizerFast,
|
24 |
+
)
|
25 |
+
|
26 |
+
from diffusers.loaders import AttnProcsLayers
|
27 |
+
from diffusers import AutoencoderKL
|
28 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
29 |
+
from diffusers.utils import (
|
30 |
+
is_accelerate_available,
|
31 |
+
is_accelerate_version,
|
32 |
+
is_librosa_available,
|
33 |
+
logging,
|
34 |
+
replace_example_docstring,
|
35 |
+
)
|
36 |
+
from diffusers.utils.torch_utils import randn_tensor
|
37 |
+
from diffusers.pipelines.pipeline_utils import AudioPipelineOutput, DiffusionPipeline
|
38 |
+
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel
|
39 |
+
from diffusers.loaders import TextualInversionLoaderMixin
|
40 |
+
|
41 |
+
from tqdm import tqdm # for progress bar
|
42 |
+
from utils.lora_utils_successed_ver1 import train_lora, load_lora, wav_to_mel
|
43 |
+
from utils.model_utils import slerp, do_replace_attn
|
44 |
+
from utils.alpha_scheduler import AlphaScheduler
|
45 |
+
from audioldm.utils import default_audioldm_config
|
46 |
+
from audioldm.audio import TacotronSTFT, read_wav_file
|
47 |
+
from audioldm.audio.tools import get_mel_from_wav, _pad_spec, normalize_wav, pad_wav
|
48 |
+
if is_librosa_available():
|
49 |
+
import librosa
|
50 |
+
import warnings
|
51 |
+
import matplotlib.pyplot as plt
|
52 |
+
|
53 |
+
|
54 |
+
from .pipeline_audioldm2 import AudioLDM2Pipeline
|
55 |
+
|
56 |
+
pipeline_trained = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large", torch_dtype=torch.float32)
|
57 |
+
pipeline_trained = pipeline_trained.to("cuda")
|
58 |
+
layer_num = 0
|
59 |
+
cross = [None, None, 768, 768, 1024, 1024, None, None]
|
60 |
+
unet = pipeline_trained.unet
|
61 |
+
|
62 |
+
|
63 |
+
attn_procs = {}
|
64 |
+
for name in unet.attn_processors.keys():
|
65 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
66 |
+
if name.startswith("mid_block"):
|
67 |
+
hidden_size = unet.config.block_out_channels[-1]
|
68 |
+
elif name.startswith("up_blocks"):
|
69 |
+
block_id = int(name[len("up_blocks.")])
|
70 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
71 |
+
elif name.startswith("down_blocks"):
|
72 |
+
block_id = int(name[len("down_blocks.")])
|
73 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
74 |
+
|
75 |
+
if cross_attention_dim is None:
|
76 |
+
attn_procs[name] = AttnProcessor2_0()
|
77 |
+
else:
|
78 |
+
cross_attention_dim = cross[layer_num % 8]
|
79 |
+
layer_num += 1
|
80 |
+
if cross_attention_dim == 768:
|
81 |
+
attn_procs[name] = IPAttnProcessor2_0(
|
82 |
+
hidden_size=hidden_size,
|
83 |
+
name=name,
|
84 |
+
cross_attention_dim=cross_attention_dim,
|
85 |
+
scale=0.5,
|
86 |
+
num_tokens=8,
|
87 |
+
do_copy=False
|
88 |
+
).to("cuda", dtype=torch.float32)
|
89 |
+
else:
|
90 |
+
attn_procs[name] = AttnProcessor2_0()
|
91 |
+
|
92 |
+
state_dict = torch.load('/Data/home/Dennis/DeepMIR-2024/Final_Project/AP-adapter/pytorch_model.bin', map_location="cuda")
|
93 |
+
for name, processor in attn_procs.items():
|
94 |
+
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'):
|
95 |
+
weight_name_v = name + ".to_v_ip.weight"
|
96 |
+
weight_name_k = name + ".to_k_ip.weight"
|
97 |
+
processor.to_v_ip.weight = torch.nn.Parameter(state_dict[weight_name_v].half())
|
98 |
+
processor.to_k_ip.weight = torch.nn.Parameter(state_dict[weight_name_k].half())
|
99 |
+
|
100 |
+
unet.set_attn_processor(attn_procs)
|
101 |
+
unet.to("cuda", dtype=torch.float32)
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def visualize_mel_spectrogram(mel_spect_tensor, output_path=None):
|
107 |
+
mel_spect_array = mel_spect_tensor.squeeze().transpose(1, 0).detach().cpu().numpy()
|
108 |
+
plt.figure(figsize=(10, 5))
|
109 |
+
plt.imshow(mel_spect_array, aspect='auto', origin='lower', cmap='magma')
|
110 |
+
plt.colorbar(label="Log-Mel Energy")
|
111 |
+
plt.title("Mel-Spectrogram")
|
112 |
+
plt.xlabel("Time")
|
113 |
+
plt.ylabel("Mel Frequency Bins")
|
114 |
+
plt.tight_layout()
|
115 |
+
if output_path:
|
116 |
+
plt.savefig(output_path, dpi=300)
|
117 |
+
print(f"Mel-spectrogram saved to {output_path}")
|
118 |
+
else:
|
119 |
+
plt.show()
|
120 |
+
|
121 |
+
|
122 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
123 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
124 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
125 |
+
|
126 |
+
class StoreProcessor():
|
127 |
+
def __init__(self, original_processor, value_dict, name):
|
128 |
+
self.original_processor = original_processor
|
129 |
+
self.value_dict = value_dict
|
130 |
+
self.name = name
|
131 |
+
self.value_dict[self.name] = dict()
|
132 |
+
self.id = 0
|
133 |
+
|
134 |
+
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
|
135 |
+
# Is self attention
|
136 |
+
if encoder_hidden_states is None:
|
137 |
+
# 將 hidden_states 存入 value_dict 中,名稱為 self.name
|
138 |
+
# 如果輸入沒有 encoder_hidden_states,表示是自注意力層,則將輸入的 hidden_states 儲存在 value_dict 中。
|
139 |
+
# print(f'In StoreProcessor: {self.name} {self.id}')
|
140 |
+
self.value_dict[self.name][self.id] = hidden_states.detach()
|
141 |
+
self.id += 1
|
142 |
+
# 調用原始處理器,執行正常的注意力操作
|
143 |
+
res = self.original_processor(attn, hidden_states, *args,
|
144 |
+
encoder_hidden_states=encoder_hidden_states,
|
145 |
+
attention_mask=attention_mask,
|
146 |
+
**kwargs)
|
147 |
+
return res
|
148 |
+
|
149 |
+
|
150 |
+
class LoadProcessor():
|
151 |
+
def __init__(self, original_processor, name, aud1_dict, aud2_dict, alpha, beta=0, lamd=0.6):
|
152 |
+
super().__init__()
|
153 |
+
self.original_processor = original_processor
|
154 |
+
self.name = name
|
155 |
+
self.aud1_dict = aud1_dict
|
156 |
+
self.aud2_dict = aud2_dict
|
157 |
+
self.alpha = alpha
|
158 |
+
self.beta = beta
|
159 |
+
self.lamd = lamd
|
160 |
+
self.id = 0
|
161 |
+
|
162 |
+
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
|
163 |
+
# Is self attention
|
164 |
+
# 判斷是否是自注意力(self-attention)
|
165 |
+
if encoder_hidden_states is None:
|
166 |
+
# 如果當前索引小於 10 倍的 self.lamd,使用自定義的混合邏輯
|
167 |
+
if self.id < 10 * self.lamd:
|
168 |
+
map0 = self.aud1_dict[self.name][self.id]
|
169 |
+
map1 = self.aud2_dict[self.name][self.id]
|
170 |
+
cross_map = self.beta * hidden_states + \
|
171 |
+
(1 - self.beta) * ((1 - self.alpha) * map0 + self.alpha * map1)
|
172 |
+
# 調用原始處理器,將 cross_map 作為 encoder_hidden_states 傳入
|
173 |
+
res = self.original_processor(attn, hidden_states, *args,
|
174 |
+
encoder_hidden_states=cross_map,
|
175 |
+
attention_mask=attention_mask,
|
176 |
+
**kwargs)
|
177 |
+
else:
|
178 |
+
# 否則,使用原始的 encoder_hidden_states(可能為 None)
|
179 |
+
res = self.original_processor(attn, hidden_states, *args,
|
180 |
+
encoder_hidden_states=encoder_hidden_states,
|
181 |
+
attention_mask=attention_mask,
|
182 |
+
**kwargs)
|
183 |
+
|
184 |
+
self.id += 1
|
185 |
+
# 如果索引到達 self.aud1_dict[self.name] 的長度,重置索引為 0
|
186 |
+
if self.id == len(self.aud1_dict[self.name]):
|
187 |
+
self.id = 0
|
188 |
+
else:
|
189 |
+
# 如果是跨注意力(encoder_hidden_states 不為 None),直接使用原始處理器
|
190 |
+
res = self.original_processor(attn, hidden_states, *args,
|
191 |
+
encoder_hidden_states=encoder_hidden_states,
|
192 |
+
attention_mask=attention_mask,
|
193 |
+
**kwargs)
|
194 |
+
|
195 |
+
return res
|
196 |
+
|
197 |
+
|
198 |
+
def prepare_inputs_for_generation(
|
199 |
+
inputs_embeds,
|
200 |
+
attention_mask=None,
|
201 |
+
past_key_values=None,
|
202 |
+
**kwargs,):
|
203 |
+
if past_key_values is not None:
|
204 |
+
# only last token for inputs_embeds if past is defined in kwargs
|
205 |
+
inputs_embeds = inputs_embeds[:, -1:]
|
206 |
+
|
207 |
+
return {
|
208 |
+
"inputs_embeds": inputs_embeds,
|
209 |
+
"attention_mask": attention_mask,
|
210 |
+
"past_key_values": past_key_values,
|
211 |
+
"use_cache": kwargs.get("use_cache"),
|
212 |
+
}
|
213 |
+
|
214 |
+
|
215 |
+
class AudioLDM2MorphPipeline(DiffusionPipeline,TextualInversionLoaderMixin):
|
216 |
+
r"""
|
217 |
+
Pipeline for text-to-audio generation using AudioLDM2.
|
218 |
+
|
219 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
220 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
221 |
+
|
222 |
+
Args:
|
223 |
+
vae ([`AutoencoderKL`]):
|
224 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
225 |
+
text_encoder ([`~transformers.ClapModel`]):
|
226 |
+
First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model
|
227 |
+
[CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection),
|
228 |
+
specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The
|
229 |
+
text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to
|
230 |
+
rank generated waveforms against the text prompt by computing similarity scores.
|
231 |
+
text_encoder_2 ([`~transformers.T5EncoderModel`]):
|
232 |
+
Second frozen text-encoder. AudioLDM2 uses the encoder of
|
233 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
234 |
+
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant.
|
235 |
+
projection_model ([`AudioLDM2ProjectionModel`]):
|
236 |
+
A trained model used to linearly project the hidden-states from the first and second text encoder models
|
237 |
+
and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are
|
238 |
+
concatenated to give the input to the language model.
|
239 |
+
language_model ([`~transformers.GPT2Model`]):
|
240 |
+
An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected
|
241 |
+
outputs from the two text encoders.
|
242 |
+
tokenizer ([`~transformers.RobertaTokenizer`]):
|
243 |
+
Tokenizer to tokenize text for the first frozen text-encoder.
|
244 |
+
tokenizer_2 ([`~transformers.T5Tokenizer`]):
|
245 |
+
Tokenizer to tokenize text for the second frozen text-encoder.
|
246 |
+
feature_extractor ([`~transformers.ClapFeatureExtractor`]):
|
247 |
+
Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring.
|
248 |
+
unet ([`UNet2DConditionModel`]):
|
249 |
+
A `UNet2DConditionModel` to denoise the encoded audio latents.
|
250 |
+
scheduler ([`SchedulerMixin`]):
|
251 |
+
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
252 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
253 |
+
vocoder ([`~transformers.SpeechT5HifiGan`]):
|
254 |
+
Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform.
|
255 |
+
"""
|
256 |
+
|
257 |
+
def __init__(
|
258 |
+
self,
|
259 |
+
vae: AutoencoderKL,
|
260 |
+
text_encoder: ClapModel,
|
261 |
+
text_encoder_2: T5EncoderModel,
|
262 |
+
projection_model: AudioLDM2ProjectionModel,
|
263 |
+
language_model: GPT2Model,
|
264 |
+
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
|
265 |
+
tokenizer_2: Union[T5Tokenizer, T5TokenizerFast],
|
266 |
+
feature_extractor: ClapFeatureExtractor,
|
267 |
+
unet: AudioLDM2UNet2DConditionModel,
|
268 |
+
scheduler: KarrasDiffusionSchedulers,
|
269 |
+
vocoder: SpeechT5HifiGan,
|
270 |
+
):
|
271 |
+
super().__init__()
|
272 |
+
|
273 |
+
self.register_modules(
|
274 |
+
vae=vae,
|
275 |
+
text_encoder=text_encoder,
|
276 |
+
text_encoder_2=text_encoder_2,
|
277 |
+
projection_model=projection_model,
|
278 |
+
language_model=language_model,
|
279 |
+
tokenizer=tokenizer,
|
280 |
+
tokenizer_2=tokenizer_2,
|
281 |
+
feature_extractor=feature_extractor,
|
282 |
+
unet=unet,
|
283 |
+
scheduler=scheduler,
|
284 |
+
vocoder=vocoder,
|
285 |
+
)
|
286 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
287 |
+
self.aud1_dict = dict()
|
288 |
+
self.aud2_dict = dict()
|
289 |
+
|
290 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
291 |
+
def enable_vae_slicing(self):
|
292 |
+
r"""
|
293 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
294 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
295 |
+
"""
|
296 |
+
self.vae.enable_slicing()
|
297 |
+
|
298 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
299 |
+
def disable_vae_slicing(self):
|
300 |
+
r"""
|
301 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
302 |
+
computing decoding in one step.
|
303 |
+
"""
|
304 |
+
self.vae.disable_slicing()
|
305 |
+
|
306 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
307 |
+
r"""
|
308 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
309 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
310 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
311 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
312 |
+
"""
|
313 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
314 |
+
from accelerate import cpu_offload_with_hook
|
315 |
+
else:
|
316 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
317 |
+
|
318 |
+
device = torch.device(f"cuda:{gpu_id}")
|
319 |
+
|
320 |
+
if self.device.type != "cpu":
|
321 |
+
self.to("cpu", silence_dtype_warnings=True)
|
322 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
323 |
+
|
324 |
+
model_sequence = [
|
325 |
+
self.text_encoder.text_model,
|
326 |
+
self.text_encoder.text_projection,
|
327 |
+
self.text_encoder_2,
|
328 |
+
self.projection_model,
|
329 |
+
self.language_model,
|
330 |
+
self.unet,
|
331 |
+
self.vae,
|
332 |
+
self.vocoder,
|
333 |
+
self.text_encoder,
|
334 |
+
]
|
335 |
+
|
336 |
+
hook = None
|
337 |
+
for cpu_offloaded_model in model_sequence:
|
338 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
339 |
+
|
340 |
+
# We'll offload the last model manually.
|
341 |
+
self.final_offload_hook = hook
|
342 |
+
|
343 |
+
def generate_language_model(
|
344 |
+
self,
|
345 |
+
inputs_embeds: torch.Tensor = None,
|
346 |
+
max_new_tokens: int = 512,
|
347 |
+
**model_kwargs,
|
348 |
+
):
|
349 |
+
"""
|
350 |
+
|
351 |
+
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
|
352 |
+
|
353 |
+
Parameters:
|
354 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
355 |
+
The sequence used as a prompt for the generation.
|
356 |
+
max_new_tokens (`int`):
|
357 |
+
Number of new tokens to generate.
|
358 |
+
model_kwargs (`Dict[str, Any]`, *optional*):
|
359 |
+
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
|
360 |
+
function of the model.
|
361 |
+
|
362 |
+
Return:
|
363 |
+
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
364 |
+
The sequence of generated hidden-states.
|
365 |
+
"""
|
366 |
+
max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens
|
367 |
+
model_kwargs = self.language_model._get_initial_cache_position(inputs_embeds, model_kwargs)
|
368 |
+
for _ in range(max_new_tokens):
|
369 |
+
# prepare model inputs
|
370 |
+
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)
|
371 |
+
|
372 |
+
# forward pass to get next hidden states
|
373 |
+
output = self.language_model(**model_inputs, return_dict=True)
|
374 |
+
|
375 |
+
next_hidden_states = output.last_hidden_state
|
376 |
+
|
377 |
+
# Update the model input
|
378 |
+
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
|
379 |
+
|
380 |
+
# Update generated hidden states, model inputs, and length for next step
|
381 |
+
model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs)
|
382 |
+
|
383 |
+
return inputs_embeds[:, -max_new_tokens:, :]
|
384 |
+
|
385 |
+
def encode_prompt(
|
386 |
+
self,
|
387 |
+
prompt,
|
388 |
+
device,
|
389 |
+
num_waveforms_per_prompt,
|
390 |
+
do_classifier_free_guidance,
|
391 |
+
negative_prompt=None,
|
392 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
393 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
394 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
395 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
396 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
397 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
398 |
+
max_new_tokens: Optional[int] = None,
|
399 |
+
):
|
400 |
+
r"""
|
401 |
+
Encodes the prompt into text encoder hidden states.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
prompt (`str` or `List[str]`, *optional*):
|
405 |
+
prompt to be encoded
|
406 |
+
device (`torch.device`):
|
407 |
+
torch device
|
408 |
+
num_waveforms_per_prompt (`int`):
|
409 |
+
number of waveforms that should be generated per prompt
|
410 |
+
do_classifier_free_guidance (`bool`):
|
411 |
+
whether to use classifier free guidance or not
|
412 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
413 |
+
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
414 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
415 |
+
less than `1`).
|
416 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
417 |
+
Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.*
|
418 |
+
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument.
|
419 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
420 |
+
Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs,
|
421 |
+
*e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
422 |
+
`negative_prompt` input argument.
|
423 |
+
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
424 |
+
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
|
425 |
+
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
|
426 |
+
argument.
|
427 |
+
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
428 |
+
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
|
429 |
+
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
430 |
+
`negative_prompt` input argument.
|
431 |
+
attention_mask (`torch.LongTensor`, *optional*):
|
432 |
+
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
433 |
+
be computed from `prompt` input argument.
|
434 |
+
negative_attention_mask (`torch.LongTensor`, *optional*):
|
435 |
+
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
|
436 |
+
mask will be computed from `negative_prompt` input argument.
|
437 |
+
max_new_tokens (`int`, *optional*, defaults to None):
|
438 |
+
The number of new tokens to generate with the GPT2 language model.
|
439 |
+
Returns:
|
440 |
+
prompt_embeds (`torch.FloatTensor`):
|
441 |
+
Text embeddings from the Flan T5 model.
|
442 |
+
attention_mask (`torch.LongTensor`):
|
443 |
+
Attention mask to be applied to the `prompt_embeds`.
|
444 |
+
generated_prompt_embeds (`torch.FloatTensor`):
|
445 |
+
Text embeddings generated from the GPT2 langauge model.
|
446 |
+
|
447 |
+
Example:
|
448 |
+
|
449 |
+
```python
|
450 |
+
>>> import scipy
|
451 |
+
>>> import torch
|
452 |
+
>>> from diffusers import AudioLDM2Pipeline
|
453 |
+
|
454 |
+
>>> repo_id = "cvssp/audioldm2"
|
455 |
+
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
456 |
+
>>> pipe = pipe.to("cuda")
|
457 |
+
|
458 |
+
>>> # Get text embedding vectors
|
459 |
+
>>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt(
|
460 |
+
... prompt="Techno music with a strong, upbeat tempo and high melodic riffs",
|
461 |
+
... device="cuda",
|
462 |
+
... do_classifier_free_guidance=True,
|
463 |
+
... )
|
464 |
+
|
465 |
+
>>> # Pass text embeddings to pipeline for text-conditional audio generation
|
466 |
+
>>> audio = pipe(
|
467 |
+
... prompt_embeds=prompt_embeds,
|
468 |
+
... attention_mask=attention_mask,
|
469 |
+
... generated_prompt_embeds=generated_prompt_embeds,
|
470 |
+
... num_inference_steps=200,
|
471 |
+
... audio_length_in_s=10.0,
|
472 |
+
... ).audios[0]
|
473 |
+
|
474 |
+
>>> # save generated audio sample
|
475 |
+
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
|
476 |
+
```"""
|
477 |
+
# print("prompt",prompt)
|
478 |
+
if prompt is not None and isinstance(prompt, str):
|
479 |
+
batch_size = 1
|
480 |
+
elif prompt is not None and isinstance(prompt, list):
|
481 |
+
batch_size = len(prompt)
|
482 |
+
else:
|
483 |
+
batch_size = prompt_embeds.shape[0]
|
484 |
+
|
485 |
+
# Define tokenizers and text encoders
|
486 |
+
tokenizers = [self.tokenizer, self.tokenizer_2]
|
487 |
+
text_encoders = [self.text_encoder, self.text_encoder_2]
|
488 |
+
|
489 |
+
if prompt_embeds is None:
|
490 |
+
prompt_embeds_list = []
|
491 |
+
attention_mask_list = []
|
492 |
+
|
493 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
494 |
+
text_inputs = tokenizer(
|
495 |
+
prompt,
|
496 |
+
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
|
497 |
+
max_length=tokenizer.model_max_length,
|
498 |
+
truncation=True,
|
499 |
+
return_tensors="pt",
|
500 |
+
)
|
501 |
+
text_input_ids = text_inputs.input_ids
|
502 |
+
attention_mask = text_inputs.attention_mask
|
503 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
504 |
+
|
505 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
506 |
+
text_input_ids, untruncated_ids
|
507 |
+
):
|
508 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
509 |
+
logger.warning(
|
510 |
+
f"The following part of your input was truncated because {text_encoder.config.model_type} can "
|
511 |
+
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
|
512 |
+
)
|
513 |
+
|
514 |
+
text_input_ids = text_input_ids.to(device)
|
515 |
+
attention_mask = attention_mask.to(device)
|
516 |
+
|
517 |
+
if text_encoder.config.model_type == "clap":
|
518 |
+
prompt_embeds = text_encoder.get_text_features(
|
519 |
+
text_input_ids,
|
520 |
+
attention_mask=attention_mask,
|
521 |
+
)
|
522 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
523 |
+
prompt_embeds = prompt_embeds[:, None, :]
|
524 |
+
# make sure that we attend to this single hidden-state
|
525 |
+
attention_mask = attention_mask.new_ones((batch_size, 1))
|
526 |
+
else:
|
527 |
+
prompt_embeds = text_encoder(
|
528 |
+
text_input_ids,
|
529 |
+
attention_mask=attention_mask,
|
530 |
+
)
|
531 |
+
prompt_embeds = prompt_embeds[0]
|
532 |
+
|
533 |
+
prompt_embeds_list.append(prompt_embeds)
|
534 |
+
attention_mask_list.append(attention_mask)
|
535 |
+
|
536 |
+
projection_output = self.projection_model(
|
537 |
+
hidden_states=prompt_embeds_list[0],
|
538 |
+
hidden_states_1=prompt_embeds_list[1],
|
539 |
+
attention_mask=attention_mask_list[0],
|
540 |
+
attention_mask_1=attention_mask_list[1],
|
541 |
+
)
|
542 |
+
projected_prompt_embeds = projection_output.hidden_states
|
543 |
+
projected_attention_mask = projection_output.attention_mask
|
544 |
+
|
545 |
+
generated_prompt_embeds = self.generate_language_model(
|
546 |
+
projected_prompt_embeds,
|
547 |
+
attention_mask=projected_attention_mask,
|
548 |
+
max_new_tokens=max_new_tokens,
|
549 |
+
)
|
550 |
+
|
551 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
552 |
+
attention_mask = (
|
553 |
+
attention_mask.to(device=device)
|
554 |
+
if attention_mask is not None
|
555 |
+
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
556 |
+
)
|
557 |
+
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device)
|
558 |
+
|
559 |
+
bs_embed, seq_len, hidden_size = prompt_embeds.shape
|
560 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
561 |
+
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
562 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)
|
563 |
+
|
564 |
+
# duplicate attention mask for each generation per prompt
|
565 |
+
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
|
566 |
+
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
|
567 |
+
|
568 |
+
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
|
569 |
+
# duplicate generated embeddings for each generation per prompt, using mps friendly method
|
570 |
+
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
571 |
+
generated_prompt_embeds = generated_prompt_embeds.view(
|
572 |
+
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
|
573 |
+
)
|
574 |
+
|
575 |
+
# get unconditional embeddings for classifier free guidance
|
576 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
577 |
+
uncond_tokens: List[str]
|
578 |
+
if negative_prompt is None:
|
579 |
+
uncond_tokens = [""] * batch_size
|
580 |
+
elif type(prompt) is not type(negative_prompt):
|
581 |
+
raise TypeError(
|
582 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
583 |
+
f" {type(prompt)}."
|
584 |
+
)
|
585 |
+
elif isinstance(negative_prompt, str):
|
586 |
+
uncond_tokens = [negative_prompt]
|
587 |
+
elif batch_size != len(negative_prompt):
|
588 |
+
raise ValueError(
|
589 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
590 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
591 |
+
" the batch size of `prompt`."
|
592 |
+
)
|
593 |
+
else:
|
594 |
+
uncond_tokens = negative_prompt
|
595 |
+
|
596 |
+
negative_prompt_embeds_list = []
|
597 |
+
negative_attention_mask_list = []
|
598 |
+
max_length = prompt_embeds.shape[1]
|
599 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
600 |
+
uncond_input = tokenizer(
|
601 |
+
uncond_tokens,
|
602 |
+
padding="max_length",
|
603 |
+
max_length=tokenizer.model_max_length
|
604 |
+
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
605 |
+
else max_length,
|
606 |
+
truncation=True,
|
607 |
+
return_tensors="pt",
|
608 |
+
)
|
609 |
+
|
610 |
+
uncond_input_ids = uncond_input.input_ids.to(device)
|
611 |
+
negative_attention_mask = uncond_input.attention_mask.to(device)
|
612 |
+
|
613 |
+
if text_encoder.config.model_type == "clap":
|
614 |
+
negative_prompt_embeds = text_encoder.get_text_features(
|
615 |
+
uncond_input_ids,
|
616 |
+
attention_mask=negative_attention_mask,
|
617 |
+
)
|
618 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
619 |
+
negative_prompt_embeds = negative_prompt_embeds[:, None, :]
|
620 |
+
# make sure that we attend to this single hidden-state
|
621 |
+
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
|
622 |
+
else:
|
623 |
+
negative_prompt_embeds = text_encoder(
|
624 |
+
uncond_input_ids,
|
625 |
+
attention_mask=negative_attention_mask,
|
626 |
+
)
|
627 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
628 |
+
|
629 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
630 |
+
negative_attention_mask_list.append(negative_attention_mask)
|
631 |
+
|
632 |
+
projection_output = self.projection_model(
|
633 |
+
hidden_states=negative_prompt_embeds_list[0],
|
634 |
+
hidden_states_1=negative_prompt_embeds_list[1],
|
635 |
+
attention_mask=negative_attention_mask_list[0],
|
636 |
+
attention_mask_1=negative_attention_mask_list[1],
|
637 |
+
)
|
638 |
+
negative_projected_prompt_embeds = projection_output.hidden_states
|
639 |
+
negative_projected_attention_mask = projection_output.attention_mask
|
640 |
+
|
641 |
+
negative_generated_prompt_embeds = self.generate_language_model(
|
642 |
+
negative_projected_prompt_embeds,
|
643 |
+
attention_mask=negative_projected_attention_mask,
|
644 |
+
max_new_tokens=max_new_tokens,
|
645 |
+
)
|
646 |
+
|
647 |
+
if do_classifier_free_guidance:
|
648 |
+
seq_len = negative_prompt_embeds.shape[1]
|
649 |
+
|
650 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
651 |
+
negative_attention_mask = (
|
652 |
+
negative_attention_mask.to(device=device)
|
653 |
+
if negative_attention_mask is not None
|
654 |
+
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
655 |
+
)
|
656 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
|
657 |
+
dtype=self.language_model.dtype, device=device
|
658 |
+
)
|
659 |
+
|
660 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
661 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
662 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
|
663 |
+
|
664 |
+
# duplicate unconditional attention mask for each generation per prompt
|
665 |
+
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
|
666 |
+
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)
|
667 |
+
|
668 |
+
# duplicate unconditional generated embeddings for each generation per prompt
|
669 |
+
seq_len = negative_generated_prompt_embeds.shape[1]
|
670 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
671 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
|
672 |
+
batch_size * num_waveforms_per_prompt, seq_len, -1
|
673 |
+
)
|
674 |
+
|
675 |
+
# For classifier free guidance, we need to do two forward passes.
|
676 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
677 |
+
# to avoid doing two forward passes
|
678 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
679 |
+
attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
680 |
+
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])
|
681 |
+
|
682 |
+
return prompt_embeds, attention_mask, generated_prompt_embeds
|
683 |
+
|
684 |
+
# Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform
|
685 |
+
def mel_spectrogram_to_waveform(self, mel_spectrogram):
|
686 |
+
if mel_spectrogram.dim() == 4:
|
687 |
+
mel_spectrogram = mel_spectrogram.squeeze(1)
|
688 |
+
|
689 |
+
waveform = self.vocoder(mel_spectrogram)
|
690 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
691 |
+
waveform = waveform.cpu().float()
|
692 |
+
return waveform
|
693 |
+
|
694 |
+
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype):
|
695 |
+
if not is_librosa_available():
|
696 |
+
logger.info(
|
697 |
+
"Automatic scoring of the generated audio waveforms against the input prompt text requires the "
|
698 |
+
"`librosa` package to resample the generated waveforms. Returning the audios in the order they were "
|
699 |
+
"generated. To enable automatic scoring, install `librosa` with: `pip install librosa`."
|
700 |
+
)
|
701 |
+
return audio
|
702 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True)
|
703 |
+
resampled_audio = librosa.resample(
|
704 |
+
audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate
|
705 |
+
)
|
706 |
+
inputs["input_features"] = self.feature_extractor(
|
707 |
+
list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate
|
708 |
+
).input_features.type(dtype)
|
709 |
+
inputs = inputs.to(device)
|
710 |
+
|
711 |
+
# compute the audio-text similarity score using the CLAP model
|
712 |
+
logits_per_text = self.text_encoder(**inputs).logits_per_text
|
713 |
+
# sort by the highest matching generations per prompt
|
714 |
+
indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt]
|
715 |
+
audio = torch.index_select(audio, 0, indices.reshape(-1).cpu())
|
716 |
+
return audio
|
717 |
+
|
718 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
719 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
720 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
721 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
722 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
723 |
+
# and should be between [0, 1]
|
724 |
+
|
725 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
726 |
+
extra_step_kwargs = {}
|
727 |
+
if accepts_eta:
|
728 |
+
extra_step_kwargs["eta"] = eta
|
729 |
+
|
730 |
+
# check if the scheduler accepts generator
|
731 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
732 |
+
if accepts_generator:
|
733 |
+
extra_step_kwargs["generator"] = generator
|
734 |
+
return extra_step_kwargs
|
735 |
+
|
736 |
+
def check_inputs(
|
737 |
+
self,
|
738 |
+
prompt,
|
739 |
+
audio_length_in_s,
|
740 |
+
vocoder_upsample_factor,
|
741 |
+
callback_steps,
|
742 |
+
negative_prompt=None,
|
743 |
+
prompt_embeds=None,
|
744 |
+
negative_prompt_embeds=None,
|
745 |
+
generated_prompt_embeds=None,
|
746 |
+
negative_generated_prompt_embeds=None,
|
747 |
+
attention_mask=None,
|
748 |
+
negative_attention_mask=None,):
|
749 |
+
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
|
750 |
+
if audio_length_in_s < min_audio_length_in_s:
|
751 |
+
raise ValueError(
|
752 |
+
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
|
753 |
+
f"is {audio_length_in_s}."
|
754 |
+
)
|
755 |
+
|
756 |
+
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
|
757 |
+
raise ValueError(
|
758 |
+
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
|
759 |
+
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
|
760 |
+
f"{self.vae_scale_factor}."
|
761 |
+
)
|
762 |
+
|
763 |
+
if (callback_steps is None) or (
|
764 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
765 |
+
):
|
766 |
+
raise ValueError(
|
767 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
768 |
+
f" {type(callback_steps)}."
|
769 |
+
)
|
770 |
+
|
771 |
+
if prompt is not None and prompt_embeds is not None:
|
772 |
+
raise ValueError(
|
773 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
774 |
+
" only forward one of the two."
|
775 |
+
)
|
776 |
+
elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None):
|
777 |
+
raise ValueError(
|
778 |
+
"Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave "
|
779 |
+
"`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`."
|
780 |
+
)
|
781 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
782 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
783 |
+
|
784 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
785 |
+
raise ValueError(
|
786 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
787 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
788 |
+
)
|
789 |
+
elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None:
|
790 |
+
raise ValueError(
|
791 |
+
"Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that"
|
792 |
+
"both arguments are specified"
|
793 |
+
)
|
794 |
+
|
795 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
796 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
797 |
+
raise ValueError(
|
798 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
799 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
800 |
+
f" {negative_prompt_embeds.shape}."
|
801 |
+
)
|
802 |
+
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
|
803 |
+
raise ValueError(
|
804 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
805 |
+
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
|
806 |
+
)
|
807 |
+
|
808 |
+
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None:
|
809 |
+
if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape:
|
810 |
+
raise ValueError(
|
811 |
+
"`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when "
|
812 |
+
f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != "
|
813 |
+
f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}."
|
814 |
+
)
|
815 |
+
if (
|
816 |
+
negative_attention_mask is not None
|
817 |
+
and negative_attention_mask.shape != negative_prompt_embeds.shape[:2]
|
818 |
+
):
|
819 |
+
raise ValueError(
|
820 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
821 |
+
f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}"
|
822 |
+
)
|
823 |
+
|
824 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
|
825 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
|
826 |
+
shape = (
|
827 |
+
batch_size,
|
828 |
+
num_channels_latents,
|
829 |
+
height // self.vae_scale_factor,
|
830 |
+
self.vocoder.config.model_in_dim // self.vae_scale_factor,
|
831 |
+
)
|
832 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
833 |
+
raise ValueError(
|
834 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
835 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
836 |
+
)
|
837 |
+
|
838 |
+
if latents is None:
|
839 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
840 |
+
else:
|
841 |
+
latents = latents.to(device)
|
842 |
+
|
843 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
844 |
+
latents = latents * self.scheduler.init_noise_sigma
|
845 |
+
return latents
|
846 |
+
|
847 |
+
def pre_check(self, audio_length_in_s, prompt, callback_steps, negative_prompt):
|
848 |
+
"""
|
849 |
+
Step 0: Convert audio input length from seconds to spectrogram height
|
850 |
+
Step 1. Check inputs. Raise error if not correct
|
851 |
+
"""
|
852 |
+
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate
|
853 |
+
|
854 |
+
if audio_length_in_s is None:
|
855 |
+
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor
|
856 |
+
|
857 |
+
height = int(audio_length_in_s / vocoder_upsample_factor)
|
858 |
+
|
859 |
+
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
|
860 |
+
if height % self.vae_scale_factor != 0:
|
861 |
+
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
|
862 |
+
logger.info(
|
863 |
+
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
|
864 |
+
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
|
865 |
+
f"denoising process."
|
866 |
+
)
|
867 |
+
# 1. Check inputs. Raise error if not correct
|
868 |
+
self.check_inputs(
|
869 |
+
prompt,
|
870 |
+
audio_length_in_s,
|
871 |
+
vocoder_upsample_factor,
|
872 |
+
callback_steps,
|
873 |
+
negative_prompt,
|
874 |
+
)
|
875 |
+
|
876 |
+
return height, original_waveform_length
|
877 |
+
|
878 |
+
def encode_prompt_for_2_sources(self, prompt_1, prompt_2, negative_prompt_1, negative_prompt_2, max_new_tokens, device, num_waveforms_per_prompt, do_classifier_free_guidance):
|
879 |
+
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1 = self.encode_prompt(
|
880 |
+
prompt_1,
|
881 |
+
device,
|
882 |
+
num_waveforms_per_prompt,
|
883 |
+
do_classifier_free_guidance,
|
884 |
+
negative_prompt_1,
|
885 |
+
max_new_tokens=max_new_tokens,
|
886 |
+
)
|
887 |
+
|
888 |
+
prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2 = self.encode_prompt(
|
889 |
+
prompt_2,
|
890 |
+
device,
|
891 |
+
num_waveforms_per_prompt,
|
892 |
+
do_classifier_free_guidance,
|
893 |
+
negative_prompt_2,
|
894 |
+
max_new_tokens=max_new_tokens,
|
895 |
+
)
|
896 |
+
return [prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1], [prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2]
|
897 |
+
|
898 |
+
def process_encoded_prompt(self, encoded_prompt, audio_file, time_pooling, freq_pooling):
|
899 |
+
prompt_embeds, attention_mask, generated_prompt_embeds = encoded_prompt
|
900 |
+
waveform, sr = torchaudio.load(audio_file)
|
901 |
+
fbank = torch.zeros((1024, 128))
|
902 |
+
ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank)
|
903 |
+
# print("ta_kaldi_fbank.shape",ta_kaldi_fbank.shape)
|
904 |
+
mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0)
|
905 |
+
model = AudioMAEConditionCTPoolRand().cuda()
|
906 |
+
model.eval()
|
907 |
+
LOA_embed = model(mel_spect_tensor, time_pool=time_pooling, freq_pool=freq_pooling)
|
908 |
+
uncond_LOA_embed = model(torch.zeros_like(mel_spect_tensor), time_pool=time_pooling, freq_pool=freq_pooling)
|
909 |
+
LOA_embeds = LOA_embed[0]
|
910 |
+
uncond_LOA_embeds = uncond_LOA_embed[0]
|
911 |
+
bs_embed, seq_len, _ = LOA_embeds.shape
|
912 |
+
num = prompt_embeds.shape[0] // 2
|
913 |
+
|
914 |
+
LOA_embeds = LOA_embeds.view(bs_embed , seq_len, -1)
|
915 |
+
LOA_embeds = LOA_embeds.repeat(num, 1, 1)
|
916 |
+
uncond_LOA_embeds = uncond_LOA_embeds.view(bs_embed , seq_len, -1)
|
917 |
+
uncond_LOA_embeds = uncond_LOA_embeds.repeat(num, 1, 1)
|
918 |
+
|
919 |
+
negative_g, g = generated_prompt_embeds.chunk(2)
|
920 |
+
uncond = torch.cat([negative_g, uncond_LOA_embeds], dim=1)
|
921 |
+
cond = torch.cat([g, LOA_embeds], dim=1)
|
922 |
+
generated_prompt_embeds = torch.cat([uncond, cond], dim=0)
|
923 |
+
model_dtype = next(self.unet.parameters()).dtype
|
924 |
+
# Convert your tensor to the same dtype as the model
|
925 |
+
generated_prompt_embeds = generated_prompt_embeds.to(model_dtype)
|
926 |
+
|
927 |
+
return prompt_embeds, attention_mask, generated_prompt_embeds
|
928 |
+
|
929 |
+
@torch.no_grad()
|
930 |
+
def aud2latent(self, audio_path, audio_length_in_s):
|
931 |
+
DEVICE = torch.device(
|
932 |
+
"cuda") if torch.cuda.is_available() else torch.device("cpu")
|
933 |
+
|
934 |
+
# waveform, sr = torchaudio.load(audio_path)
|
935 |
+
# fbank = torch.zeros((height, 64))
|
936 |
+
# ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank, num_mels=64)
|
937 |
+
# mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0).unsqueeze(0)
|
938 |
+
|
939 |
+
mel_spect_tensor = wav_to_mel(audio_path, duration=audio_length_in_s).unsqueeze(0)
|
940 |
+
output_path = audio_path.replace('.wav', '_fbank.png')
|
941 |
+
visualize_mel_spectrogram(mel_spect_tensor, output_path)
|
942 |
+
mel_spect_tensor = mel_spect_tensor.to(next(self.vae.parameters()).dtype)
|
943 |
+
# print(f'mel_spect_tensor dtype: {mel_spect_tensor.dtype}')
|
944 |
+
# print(f'self.vae dtype: {next(self.vae.parameters()).dtype}')
|
945 |
+
latents = self.vae.encode(mel_spect_tensor.to(DEVICE))['latent_dist'].mean
|
946 |
+
return latents
|
947 |
+
|
948 |
+
@torch.no_grad()
|
949 |
+
def ddim_inversion(self, start_latents, prompt_embeds, attention_mask, generated_prompt_embeds, guidance_scale,num_inference_steps):
|
950 |
+
start_step = 0
|
951 |
+
num_inference_steps = num_inference_steps
|
952 |
+
device = start_latents.device
|
953 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
954 |
+
start_latents *= self.scheduler.init_noise_sigma
|
955 |
+
latents = start_latents.clone()
|
956 |
+
for i in tqdm(range(start_step, num_inference_steps)):
|
957 |
+
t = self.scheduler.timesteps[i]
|
958 |
+
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1. else latents
|
959 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
960 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=generated_prompt_embeds, encoder_hidden_states_1=prompt_embeds, encoder_attention_mask_1=attention_mask).sample
|
961 |
+
if guidance_scale > 1.:
|
962 |
+
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
|
963 |
+
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon)
|
964 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
965 |
+
return latents
|
966 |
+
|
967 |
+
def generate_morphing_prompt(self, prompt_1, prompt_2, alpha):
|
968 |
+
closer_prompt = prompt_1 if alpha <= 0.5 else prompt_2
|
969 |
+
prompt = (
|
970 |
+
f"A musical performance morphing between '{prompt_1}' and '{prompt_2}'. "
|
971 |
+
f"The sound is closer to '{closer_prompt}' with an interpolation factor of alpha={alpha:.2f}, "
|
972 |
+
f"where alpha=0 represents fully the {prompt_1} and alpha=1 represents fully {prompt_2}."
|
973 |
+
)
|
974 |
+
return prompt
|
975 |
+
|
976 |
+
@torch.no_grad()
|
977 |
+
def cal_latent(self,audio_length_in_s,time_pooling, freq_pooling,num_inference_steps, guidance_scale, aud_noise_1, aud_noise_2, prompt_1, prompt_2,
|
978 |
+
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1, prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2,
|
979 |
+
alpha, original_processor,attn_processor_dict, use_morph_prompt, morphing_with_lora):
|
980 |
+
latents = slerp(aud_noise_1, aud_noise_2, alpha, self.use_adain)
|
981 |
+
if not use_morph_prompt:
|
982 |
+
max_length = max(prompt_embeds_1.shape[1], prompt_embeds_2.shape[1])
|
983 |
+
if prompt_embeds_1.shape[1] < max_length:
|
984 |
+
pad_size = max_length - prompt_embeds_1.shape[1]
|
985 |
+
padding = torch.zeros(
|
986 |
+
(prompt_embeds_1.shape[0], pad_size, prompt_embeds_1.shape[2]),
|
987 |
+
device=prompt_embeds_1.device,
|
988 |
+
dtype=prompt_embeds_1.dtype
|
989 |
+
)
|
990 |
+
prompt_embeds_1 = torch.cat([prompt_embeds_1, padding], dim=1)
|
991 |
+
|
992 |
+
if prompt_embeds_2.shape[1] < max_length:
|
993 |
+
pad_size = max_length - prompt_embeds_2.shape[1]
|
994 |
+
padding = torch.zeros(
|
995 |
+
(prompt_embeds_2.shape[0], pad_size, prompt_embeds_2.shape[2]),
|
996 |
+
device=prompt_embeds_2.device,
|
997 |
+
dtype=prompt_embeds_2.dtype
|
998 |
+
)
|
999 |
+
prompt_embeds_2 = torch.cat([prompt_embeds_2, padding], dim=1)
|
1000 |
+
|
1001 |
+
if attention_mask_1.shape[1] < max_length:
|
1002 |
+
pad_size = max_length - attention_mask_1.shape[1]
|
1003 |
+
padding = torch.zeros(
|
1004 |
+
(attention_mask_1.shape[0], pad_size),
|
1005 |
+
device=attention_mask_1.device,
|
1006 |
+
dtype=attention_mask_1.dtype
|
1007 |
+
)
|
1008 |
+
attention_mask_1 = torch.cat([attention_mask_1, padding], dim=1)
|
1009 |
+
|
1010 |
+
if attention_mask_2.shape[1] < max_length:
|
1011 |
+
pad_size = max_length - attention_mask_2.shape[1]
|
1012 |
+
padding = torch.zeros(
|
1013 |
+
(attention_mask_2.shape[0], pad_size),
|
1014 |
+
device=attention_mask_2.device,
|
1015 |
+
dtype=attention_mask_2.dtype
|
1016 |
+
)
|
1017 |
+
attention_mask_2 = torch.cat([attention_mask_2, padding], dim=1)
|
1018 |
+
|
1019 |
+
prompt_embeds = (1 - alpha) * prompt_embeds_1 + \
|
1020 |
+
alpha * prompt_embeds_2
|
1021 |
+
generated_prompt_embeds = (1 - alpha) * generated_prompt_embeds_1 + \
|
1022 |
+
alpha * generated_prompt_embeds_2
|
1023 |
+
attention_mask = attention_mask_1 if alpha < 0.5 else attention_mask_2
|
1024 |
+
# attention_mask = attention_mask_1 & attention_mask_2
|
1025 |
+
# attention_mask = attention_mask_1 | attention_mask_2
|
1026 |
+
# attention_mask = (1 - alpha) * attention_mask_1 + alpha * attention_mask_2
|
1027 |
+
# attention_mask = (attention_mask > 0.5).long()
|
1028 |
+
|
1029 |
+
if morphing_with_lora:
|
1030 |
+
pipeline_trained.unet.set_attn_processor(attn_processor_dict)
|
1031 |
+
waveform = pipeline_trained(
|
1032 |
+
time_pooling= time_pooling,
|
1033 |
+
freq_pooling= freq_pooling,
|
1034 |
+
latents = latents,
|
1035 |
+
num_inference_steps= num_inference_steps,
|
1036 |
+
guidance_scale= guidance_scale,
|
1037 |
+
num_waveforms_per_prompt= 1,
|
1038 |
+
audio_length_in_s=audio_length_in_s,
|
1039 |
+
prompt_embeds = prompt_embeds.chunk(2)[1],
|
1040 |
+
negative_prompt_embeds = prompt_embeds.chunk(2)[0],
|
1041 |
+
generated_prompt_embeds = generated_prompt_embeds.chunk(2)[1],
|
1042 |
+
negative_generated_prompt_embeds = generated_prompt_embeds.chunk(2)[0],
|
1043 |
+
attention_mask = attention_mask.chunk(2)[1],
|
1044 |
+
negative_attention_mask = attention_mask.chunk(2)[0],
|
1045 |
+
).audios[0]
|
1046 |
+
if morphing_with_lora:
|
1047 |
+
pipeline_trained.unet.set_attn_processor(original_processor)
|
1048 |
+
else:
|
1049 |
+
latent_model_input = latents
|
1050 |
+
morphing_prompt = self.generate_morphing_prompt(prompt_1, prompt_2, alpha)
|
1051 |
+
if morphing_with_lora:
|
1052 |
+
pipeline_trained.unet.set_attn_processor(attn_processor_dict)
|
1053 |
+
waveform = pipeline_trained(
|
1054 |
+
time_pooling= time_pooling,
|
1055 |
+
freq_pooling= freq_pooling,
|
1056 |
+
latents = latent_model_input,
|
1057 |
+
num_inference_steps= num_inference_steps,
|
1058 |
+
guidance_scale= guidance_scale,
|
1059 |
+
num_waveforms_per_prompt= 1,
|
1060 |
+
audio_length_in_s=audio_length_in_s,
|
1061 |
+
prompt= morphing_prompt,
|
1062 |
+
negative_prompt= 'Low quality',
|
1063 |
+
).audios[0]
|
1064 |
+
if morphing_with_lora:
|
1065 |
+
pipeline_trained.unet.set_attn_processor(original_processor)
|
1066 |
+
|
1067 |
+
return waveform
|
1068 |
+
|
1069 |
+
@torch.no_grad()
|
1070 |
+
def __call__(
|
1071 |
+
self,
|
1072 |
+
audio_file = None,
|
1073 |
+
audio_file2 = None,
|
1074 |
+
save_lora_dir = "./lora",
|
1075 |
+
load_lora_path_1 = None,
|
1076 |
+
load_lora_path_2 = None,
|
1077 |
+
lora_steps = 200,
|
1078 |
+
lora_lr = 2e-4,
|
1079 |
+
lora_rank = 16,
|
1080 |
+
time_pooling = 8,
|
1081 |
+
freq_pooling = 8,
|
1082 |
+
audio_length_in_s: Optional[float] = None,
|
1083 |
+
prompt_1: Union[str, List[str]] = None,
|
1084 |
+
prompt_2: Union[str, List[str]] = None,
|
1085 |
+
negative_prompt_1: Optional[Union[str, List[str]]] = None,
|
1086 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1087 |
+
use_lora: bool = True,
|
1088 |
+
use_adain: bool = True,
|
1089 |
+
use_reschedule: bool = True,
|
1090 |
+
output_path: Optional[str] = None,
|
1091 |
+
num_inference_steps: int = 200,
|
1092 |
+
guidance_scale: float = 7.5,
|
1093 |
+
num_waveforms_per_prompt: Optional[int] = 1,
|
1094 |
+
attn_beta=0,
|
1095 |
+
lamd=0.6,
|
1096 |
+
fix_lora=None,
|
1097 |
+
save_intermediates=True,
|
1098 |
+
num_frames=50,
|
1099 |
+
max_new_tokens: Optional[int] = None,
|
1100 |
+
callback_steps: Optional[int] = 1,
|
1101 |
+
noisy_latent_with_lora=False,
|
1102 |
+
morphing_with_lora=False,
|
1103 |
+
use_morph_prompt=False,
|
1104 |
+
):
|
1105 |
+
# 0. Load the pre-trained AP-adapter model
|
1106 |
+
layer_num = 0
|
1107 |
+
cross = [None, None, 768, 768, 1024, 1024, None, None]
|
1108 |
+
attn_procs = {}
|
1109 |
+
for name in self.unet.attn_processors.keys():
|
1110 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
|
1111 |
+
if name.startswith("mid_block"):
|
1112 |
+
hidden_size = self.unet.config.block_out_channels[-1]
|
1113 |
+
elif name.startswith("up_blocks"):
|
1114 |
+
block_id = int(name[len("up_blocks.")])
|
1115 |
+
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
|
1116 |
+
elif name.startswith("down_blocks"):
|
1117 |
+
block_id = int(name[len("down_blocks.")])
|
1118 |
+
hidden_size = self.unet.config.block_out_channels[block_id]
|
1119 |
+
|
1120 |
+
if cross_attention_dim is None:
|
1121 |
+
attn_procs[name] = AttnProcessor2_0()
|
1122 |
+
else:
|
1123 |
+
cross_attention_dim = cross[layer_num % 8]
|
1124 |
+
layer_num += 1
|
1125 |
+
if cross_attention_dim == 768:
|
1126 |
+
attn_procs[name] = IPAttnProcessor2_0(
|
1127 |
+
hidden_size=hidden_size,
|
1128 |
+
name=name,
|
1129 |
+
cross_attention_dim=cross_attention_dim,
|
1130 |
+
scale=0.5,
|
1131 |
+
num_tokens=8,
|
1132 |
+
do_copy=False
|
1133 |
+
).to("cuda", dtype=torch.float32)
|
1134 |
+
else:
|
1135 |
+
attn_procs[name] = AttnProcessor2_0()
|
1136 |
+
|
1137 |
+
state_dict = torch.load('/Data/home/Dennis/DeepMIR-2024/Final_Project/AP-adapter/pytorch_model.bin', map_location="cuda")
|
1138 |
+
for name, processor in attn_procs.items():
|
1139 |
+
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'):
|
1140 |
+
weight_name_v = name + ".to_v_ip.weight"
|
1141 |
+
weight_name_k = name + ".to_k_ip.weight"
|
1142 |
+
processor.to_v_ip.weight = torch.nn.Parameter(state_dict[weight_name_v].half())
|
1143 |
+
processor.to_k_ip.weight = torch.nn.Parameter(state_dict[weight_name_k].half())
|
1144 |
+
self.unet.set_attn_processor(attn_procs)
|
1145 |
+
self.vae= self.vae.to("cuda", dtype=torch.float32)
|
1146 |
+
self.unet = self.unet.to("cuda", dtype=torch.float32)
|
1147 |
+
self.language_model = self.language_model.to("cuda", dtype=torch.float32)
|
1148 |
+
self.projection_model = self.projection_model.to("cuda", dtype=torch.float32)
|
1149 |
+
self.vocoder = self.vocoder.to("cuda", dtype=torch.float32)
|
1150 |
+
self.text_encoder = self.text_encoder.to("cuda", dtype=torch.float32)
|
1151 |
+
self.text_encoder_2 = self.text_encoder_2.to("cuda", dtype=torch.float32)
|
1152 |
+
|
1153 |
+
|
1154 |
+
|
1155 |
+
# 1. Pre-check
|
1156 |
+
height, original_waveform_length = self.pre_check(audio_length_in_s, prompt_1, callback_steps, negative_prompt_1)
|
1157 |
+
_, _ = self.pre_check(audio_length_in_s, prompt_2, callback_steps, negative_prompt_2)
|
1158 |
+
# print(f"height: {height}, original_waveform_length: {original_waveform_length}") # height: 1000, original_waveform_length: 160000
|
1159 |
+
|
1160 |
+
# # 2. Define call parameters
|
1161 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
1162 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1163 |
+
self.use_lora = use_lora
|
1164 |
+
self.use_adain = use_adain
|
1165 |
+
self.use_reschedule = use_reschedule
|
1166 |
+
self.output_path = output_path
|
1167 |
+
|
1168 |
+
if self.use_lora:
|
1169 |
+
print("Loading lora...")
|
1170 |
+
if not load_lora_path_1:
|
1171 |
+
|
1172 |
+
weight_name = f"{output_path.split('/')[-1]}_lora_0.ckpt"
|
1173 |
+
load_lora_path_1 = save_lora_dir + "/" + weight_name
|
1174 |
+
if not os.path.exists(load_lora_path_1):
|
1175 |
+
train_lora(audio_file ,height ,time_pooling ,freq_pooling ,prompt_1, negative_prompt_1, guidance_scale, save_lora_dir, self.tokenizer, self.tokenizer_2,
|
1176 |
+
self.text_encoder, self.text_encoder_2, self.language_model, self.projection_model, self.vocoder,
|
1177 |
+
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
|
1178 |
+
print(f"Load from {load_lora_path_1}.")
|
1179 |
+
|
1180 |
+
if load_lora_path_1.endswith(".safetensors"):
|
1181 |
+
lora_1 = safetensors.torch.load_file(
|
1182 |
+
load_lora_path_1, device="cpu")
|
1183 |
+
else:
|
1184 |
+
lora_1 = torch.load(load_lora_path_1, map_location="cpu")
|
1185 |
+
|
1186 |
+
if not load_lora_path_2:
|
1187 |
+
weight_name = f"{output_path.split('/')[-1]}_lora_1.ckpt"
|
1188 |
+
load_lora_path_2 = save_lora_dir + "/" + weight_name
|
1189 |
+
if not os.path.exists(load_lora_path_2):
|
1190 |
+
train_lora(audio_file2 ,height,time_pooling ,freq_pooling ,prompt_2, negative_prompt_2, guidance_scale, save_lora_dir, self.tokenizer, self.tokenizer_2,
|
1191 |
+
self.text_encoder, self.text_encoder_2, self.language_model, self.projection_model, self.vocoder,
|
1192 |
+
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
|
1193 |
+
print(f"Load from {load_lora_path_2}.")
|
1194 |
+
if load_lora_path_2.endswith(".safetensors"):
|
1195 |
+
lora_2 = safetensors.torch.load_file(
|
1196 |
+
load_lora_path_2, device="cpu")
|
1197 |
+
else:
|
1198 |
+
lora_2 = torch.load(load_lora_path_2, map_location="cpu")
|
1199 |
+
else:
|
1200 |
+
lora_1 = lora_2 = None
|
1201 |
+
|
1202 |
+
# # 3. Encode input prompt
|
1203 |
+
encoded_prompt_1, encoded_prompt_2 = self.encode_prompt_for_2_sources(prompt_1, prompt_2, negative_prompt_1, negative_prompt_2, max_new_tokens, device, num_waveforms_per_prompt, do_classifier_free_guidance)
|
1204 |
+
prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1 = self.process_encoded_prompt(encoded_prompt_1, audio_file, time_pooling, freq_pooling)
|
1205 |
+
prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2 = self.process_encoded_prompt(encoded_prompt_2, audio_file2, time_pooling, freq_pooling)
|
1206 |
+
|
1207 |
+
|
1208 |
+
# 4. Prepare latent variables
|
1209 |
+
# For the first audio file
|
1210 |
+
original_processor = list(self.unet.attn_processors.values())[0]
|
1211 |
+
|
1212 |
+
if noisy_latent_with_lora:
|
1213 |
+
self.unet = load_lora(self.unet, lora_1, lora_2, 0)
|
1214 |
+
# print(self.unet.attn_processors)
|
1215 |
+
# We directly use the latent representation of the audio file for VAE's decoder as the 1st ground truth
|
1216 |
+
audio_latent = self.aud2latent(audio_file, audio_length_in_s).to(device)
|
1217 |
+
# mel_spectrogram = self.vae.decode(audio_latent).sample
|
1218 |
+
# first_audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
|
1219 |
+
# first_audio = first_audio[:, :original_waveform_length]
|
1220 |
+
# torchaudio.save(f"{self.output_path}/{0:02d}_gt.wav", first_audio, 16000)
|
1221 |
+
|
1222 |
+
# aud_noise_1 is the noisy latent representation of the audio file 1
|
1223 |
+
aud_noise_1 = self.ddim_inversion(audio_latent, prompt_embeds_1, attention_mask_1, generated_prompt_embeds_1, guidance_scale, num_inference_steps)
|
1224 |
+
# We use the pre-trained model to generate the audio file from the noisy latent representation
|
1225 |
+
# waveform = pipeline_trained(
|
1226 |
+
# audio_file = audio_file,
|
1227 |
+
# time_pooling= 2,
|
1228 |
+
# freq_pooling= 2,
|
1229 |
+
# prompt= prompt_1,
|
1230 |
+
# latents = aud_noise_1,
|
1231 |
+
# negative_prompt= negative_prompt_1,
|
1232 |
+
# num_inference_steps= 100,
|
1233 |
+
# guidance_scale= guidance_scale,
|
1234 |
+
# num_waveforms_per_prompt= 1,
|
1235 |
+
# audio_length_in_s=10,
|
1236 |
+
# ).audios
|
1237 |
+
# file_path = os.path.join(self.output_path, f"{0:02d}_gt2.wav")
|
1238 |
+
# scipy.io.wavfile.write(file_path, rate=16000, data=waveform[0])
|
1239 |
+
|
1240 |
+
# After reconstructed the audio file 1, we set the original processor back
|
1241 |
+
if noisy_latent_with_lora:
|
1242 |
+
self.unet.set_attn_processor(original_processor)
|
1243 |
+
# print(self.unet.attn_processors)
|
1244 |
+
|
1245 |
+
# For the second audio file
|
1246 |
+
if noisy_latent_with_lora:
|
1247 |
+
self.unet = load_lora(self.unet, lora_1, lora_2, 1)
|
1248 |
+
# print(self.unet.attn_processors)
|
1249 |
+
# We directly use the latent representation of the audio file for VAE's decoder as the 1st ground truth
|
1250 |
+
audio_latent = self.aud2latent(audio_file2, audio_length_in_s)
|
1251 |
+
# mel_spectrogram = self.vae.decode(audio_latent).sample
|
1252 |
+
# last_audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
|
1253 |
+
# last_audio = last_audio[:, :original_waveform_length]
|
1254 |
+
# torchaudio.save(f"{self.output_path}/{num_frames-1:02d}_gt.wav", last_audio, 16000)
|
1255 |
+
# aud_noise_2 is the noisy latent representation of the audio file 2
|
1256 |
+
aud_noise_2 = self.ddim_inversion(audio_latent, prompt_embeds_2, attention_mask_2, generated_prompt_embeds_2, guidance_scale, num_inference_steps)
|
1257 |
+
# waveform = pipeline_trained(
|
1258 |
+
# audio_file = audio_file2,
|
1259 |
+
# time_pooling= 2,
|
1260 |
+
# freq_pooling= 2,
|
1261 |
+
# prompt= prompt_2,
|
1262 |
+
# latents = aud_noise_2,
|
1263 |
+
# negative_prompt= negative_prompt_2,
|
1264 |
+
# num_inference_steps= 100,
|
1265 |
+
# guidance_scale= guidance_scale,
|
1266 |
+
# num_waveforms_per_prompt= 1,
|
1267 |
+
# audio_length_in_s=10,
|
1268 |
+
# ).audios
|
1269 |
+
# file_path = os.path.join(self.output_path, f"{num_frames-1:02d}_gt2.wav")
|
1270 |
+
# scipy.io.wavfile.write(file_path, rate=16000, data=waveform[0])
|
1271 |
+
if noisy_latent_with_lora:
|
1272 |
+
self.unet.set_attn_processor(original_processor)
|
1273 |
+
# print(self.unet.attn_processors)
|
1274 |
+
# After reconstructed the audio file 1, we set the original processor back
|
1275 |
+
original_processor = list(self.unet.attn_processors.values())[0]
|
1276 |
+
|
1277 |
+
|
1278 |
+
def morph(alpha_list, desc):
|
1279 |
+
audios = []
|
1280 |
+
# if attn_beta is not None:
|
1281 |
+
if self.use_lora:
|
1282 |
+
self.unet = load_lora(
|
1283 |
+
self.unet, lora_1, lora_2, 0 if fix_lora is None else fix_lora)
|
1284 |
+
attn_processor_dict = {}
|
1285 |
+
# print(self.unet.attn_processors)
|
1286 |
+
for k in self.unet.attn_processors.keys():
|
1287 |
+
# print(k)
|
1288 |
+
if do_replace_attn(k):
|
1289 |
+
# print(f"Since the key starts with *up*, we replace the processor with StoreProcessor.")
|
1290 |
+
if self.use_lora:
|
1291 |
+
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
|
1292 |
+
self.aud1_dict, k)
|
1293 |
+
else:
|
1294 |
+
attn_processor_dict[k] = StoreProcessor(original_processor,
|
1295 |
+
self.aud1_dict, k)
|
1296 |
+
else:
|
1297 |
+
attn_processor_dict[k] = self.unet.attn_processors[k]
|
1298 |
+
# print(attn_processor_dict)
|
1299 |
+
|
1300 |
+
# print(attn_processor_dict)
|
1301 |
+
|
1302 |
+
# print(self.unet.attn_processors)
|
1303 |
+
# self.unet.set_attn_processor(attn_processor_dict)
|
1304 |
+
# print(self.unet.attn_processors)
|
1305 |
+
|
1306 |
+
first_audio = self.cal_latent(
|
1307 |
+
audio_length_in_s,
|
1308 |
+
time_pooling,
|
1309 |
+
freq_pooling,
|
1310 |
+
num_inference_steps,
|
1311 |
+
guidance_scale,
|
1312 |
+
aud_noise_1,
|
1313 |
+
aud_noise_2,
|
1314 |
+
prompt_1,
|
1315 |
+
prompt_2,
|
1316 |
+
prompt_embeds_1,
|
1317 |
+
attention_mask_1,
|
1318 |
+
generated_prompt_embeds_1,
|
1319 |
+
prompt_embeds_2,
|
1320 |
+
attention_mask_2,
|
1321 |
+
generated_prompt_embeds_2,
|
1322 |
+
alpha_list[0],
|
1323 |
+
original_processor,
|
1324 |
+
attn_processor_dict,
|
1325 |
+
use_morph_prompt,
|
1326 |
+
morphing_with_lora
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
self.unet.set_attn_processor(original_processor)
|
1330 |
+
file_path = os.path.join(self.output_path, f"{0:02d}.wav")
|
1331 |
+
scipy.io.wavfile.write(file_path, rate=16000, data=first_audio)
|
1332 |
+
|
1333 |
+
if self.use_lora:
|
1334 |
+
self.unet = load_lora(
|
1335 |
+
self.unet, lora_1, lora_2, 1 if fix_lora is None else fix_lora)
|
1336 |
+
attn_processor_dict = {}
|
1337 |
+
for k in self.unet.attn_processors.keys():
|
1338 |
+
if do_replace_attn(k):
|
1339 |
+
# print(f"Since the key starts with *up*, we replace the processor with StoreProcessor.")
|
1340 |
+
if self.use_lora:
|
1341 |
+
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
|
1342 |
+
self.aud2_dict, k)
|
1343 |
+
else:
|
1344 |
+
attn_processor_dict[k] = StoreProcessor(original_processor,
|
1345 |
+
self.aud2_dict, k)
|
1346 |
+
else:
|
1347 |
+
attn_processor_dict[k] = self.unet.attn_processors[k]
|
1348 |
+
# self.unet.set_attn_processor(attn_processor_dict)
|
1349 |
+
last_audio = self.cal_latent(
|
1350 |
+
audio_length_in_s,
|
1351 |
+
time_pooling,
|
1352 |
+
freq_pooling,
|
1353 |
+
num_inference_steps,
|
1354 |
+
guidance_scale,
|
1355 |
+
aud_noise_1,
|
1356 |
+
aud_noise_2,
|
1357 |
+
prompt_1,
|
1358 |
+
prompt_2,
|
1359 |
+
prompt_embeds_1,
|
1360 |
+
attention_mask_1,
|
1361 |
+
generated_prompt_embeds_1,
|
1362 |
+
prompt_embeds_2,
|
1363 |
+
attention_mask_2,
|
1364 |
+
generated_prompt_embeds_2,
|
1365 |
+
alpha_list[-1],
|
1366 |
+
original_processor,
|
1367 |
+
attn_processor_dict,
|
1368 |
+
use_morph_prompt,
|
1369 |
+
morphing_with_lora
|
1370 |
+
)
|
1371 |
+
file_path = os.path.join(self.output_path, f"{num_frames-1:02d}.wav")
|
1372 |
+
scipy.io.wavfile.write(file_path, rate=16000, data=last_audio)
|
1373 |
+
self.unet.set_attn_processor(original_processor)
|
1374 |
+
|
1375 |
+
for i in tqdm(range(1, num_frames - 1), desc=desc):
|
1376 |
+
alpha = alpha_list[i]
|
1377 |
+
if self.use_lora:
|
1378 |
+
self.unet = load_lora(
|
1379 |
+
self.unet, lora_1, lora_2, alpha if fix_lora is None else fix_lora)
|
1380 |
+
|
1381 |
+
attn_processor_dict = {}
|
1382 |
+
for k in self.unet.attn_processors.keys():
|
1383 |
+
if do_replace_attn(k):
|
1384 |
+
if self.use_lora:
|
1385 |
+
attn_processor_dict[k] = LoadProcessor(
|
1386 |
+
self.unet.attn_processors[k], k, self.aud1_dict, self.aud2_dict, alpha, attn_beta, lamd)
|
1387 |
+
else:
|
1388 |
+
attn_processor_dict[k] = LoadProcessor(
|
1389 |
+
original_processor, k, self.aud1_dict, self.aud2_dict, alpha, attn_beta, lamd)
|
1390 |
+
else:
|
1391 |
+
attn_processor_dict[k] = self.unet.attn_processors[k]
|
1392 |
+
# self.unet.set_attn_processor(attn_processor_dict)
|
1393 |
+
audio = self.cal_latent(
|
1394 |
+
audio_length_in_s,
|
1395 |
+
time_pooling,
|
1396 |
+
freq_pooling,
|
1397 |
+
num_inference_steps,
|
1398 |
+
guidance_scale,
|
1399 |
+
aud_noise_1,
|
1400 |
+
aud_noise_2,
|
1401 |
+
prompt_1,
|
1402 |
+
prompt_2,
|
1403 |
+
prompt_embeds_1,
|
1404 |
+
attention_mask_1,
|
1405 |
+
generated_prompt_embeds_1,
|
1406 |
+
prompt_embeds_2,
|
1407 |
+
attention_mask_2,
|
1408 |
+
generated_prompt_embeds_2,
|
1409 |
+
alpha_list[i],
|
1410 |
+
original_processor,
|
1411 |
+
attn_processor_dict,
|
1412 |
+
use_morph_prompt,
|
1413 |
+
morphing_with_lora
|
1414 |
+
)
|
1415 |
+
file_path = os.path.join(self.output_path, f"{i:02d}.wav")
|
1416 |
+
scipy.io.wavfile.write(file_path, rate=16000, data=audio)
|
1417 |
+
self.unet.set_attn_processor(original_processor)
|
1418 |
+
audios.append(audio)
|
1419 |
+
audios = [first_audio] + audios + [last_audio]
|
1420 |
+
return audios
|
1421 |
+
with torch.no_grad():
|
1422 |
+
if self.use_reschedule:
|
1423 |
+
alpha_scheduler = AlphaScheduler()
|
1424 |
+
alpha_list = list(torch.linspace(0, 1, num_frames))
|
1425 |
+
audios_pt = morph(alpha_list, "Sampling...")
|
1426 |
+
audios_pt = [torch.tensor(aud).unsqueeze(0)
|
1427 |
+
for aud in audios_pt]
|
1428 |
+
alpha_scheduler.from_imgs(audios_pt)
|
1429 |
+
alpha_list = alpha_scheduler.get_list()
|
1430 |
+
audios = morph(alpha_list, "Reschedule...")
|
1431 |
+
else:
|
1432 |
+
alpha_list = list(torch.linspace(0, 1, num_frames))
|
1433 |
+
audios = morph(alpha_list, "Sampling...")
|
1434 |
+
|
1435 |
+
return audios
|
pipeline/pipeline_audioldm.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import inspect
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from transformers import ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan
|
9 |
+
|
10 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
12 |
+
from diffusers.utils.torch_utils import randn_tensor
|
13 |
+
from diffusers.utils import is_accelerate_available, logging, replace_example_docstring
|
14 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline,AudioPipelineOutput
|
15 |
+
# from diffusers.pipelines.pipeline_utils import AudioPipelineOutput
|
16 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
EXAMPLE_DOC_STRING = """
|
22 |
+
Examples:
|
23 |
+
```py
|
24 |
+
>>> import torch
|
25 |
+
>>> from diffusers import AudioLDMPipeline
|
26 |
+
|
27 |
+
>>> pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm", torch_dtype=torch.float16)
|
28 |
+
>>> pipe = pipe.to("cuda")
|
29 |
+
|
30 |
+
>>> prompt = "A hammer hitting a wooden surface"
|
31 |
+
>>> audio = pipe(prompt).audios[0]
|
32 |
+
```
|
33 |
+
"""
|
34 |
+
|
35 |
+
|
36 |
+
class AudioLDMPipeline(DiffusionPipeline,TextualInversionLoaderMixin):
|
37 |
+
r"""
|
38 |
+
Pipeline for text-to-audio generation using AudioLDM.
|
39 |
+
|
40 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
41 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vae ([`AutoencoderKL`]):
|
45 |
+
Variational Auto-Encoder (VAE) Model to encode and decode audios to and from latent representations.
|
46 |
+
text_encoder ([`ClapTextModelWithProjection`]):
|
47 |
+
Frozen text-encoder. AudioLDM uses the text portion of
|
48 |
+
[CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap#transformers.ClapTextModelWithProjection),
|
49 |
+
specifically the [RoBERTa HSTAT-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant.
|
50 |
+
tokenizer ([`PreTrainedTokenizer`]):
|
51 |
+
Tokenizer of class
|
52 |
+
[RobertaTokenizer](https://huggingface.co/docs/transformers/model_doc/roberta#transformers.RobertaTokenizer).
|
53 |
+
unet ([`UNet2DConditionModel`]): U-Net architecture to denoise the encoded audio latents.
|
54 |
+
scheduler ([`SchedulerMixin`]):
|
55 |
+
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
56 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
57 |
+
vocoder ([`SpeechT5HifiGan`]):
|
58 |
+
Vocoder of class
|
59 |
+
[SpeechT5HifiGan](https://huggingface.co/docs/transformers/main/en/model_doc/speecht5#transformers.SpeechT5HifiGan).
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vae: AutoencoderKL,
|
65 |
+
text_encoder: ClapTextModelWithProjection,
|
66 |
+
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
|
67 |
+
unet: UNet2DConditionModel,
|
68 |
+
scheduler: KarrasDiffusionSchedulers,
|
69 |
+
vocoder: SpeechT5HifiGan,
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
|
73 |
+
self.register_modules(
|
74 |
+
vae=vae,
|
75 |
+
text_encoder=text_encoder,
|
76 |
+
tokenizer=tokenizer,
|
77 |
+
unet=unet,
|
78 |
+
scheduler=scheduler,
|
79 |
+
vocoder=vocoder,
|
80 |
+
)
|
81 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
82 |
+
|
83 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
84 |
+
def enable_vae_slicing(self):
|
85 |
+
r"""
|
86 |
+
Enable sliced VAE decoding.
|
87 |
+
|
88 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
89 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
90 |
+
"""
|
91 |
+
self.vae.enable_slicing()
|
92 |
+
|
93 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
94 |
+
def disable_vae_slicing(self):
|
95 |
+
r"""
|
96 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
97 |
+
computing decoding in one step.
|
98 |
+
"""
|
99 |
+
self.vae.disable_slicing()
|
100 |
+
|
101 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
102 |
+
r"""
|
103 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
104 |
+
text_encoder, vae and vocoder have their state dicts saved to CPU and then are moved to a `torch.device('meta')
|
105 |
+
and loaded to GPU only when their specific submodule has its `forward` method called.
|
106 |
+
"""
|
107 |
+
if is_accelerate_available():
|
108 |
+
from accelerate import cpu_offload
|
109 |
+
else:
|
110 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
111 |
+
|
112 |
+
device = torch.device(f"cuda:{gpu_id}")
|
113 |
+
|
114 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.vocoder]:
|
115 |
+
cpu_offload(cpu_offloaded_model, device)
|
116 |
+
|
117 |
+
@property
|
118 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
119 |
+
def _execution_device(self):
|
120 |
+
r"""
|
121 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
122 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
123 |
+
hooks.
|
124 |
+
"""
|
125 |
+
if not hasattr(self.unet, "_hf_hook"):
|
126 |
+
return self.device
|
127 |
+
for module in self.unet.modules():
|
128 |
+
if (
|
129 |
+
hasattr(module, "_hf_hook")
|
130 |
+
and hasattr(module._hf_hook, "execution_device")
|
131 |
+
and module._hf_hook.execution_device is not None
|
132 |
+
):
|
133 |
+
return torch.device(module._hf_hook.execution_device)
|
134 |
+
return self.device
|
135 |
+
|
136 |
+
def _encode_prompt(
|
137 |
+
self,
|
138 |
+
prompt,
|
139 |
+
device,
|
140 |
+
num_waveforms_per_prompt,
|
141 |
+
do_classifier_free_guidance,
|
142 |
+
negative_prompt=None,
|
143 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
144 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
145 |
+
):
|
146 |
+
r"""
|
147 |
+
Encodes the prompt into text encoder hidden states.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
prompt (`str` or `List[str]`, *optional*):
|
151 |
+
prompt to be encoded
|
152 |
+
device (`torch.device`):
|
153 |
+
torch device
|
154 |
+
num_waveforms_per_prompt (`int`):
|
155 |
+
number of waveforms that should be generated per prompt
|
156 |
+
do_classifier_free_guidance (`bool`):
|
157 |
+
whether to use classifier free guidance or not
|
158 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
159 |
+
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
160 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
161 |
+
less than `1`).
|
162 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
163 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
164 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
165 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
166 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
167 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
168 |
+
argument.
|
169 |
+
"""
|
170 |
+
if prompt is not None and isinstance(prompt, str):
|
171 |
+
batch_size = 1
|
172 |
+
elif prompt is not None and isinstance(prompt, list):
|
173 |
+
batch_size = len(prompt)
|
174 |
+
else:
|
175 |
+
batch_size = prompt_embeds.shape[0]
|
176 |
+
|
177 |
+
if prompt_embeds is None:
|
178 |
+
text_inputs = self.tokenizer(
|
179 |
+
prompt,
|
180 |
+
padding="max_length",
|
181 |
+
max_length=self.tokenizer.model_max_length,
|
182 |
+
truncation=True,
|
183 |
+
return_tensors="pt",
|
184 |
+
)
|
185 |
+
text_input_ids = text_inputs.input_ids
|
186 |
+
# print("text_input_ids: ", text_input_ids.shape)
|
187 |
+
attention_mask = text_inputs.attention_mask
|
188 |
+
# print("attention_mask: ", attention_mask.shape)
|
189 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
190 |
+
|
191 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
192 |
+
text_input_ids, untruncated_ids
|
193 |
+
):
|
194 |
+
removed_text = self.tokenizer.batch_decode(
|
195 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
196 |
+
)
|
197 |
+
logger.warning(
|
198 |
+
"The following part of your input was truncated because CLAP can only handle sequences up to"
|
199 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
200 |
+
)
|
201 |
+
|
202 |
+
prompt_embeds = self.text_encoder(
|
203 |
+
text_input_ids.to(device),
|
204 |
+
attention_mask=attention_mask.to(device),
|
205 |
+
)
|
206 |
+
prompt_embeds = prompt_embeds.text_embeds
|
207 |
+
# additional L_2 normalization over each hidden-state
|
208 |
+
prompt_embeds = F.normalize(prompt_embeds, dim=-1)
|
209 |
+
|
210 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
211 |
+
|
212 |
+
(
|
213 |
+
bs_embed,
|
214 |
+
seq_len,
|
215 |
+
) = prompt_embeds.shape
|
216 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
217 |
+
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt)
|
218 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len)
|
219 |
+
|
220 |
+
# get unconditional embeddings for classifier free guidance
|
221 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
222 |
+
uncond_tokens: List[str]
|
223 |
+
if negative_prompt is None:
|
224 |
+
uncond_tokens = [""] * batch_size
|
225 |
+
elif type(prompt) is not type(negative_prompt):
|
226 |
+
raise TypeError(
|
227 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
228 |
+
f" {type(prompt)}."
|
229 |
+
)
|
230 |
+
elif isinstance(negative_prompt, str):
|
231 |
+
uncond_tokens = [negative_prompt]
|
232 |
+
elif batch_size != len(negative_prompt):
|
233 |
+
raise ValueError(
|
234 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
235 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
236 |
+
" the batch size of `prompt`."
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
uncond_tokens = negative_prompt
|
240 |
+
|
241 |
+
max_length = prompt_embeds.shape[1]
|
242 |
+
uncond_input = self.tokenizer(
|
243 |
+
uncond_tokens,
|
244 |
+
padding="max_length",
|
245 |
+
max_length=max_length,
|
246 |
+
truncation=True,
|
247 |
+
return_tensors="pt",
|
248 |
+
)
|
249 |
+
|
250 |
+
uncond_input_ids = uncond_input.input_ids.to(device)
|
251 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
252 |
+
|
253 |
+
negative_prompt_embeds = self.text_encoder(
|
254 |
+
uncond_input_ids,
|
255 |
+
attention_mask=attention_mask,
|
256 |
+
)
|
257 |
+
negative_prompt_embeds = negative_prompt_embeds.text_embeds
|
258 |
+
# additional L_2 normalization over each hidden-state
|
259 |
+
negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1)
|
260 |
+
|
261 |
+
if do_classifier_free_guidance:
|
262 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
263 |
+
seq_len = negative_prompt_embeds.shape[1]
|
264 |
+
|
265 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
266 |
+
|
267 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt)
|
268 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len)
|
269 |
+
|
270 |
+
# For classifier free guidance, we need to do two forward passes.
|
271 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
272 |
+
# to avoid doing two forward passes
|
273 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
274 |
+
|
275 |
+
return prompt_embeds
|
276 |
+
|
277 |
+
def decode_latents(self, latents):
|
278 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
279 |
+
mel_spectrogram = self.vae.decode(latents).sample
|
280 |
+
return mel_spectrogram
|
281 |
+
|
282 |
+
def mel_spectrogram_to_waveform(self, mel_spectrogram):
|
283 |
+
if mel_spectrogram.dim() == 4:
|
284 |
+
mel_spectrogram = mel_spectrogram.squeeze(1)
|
285 |
+
|
286 |
+
waveform = self.vocoder(mel_spectrogram)
|
287 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
288 |
+
waveform = waveform.cpu().float()
|
289 |
+
return waveform
|
290 |
+
|
291 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
292 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
293 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
294 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
295 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
296 |
+
# and should be between [0, 1]
|
297 |
+
|
298 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
299 |
+
extra_step_kwargs = {}
|
300 |
+
if accepts_eta:
|
301 |
+
extra_step_kwargs["eta"] = eta
|
302 |
+
|
303 |
+
# check if the scheduler accepts generator
|
304 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
305 |
+
if accepts_generator:
|
306 |
+
extra_step_kwargs["generator"] = generator
|
307 |
+
return extra_step_kwargs
|
308 |
+
|
309 |
+
def check_inputs(
|
310 |
+
self,
|
311 |
+
prompt,
|
312 |
+
audio_length_in_s,
|
313 |
+
vocoder_upsample_factor,
|
314 |
+
callback_steps,
|
315 |
+
negative_prompt=None,
|
316 |
+
prompt_embeds=None,
|
317 |
+
negative_prompt_embeds=None,
|
318 |
+
):
|
319 |
+
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
|
320 |
+
if audio_length_in_s < min_audio_length_in_s:
|
321 |
+
raise ValueError(
|
322 |
+
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
|
323 |
+
f"is {audio_length_in_s}."
|
324 |
+
)
|
325 |
+
|
326 |
+
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
|
327 |
+
raise ValueError(
|
328 |
+
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
|
329 |
+
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
|
330 |
+
f"{self.vae_scale_factor}."
|
331 |
+
)
|
332 |
+
|
333 |
+
if (callback_steps is None) or (
|
334 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
335 |
+
):
|
336 |
+
raise ValueError(
|
337 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
338 |
+
f" {type(callback_steps)}."
|
339 |
+
)
|
340 |
+
|
341 |
+
if prompt is not None and prompt_embeds is not None:
|
342 |
+
raise ValueError(
|
343 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
344 |
+
" only forward one of the two."
|
345 |
+
)
|
346 |
+
elif prompt is None and prompt_embeds is None:
|
347 |
+
raise ValueError(
|
348 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
349 |
+
)
|
350 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
351 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
352 |
+
|
353 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
354 |
+
raise ValueError(
|
355 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
356 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
357 |
+
)
|
358 |
+
|
359 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
360 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
361 |
+
raise ValueError(
|
362 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
363 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
364 |
+
f" {negative_prompt_embeds.shape}."
|
365 |
+
)
|
366 |
+
|
367 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
|
368 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
|
369 |
+
shape = (
|
370 |
+
batch_size,
|
371 |
+
num_channels_latents,
|
372 |
+
height // self.vae_scale_factor,
|
373 |
+
self.vocoder.config.model_in_dim // self.vae_scale_factor,
|
374 |
+
)
|
375 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
376 |
+
raise ValueError(
|
377 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
378 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
379 |
+
)
|
380 |
+
|
381 |
+
if latents is None:
|
382 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
383 |
+
else:
|
384 |
+
latents = latents.to(device)
|
385 |
+
|
386 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
387 |
+
latents = latents * self.scheduler.init_noise_sigma
|
388 |
+
return latents
|
389 |
+
|
390 |
+
@torch.no_grad()
|
391 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
392 |
+
def __call__(
|
393 |
+
self,
|
394 |
+
prompt: Union[str, List[str]] = None,
|
395 |
+
audio_length_in_s: Optional[float] = None,
|
396 |
+
num_inference_steps: int = 10,
|
397 |
+
guidance_scale: float = 2.5,
|
398 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
399 |
+
num_waveforms_per_prompt: Optional[int] = 1,
|
400 |
+
eta: float = 0.0,
|
401 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
402 |
+
latents: Optional[torch.FloatTensor] = None,
|
403 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
404 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
405 |
+
return_dict: bool = True,
|
406 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
407 |
+
callback_steps: Optional[int] = 1,
|
408 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
409 |
+
output_type: Optional[str] = "np",
|
410 |
+
):
|
411 |
+
r"""
|
412 |
+
Function invoked when calling the pipeline for generation.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
prompt (`str` or `List[str]`, *optional*):
|
416 |
+
The prompt or prompts to guide the audio generation. If not defined, one has to pass `prompt_embeds`.
|
417 |
+
instead.
|
418 |
+
audio_length_in_s (`int`, *optional*, defaults to 5.12):
|
419 |
+
The length of the generated audio sample in seconds.
|
420 |
+
num_inference_steps (`int`, *optional*, defaults to 10):
|
421 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
|
422 |
+
expense of slower inference.
|
423 |
+
guidance_scale (`float`, *optional*, defaults to 2.5):
|
424 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
425 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
426 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
427 |
+
1`. Higher guidance scale encourages to generate audios that are closely linked to the text `prompt`,
|
428 |
+
usually at the expense of lower sound quality.
|
429 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
430 |
+
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
431 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
432 |
+
less than `1`).
|
433 |
+
num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
|
434 |
+
The number of waveforms to generate per prompt.
|
435 |
+
eta (`float`, *optional*, defaults to 0.0):
|
436 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
437 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
438 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
439 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
440 |
+
to make generation deterministic.
|
441 |
+
latents (`torch.FloatTensor`, *optional*):
|
442 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for audio
|
443 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
444 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
445 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
446 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
447 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
448 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
449 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
450 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
451 |
+
argument.
|
452 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
453 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
454 |
+
plain tuple.
|
455 |
+
callback (`Callable`, *optional*):
|
456 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
457 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
458 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
459 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
460 |
+
called at every step.
|
461 |
+
cross_attention_kwargs (`dict`, *optional*):
|
462 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
463 |
+
`self.processor` in
|
464 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
465 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
466 |
+
The output format of the generate image. Choose between:
|
467 |
+
- `"np"`: Return Numpy `np.ndarray` objects.
|
468 |
+
- `"pt"`: Return PyTorch `torch.Tensor` objects.
|
469 |
+
|
470 |
+
Examples:
|
471 |
+
|
472 |
+
Returns:
|
473 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
474 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
475 |
+
When returning a tuple, the first element is a list with the generated audios.
|
476 |
+
"""
|
477 |
+
# 0. Convert audio input length from seconds to spectrogram height
|
478 |
+
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate
|
479 |
+
|
480 |
+
if audio_length_in_s is None:
|
481 |
+
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor
|
482 |
+
|
483 |
+
height = int(audio_length_in_s / vocoder_upsample_factor)
|
484 |
+
|
485 |
+
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
|
486 |
+
if height % self.vae_scale_factor != 0:
|
487 |
+
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
|
488 |
+
logger.info(
|
489 |
+
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
|
490 |
+
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
|
491 |
+
f"denoising process."
|
492 |
+
)
|
493 |
+
|
494 |
+
# 1. Check inputs. Raise error if not correct
|
495 |
+
self.check_inputs(
|
496 |
+
prompt,
|
497 |
+
audio_length_in_s,
|
498 |
+
vocoder_upsample_factor,
|
499 |
+
callback_steps,
|
500 |
+
negative_prompt,
|
501 |
+
prompt_embeds,
|
502 |
+
negative_prompt_embeds,
|
503 |
+
)
|
504 |
+
|
505 |
+
# 2. Define call parameters
|
506 |
+
if prompt is not None and isinstance(prompt, str):
|
507 |
+
batch_size = 1
|
508 |
+
elif prompt is not None and isinstance(prompt, list):
|
509 |
+
batch_size = len(prompt)
|
510 |
+
else:
|
511 |
+
batch_size = prompt_embeds.shape[0]
|
512 |
+
|
513 |
+
device = self._execution_device
|
514 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
515 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
516 |
+
# corresponds to doing no classifier free guidance.
|
517 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
518 |
+
|
519 |
+
# 3. Encode input prompt
|
520 |
+
prompt_embeds = self._encode_prompt(
|
521 |
+
prompt,
|
522 |
+
device,
|
523 |
+
num_waveforms_per_prompt,
|
524 |
+
do_classifier_free_guidance,
|
525 |
+
negative_prompt,
|
526 |
+
prompt_embeds=prompt_embeds,
|
527 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
528 |
+
)
|
529 |
+
|
530 |
+
# 4. Prepare timesteps
|
531 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
532 |
+
timesteps = self.scheduler.timesteps
|
533 |
+
|
534 |
+
# 5. Prepare latent variables
|
535 |
+
num_channels_latents = self.unet.config.in_channels
|
536 |
+
latents = self.prepare_latents(
|
537 |
+
batch_size * num_waveforms_per_prompt,
|
538 |
+
num_channels_latents,
|
539 |
+
height,
|
540 |
+
prompt_embeds.dtype,
|
541 |
+
device,
|
542 |
+
generator,
|
543 |
+
latents,
|
544 |
+
)
|
545 |
+
|
546 |
+
|
547 |
+
|
548 |
+
# 6. Prepare extra step kwargs
|
549 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
550 |
+
|
551 |
+
# 7. Denoising loop
|
552 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
553 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
554 |
+
for i, t in enumerate(timesteps):
|
555 |
+
# expand the latents if we are doing classifier free guidance
|
556 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
557 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
558 |
+
|
559 |
+
# predict the noise residual
|
560 |
+
noise_pred = self.unet(
|
561 |
+
latent_model_input,
|
562 |
+
t,
|
563 |
+
encoder_hidden_states=None,
|
564 |
+
class_labels=prompt_embeds,
|
565 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
566 |
+
).sample
|
567 |
+
|
568 |
+
# perform guidance
|
569 |
+
if do_classifier_free_guidance:
|
570 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
571 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
572 |
+
|
573 |
+
# compute the previous noisy sample x_t -> x_t-1
|
574 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
575 |
+
|
576 |
+
# call the callback, if provided
|
577 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
578 |
+
progress_bar.update()
|
579 |
+
if callback is not None and i % callback_steps == 0:
|
580 |
+
callback(i, t, latents)
|
581 |
+
|
582 |
+
# 8. Post-processing
|
583 |
+
mel_spectrogram = self.decode_latents(latents)
|
584 |
+
|
585 |
+
audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
|
586 |
+
|
587 |
+
audio = audio[:, :original_waveform_length]
|
588 |
+
|
589 |
+
if output_type == "np":
|
590 |
+
audio = audio.numpy()
|
591 |
+
|
592 |
+
if not return_dict:
|
593 |
+
return (audio,)
|
594 |
+
|
595 |
+
return AudioPipelineOutput(audios=audio)
|
596 |
+
|
597 |
+
|
pipeline/pipeline_audioldm2.py
ADDED
@@ -0,0 +1,1080 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 CVSSP, ByteDance and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from audio_encoder.AudioMAE import AudioMAEConditionCTPoolRand, extract_kaldi_fbank_feature
|
15 |
+
import torchaudio
|
16 |
+
import inspect
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
+
import random
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
from transformers import (
|
22 |
+
ClapFeatureExtractor,
|
23 |
+
ClapModel,
|
24 |
+
GPT2Model,
|
25 |
+
RobertaTokenizer,
|
26 |
+
RobertaTokenizerFast,
|
27 |
+
SpeechT5HifiGan,
|
28 |
+
T5EncoderModel,
|
29 |
+
T5Tokenizer,
|
30 |
+
T5TokenizerFast,
|
31 |
+
)
|
32 |
+
|
33 |
+
from diffusers import AutoencoderKL
|
34 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
35 |
+
from diffusers.utils import (
|
36 |
+
is_accelerate_available,
|
37 |
+
is_accelerate_version,
|
38 |
+
is_librosa_available,
|
39 |
+
logging,
|
40 |
+
replace_example_docstring,
|
41 |
+
)
|
42 |
+
from diffusers.utils.torch_utils import randn_tensor
|
43 |
+
from diffusers.pipelines.pipeline_utils import AudioPipelineOutput, DiffusionPipeline
|
44 |
+
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel
|
45 |
+
from diffusers.loaders import TextualInversionLoaderMixin
|
46 |
+
from audioldm.utils import default_audioldm_config
|
47 |
+
from audioldm.audio import TacotronSTFT, read_wav_file
|
48 |
+
from audioldm.audio.tools import get_mel_from_wav, _pad_spec, normalize_wav, pad_wav
|
49 |
+
|
50 |
+
if is_librosa_available():
|
51 |
+
import librosa
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
54 |
+
|
55 |
+
EXAMPLE_DOC_STRING = """
|
56 |
+
Examples:
|
57 |
+
```py
|
58 |
+
>>> import scipy
|
59 |
+
>>> import torch
|
60 |
+
>>> from diffusers import AudioLDM2Pipeline
|
61 |
+
|
62 |
+
>>> repo_id = "cvssp/audioldm2"
|
63 |
+
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
64 |
+
>>> pipe = pipe.to("cuda")
|
65 |
+
|
66 |
+
>>> # define the prompts
|
67 |
+
>>> prompt = "The sound of a hammer hitting a wooden surface."
|
68 |
+
>>> negative_prompt = "Low quality."
|
69 |
+
|
70 |
+
>>> # set the seed for generator
|
71 |
+
>>> generator = torch.Generator("cuda").manual_seed(0)
|
72 |
+
|
73 |
+
>>> # run the generation
|
74 |
+
>>> audio = pipe(
|
75 |
+
... prompt,
|
76 |
+
... negative_prompt=negative_prompt,
|
77 |
+
... num_inference_steps=200,
|
78 |
+
... audio_length_in_s=10.0,
|
79 |
+
... num_waveforms_per_prompt=3,
|
80 |
+
... generator=generator,
|
81 |
+
... ).audios
|
82 |
+
|
83 |
+
>>> # save the best audio sample (index 0) as a .wav file
|
84 |
+
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio[0])
|
85 |
+
```
|
86 |
+
"""
|
87 |
+
|
88 |
+
|
89 |
+
def prepare_inputs_for_generation(
|
90 |
+
inputs_embeds,
|
91 |
+
attention_mask=None,
|
92 |
+
past_key_values=None,
|
93 |
+
**kwargs,
|
94 |
+
):
|
95 |
+
if past_key_values is not None:
|
96 |
+
# only last token for inputs_embeds if past is defined in kwargs
|
97 |
+
inputs_embeds = inputs_embeds[:, -1:]
|
98 |
+
|
99 |
+
return {
|
100 |
+
"inputs_embeds": inputs_embeds,
|
101 |
+
"attention_mask": attention_mask,
|
102 |
+
"past_key_values": past_key_values,
|
103 |
+
"use_cache": kwargs.get("use_cache"),
|
104 |
+
}
|
105 |
+
|
106 |
+
|
107 |
+
class AudioLDM2Pipeline(DiffusionPipeline,TextualInversionLoaderMixin):
|
108 |
+
r"""
|
109 |
+
Pipeline for text-to-audio generation using AudioLDM2.
|
110 |
+
|
111 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
112 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
113 |
+
|
114 |
+
Args:
|
115 |
+
vae ([`AutoencoderKL`]):
|
116 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
117 |
+
text_encoder ([`~transformers.ClapModel`]):
|
118 |
+
First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model
|
119 |
+
[CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection),
|
120 |
+
specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The
|
121 |
+
text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to
|
122 |
+
rank generated waveforms against the text prompt by computing similarity scores.
|
123 |
+
text_encoder_2 ([`~transformers.T5EncoderModel`]):
|
124 |
+
Second frozen text-encoder. AudioLDM2 uses the encoder of
|
125 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
126 |
+
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant.
|
127 |
+
projection_model ([`AudioLDM2ProjectionModel`]):
|
128 |
+
A trained model used to linearly project the hidden-states from the first and second text encoder models
|
129 |
+
and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are
|
130 |
+
concatenated to give the input to the language model.
|
131 |
+
language_model ([`~transformers.GPT2Model`]):
|
132 |
+
An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected
|
133 |
+
outputs from the two text encoders.
|
134 |
+
tokenizer ([`~transformers.RobertaTokenizer`]):
|
135 |
+
Tokenizer to tokenize text for the first frozen text-encoder.
|
136 |
+
tokenizer_2 ([`~transformers.T5Tokenizer`]):
|
137 |
+
Tokenizer to tokenize text for the second frozen text-encoder.
|
138 |
+
feature_extractor ([`~transformers.ClapFeatureExtractor`]):
|
139 |
+
Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring.
|
140 |
+
unet ([`UNet2DConditionModel`]):
|
141 |
+
A `UNet2DConditionModel` to denoise the encoded audio latents.
|
142 |
+
scheduler ([`SchedulerMixin`]):
|
143 |
+
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
144 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
145 |
+
vocoder ([`~transformers.SpeechT5HifiGan`]):
|
146 |
+
Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform.
|
147 |
+
"""
|
148 |
+
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
vae: AutoencoderKL,
|
152 |
+
text_encoder: ClapModel,
|
153 |
+
text_encoder_2: T5EncoderModel,
|
154 |
+
projection_model: AudioLDM2ProjectionModel,
|
155 |
+
language_model: GPT2Model,
|
156 |
+
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
|
157 |
+
tokenizer_2: Union[T5Tokenizer, T5TokenizerFast],
|
158 |
+
feature_extractor: ClapFeatureExtractor,
|
159 |
+
unet: AudioLDM2UNet2DConditionModel,
|
160 |
+
scheduler: KarrasDiffusionSchedulers,
|
161 |
+
vocoder: SpeechT5HifiGan,
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.register_modules(
|
166 |
+
vae=vae,
|
167 |
+
text_encoder=text_encoder,
|
168 |
+
text_encoder_2=text_encoder_2,
|
169 |
+
projection_model=projection_model,
|
170 |
+
language_model=language_model,
|
171 |
+
tokenizer=tokenizer,
|
172 |
+
tokenizer_2=tokenizer_2,
|
173 |
+
feature_extractor=feature_extractor,
|
174 |
+
unet=unet,
|
175 |
+
scheduler=scheduler,
|
176 |
+
vocoder=vocoder,
|
177 |
+
)
|
178 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
179 |
+
|
180 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
181 |
+
def enable_vae_slicing(self):
|
182 |
+
r"""
|
183 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
184 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
185 |
+
"""
|
186 |
+
self.vae.enable_slicing()
|
187 |
+
|
188 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
189 |
+
def disable_vae_slicing(self):
|
190 |
+
r"""
|
191 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
192 |
+
computing decoding in one step.
|
193 |
+
"""
|
194 |
+
self.vae.disable_slicing()
|
195 |
+
|
196 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
197 |
+
r"""
|
198 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
199 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
200 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
201 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
202 |
+
"""
|
203 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
204 |
+
from accelerate import cpu_offload_with_hook
|
205 |
+
else:
|
206 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
207 |
+
|
208 |
+
device = torch.device(f"cuda:{gpu_id}")
|
209 |
+
|
210 |
+
if self.device.type != "cpu":
|
211 |
+
self.to("cpu", silence_dtype_warnings=True)
|
212 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
213 |
+
|
214 |
+
model_sequence = [
|
215 |
+
self.text_encoder.text_model,
|
216 |
+
self.text_encoder.text_projection,
|
217 |
+
self.text_encoder_2,
|
218 |
+
self.projection_model,
|
219 |
+
self.language_model,
|
220 |
+
self.unet,
|
221 |
+
self.vae,
|
222 |
+
self.vocoder,
|
223 |
+
self.text_encoder,
|
224 |
+
]
|
225 |
+
|
226 |
+
hook = None
|
227 |
+
for cpu_offloaded_model in model_sequence:
|
228 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
229 |
+
|
230 |
+
# We'll offload the last model manually.
|
231 |
+
self.final_offload_hook = hook
|
232 |
+
|
233 |
+
def generate_language_model(
|
234 |
+
self,
|
235 |
+
inputs_embeds: torch.Tensor = None,
|
236 |
+
max_new_tokens: int = 512,
|
237 |
+
**model_kwargs,
|
238 |
+
):
|
239 |
+
"""
|
240 |
+
|
241 |
+
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
|
242 |
+
|
243 |
+
Parameters:
|
244 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
245 |
+
The sequence used as a prompt for the generation.
|
246 |
+
max_new_tokens (`int`):
|
247 |
+
Number of new tokens to generate.
|
248 |
+
model_kwargs (`Dict[str, Any]`, *optional*):
|
249 |
+
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
|
250 |
+
function of the model.
|
251 |
+
|
252 |
+
Return:
|
253 |
+
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
254 |
+
The sequence of generated hidden-states.
|
255 |
+
"""
|
256 |
+
max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens
|
257 |
+
model_kwargs = self.language_model._get_initial_cache_position(inputs_embeds, model_kwargs)
|
258 |
+
for _ in range(max_new_tokens):
|
259 |
+
# prepare model inputs
|
260 |
+
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)
|
261 |
+
|
262 |
+
# forward pass to get next hidden states
|
263 |
+
output = self.language_model(**model_inputs, return_dict=True)
|
264 |
+
|
265 |
+
next_hidden_states = output.last_hidden_state
|
266 |
+
|
267 |
+
# Update the model input
|
268 |
+
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
|
269 |
+
|
270 |
+
# Update generated hidden states, model inputs, and length for next step
|
271 |
+
model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs)
|
272 |
+
|
273 |
+
return inputs_embeds[:, -max_new_tokens:, :]
|
274 |
+
|
275 |
+
def encode_prompt(
|
276 |
+
self,
|
277 |
+
prompt,
|
278 |
+
device,
|
279 |
+
num_waveforms_per_prompt,
|
280 |
+
do_classifier_free_guidance,
|
281 |
+
negative_prompt=None,
|
282 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
283 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
284 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
285 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
286 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
287 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
288 |
+
max_new_tokens: Optional[int] = None,
|
289 |
+
):
|
290 |
+
r"""
|
291 |
+
Encodes the prompt into text encoder hidden states.
|
292 |
+
|
293 |
+
Args:
|
294 |
+
prompt (`str` or `List[str]`, *optional*):
|
295 |
+
prompt to be encoded
|
296 |
+
device (`torch.device`):
|
297 |
+
torch device
|
298 |
+
num_waveforms_per_prompt (`int`):
|
299 |
+
number of waveforms that should be generated per prompt
|
300 |
+
do_classifier_free_guidance (`bool`):
|
301 |
+
whether to use classifier free guidance or not
|
302 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
303 |
+
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
304 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
305 |
+
less than `1`).
|
306 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
307 |
+
Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.*
|
308 |
+
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument.
|
309 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
310 |
+
Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs,
|
311 |
+
*e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
312 |
+
`negative_prompt` input argument.
|
313 |
+
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
314 |
+
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
|
315 |
+
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
|
316 |
+
argument.
|
317 |
+
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
318 |
+
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
|
319 |
+
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
320 |
+
`negative_prompt` input argument.
|
321 |
+
attention_mask (`torch.LongTensor`, *optional*):
|
322 |
+
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
323 |
+
be computed from `prompt` input argument.
|
324 |
+
negative_attention_mask (`torch.LongTensor`, *optional*):
|
325 |
+
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
|
326 |
+
mask will be computed from `negative_prompt` input argument.
|
327 |
+
max_new_tokens (`int`, *optional*, defaults to None):
|
328 |
+
The number of new tokens to generate with the GPT2 language model.
|
329 |
+
Returns:
|
330 |
+
prompt_embeds (`torch.FloatTensor`):
|
331 |
+
Text embeddings from the Flan T5 model.
|
332 |
+
attention_mask (`torch.LongTensor`):
|
333 |
+
Attention mask to be applied to the `prompt_embeds`.
|
334 |
+
generated_prompt_embeds (`torch.FloatTensor`):
|
335 |
+
Text embeddings generated from the GPT2 langauge model.
|
336 |
+
|
337 |
+
Example:
|
338 |
+
|
339 |
+
```python
|
340 |
+
>>> import scipy
|
341 |
+
>>> import torch
|
342 |
+
>>> from diffusers import AudioLDM2Pipeline
|
343 |
+
|
344 |
+
>>> repo_id = "cvssp/audioldm2"
|
345 |
+
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
346 |
+
>>> pipe = pipe.to("cuda")
|
347 |
+
|
348 |
+
>>> # Get text embedding vectors
|
349 |
+
>>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt(
|
350 |
+
... prompt="Techno music with a strong, upbeat tempo and high melodic riffs",
|
351 |
+
... device="cuda",
|
352 |
+
... do_classifier_free_guidance=True,
|
353 |
+
... )
|
354 |
+
|
355 |
+
>>> # Pass text embeddings to pipeline for text-conditional audio generation
|
356 |
+
>>> audio = pipe(
|
357 |
+
... prompt_embeds=prompt_embeds,
|
358 |
+
... attention_mask=attention_mask,
|
359 |
+
... generated_prompt_embeds=generated_prompt_embeds,
|
360 |
+
... num_inference_steps=200,
|
361 |
+
... audio_length_in_s=10.0,
|
362 |
+
... ).audios[0]
|
363 |
+
|
364 |
+
>>> # save generated audio sample
|
365 |
+
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
|
366 |
+
```"""
|
367 |
+
# print("prompt",prompt)
|
368 |
+
if prompt is not None and isinstance(prompt, str):
|
369 |
+
batch_size = 1
|
370 |
+
elif prompt is not None and isinstance(prompt, list):
|
371 |
+
batch_size = len(prompt)
|
372 |
+
else:
|
373 |
+
batch_size = prompt_embeds.shape[0]
|
374 |
+
|
375 |
+
# Define tokenizers and text encoders
|
376 |
+
tokenizers = [self.tokenizer, self.tokenizer_2]
|
377 |
+
text_encoders = [self.text_encoder, self.text_encoder_2]
|
378 |
+
|
379 |
+
if prompt_embeds is None:
|
380 |
+
prompt_embeds_list = []
|
381 |
+
attention_mask_list = []
|
382 |
+
|
383 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
384 |
+
text_inputs = tokenizer(
|
385 |
+
prompt,
|
386 |
+
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
|
387 |
+
max_length=tokenizer.model_max_length,
|
388 |
+
truncation=True,
|
389 |
+
return_tensors="pt",
|
390 |
+
)
|
391 |
+
text_input_ids = text_inputs.input_ids
|
392 |
+
attention_mask = text_inputs.attention_mask
|
393 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
394 |
+
|
395 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
396 |
+
text_input_ids, untruncated_ids
|
397 |
+
):
|
398 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
399 |
+
logger.warning(
|
400 |
+
f"The following part of your input was truncated because {text_encoder.config.model_type} can "
|
401 |
+
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
|
402 |
+
)
|
403 |
+
|
404 |
+
text_input_ids = text_input_ids.to(device)
|
405 |
+
attention_mask = attention_mask.to(device)
|
406 |
+
|
407 |
+
if text_encoder.config.model_type == "clap":
|
408 |
+
prompt_embeds = text_encoder.get_text_features(
|
409 |
+
text_input_ids,
|
410 |
+
attention_mask=attention_mask,
|
411 |
+
)
|
412 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
413 |
+
prompt_embeds = prompt_embeds[:, None, :]
|
414 |
+
# make sure that we attend to this single hidden-state
|
415 |
+
attention_mask = attention_mask.new_ones((batch_size, 1))
|
416 |
+
else:
|
417 |
+
prompt_embeds = text_encoder(
|
418 |
+
text_input_ids,
|
419 |
+
attention_mask=attention_mask,
|
420 |
+
)
|
421 |
+
prompt_embeds = prompt_embeds[0]
|
422 |
+
|
423 |
+
prompt_embeds_list.append(prompt_embeds)
|
424 |
+
attention_mask_list.append(attention_mask)
|
425 |
+
|
426 |
+
projection_output = self.projection_model(
|
427 |
+
hidden_states=prompt_embeds_list[0],
|
428 |
+
hidden_states_1=prompt_embeds_list[1],
|
429 |
+
attention_mask=attention_mask_list[0],
|
430 |
+
attention_mask_1=attention_mask_list[1],
|
431 |
+
)
|
432 |
+
projected_prompt_embeds = projection_output.hidden_states
|
433 |
+
projected_attention_mask = projection_output.attention_mask
|
434 |
+
|
435 |
+
generated_prompt_embeds = self.generate_language_model(
|
436 |
+
projected_prompt_embeds,
|
437 |
+
attention_mask=projected_attention_mask,
|
438 |
+
max_new_tokens=max_new_tokens,
|
439 |
+
)
|
440 |
+
|
441 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
442 |
+
attention_mask = (
|
443 |
+
attention_mask.to(device=device)
|
444 |
+
if attention_mask is not None
|
445 |
+
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
446 |
+
)
|
447 |
+
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device)
|
448 |
+
|
449 |
+
bs_embed, seq_len, hidden_size = prompt_embeds.shape
|
450 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
451 |
+
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
452 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)
|
453 |
+
|
454 |
+
# duplicate attention mask for each generation per prompt
|
455 |
+
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
|
456 |
+
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
|
457 |
+
|
458 |
+
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
|
459 |
+
# duplicate generated embeddings for each generation per prompt, using mps friendly method
|
460 |
+
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
461 |
+
generated_prompt_embeds = generated_prompt_embeds.view(
|
462 |
+
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
|
463 |
+
)
|
464 |
+
|
465 |
+
# get unconditional embeddings for classifier free guidance
|
466 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
467 |
+
uncond_tokens: List[str]
|
468 |
+
if negative_prompt is None:
|
469 |
+
uncond_tokens = [""] * batch_size
|
470 |
+
elif type(prompt) is not type(negative_prompt):
|
471 |
+
raise TypeError(
|
472 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
473 |
+
f" {type(prompt)}."
|
474 |
+
)
|
475 |
+
elif isinstance(negative_prompt, str):
|
476 |
+
uncond_tokens = [negative_prompt]
|
477 |
+
elif batch_size != len(negative_prompt):
|
478 |
+
raise ValueError(
|
479 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
480 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
481 |
+
" the batch size of `prompt`."
|
482 |
+
)
|
483 |
+
else:
|
484 |
+
uncond_tokens = negative_prompt
|
485 |
+
|
486 |
+
negative_prompt_embeds_list = []
|
487 |
+
negative_attention_mask_list = []
|
488 |
+
max_length = prompt_embeds.shape[1]
|
489 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
490 |
+
uncond_input = tokenizer(
|
491 |
+
uncond_tokens,
|
492 |
+
padding="max_length",
|
493 |
+
max_length=tokenizer.model_max_length
|
494 |
+
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
495 |
+
else max_length,
|
496 |
+
truncation=True,
|
497 |
+
return_tensors="pt",
|
498 |
+
)
|
499 |
+
|
500 |
+
uncond_input_ids = uncond_input.input_ids.to(device)
|
501 |
+
negative_attention_mask = uncond_input.attention_mask.to(device)
|
502 |
+
|
503 |
+
if text_encoder.config.model_type == "clap":
|
504 |
+
negative_prompt_embeds = text_encoder.get_text_features(
|
505 |
+
uncond_input_ids,
|
506 |
+
attention_mask=negative_attention_mask,
|
507 |
+
)
|
508 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
509 |
+
negative_prompt_embeds = negative_prompt_embeds[:, None, :]
|
510 |
+
# make sure that we attend to this single hidden-state
|
511 |
+
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
|
512 |
+
else:
|
513 |
+
negative_prompt_embeds = text_encoder(
|
514 |
+
uncond_input_ids,
|
515 |
+
attention_mask=negative_attention_mask,
|
516 |
+
)
|
517 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
518 |
+
|
519 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
520 |
+
negative_attention_mask_list.append(negative_attention_mask)
|
521 |
+
|
522 |
+
projection_output = self.projection_model(
|
523 |
+
hidden_states=negative_prompt_embeds_list[0],
|
524 |
+
hidden_states_1=negative_prompt_embeds_list[1],
|
525 |
+
attention_mask=negative_attention_mask_list[0],
|
526 |
+
attention_mask_1=negative_attention_mask_list[1],
|
527 |
+
)
|
528 |
+
negative_projected_prompt_embeds = projection_output.hidden_states
|
529 |
+
negative_projected_attention_mask = projection_output.attention_mask
|
530 |
+
|
531 |
+
negative_generated_prompt_embeds = self.generate_language_model(
|
532 |
+
negative_projected_prompt_embeds,
|
533 |
+
attention_mask=negative_projected_attention_mask,
|
534 |
+
max_new_tokens=max_new_tokens,
|
535 |
+
)
|
536 |
+
|
537 |
+
if do_classifier_free_guidance:
|
538 |
+
seq_len = negative_prompt_embeds.shape[1]
|
539 |
+
|
540 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
541 |
+
negative_attention_mask = (
|
542 |
+
negative_attention_mask.to(device=device)
|
543 |
+
if negative_attention_mask is not None
|
544 |
+
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
545 |
+
)
|
546 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
|
547 |
+
dtype=self.language_model.dtype, device=device
|
548 |
+
)
|
549 |
+
|
550 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
551 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
552 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
|
553 |
+
|
554 |
+
# duplicate unconditional attention mask for each generation per prompt
|
555 |
+
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
|
556 |
+
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)
|
557 |
+
|
558 |
+
# duplicate unconditional generated embeddings for each generation per prompt
|
559 |
+
seq_len = negative_generated_prompt_embeds.shape[1]
|
560 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
561 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
|
562 |
+
batch_size * num_waveforms_per_prompt, seq_len, -1
|
563 |
+
)
|
564 |
+
|
565 |
+
# For classifier free guidance, we need to do two forward passes.
|
566 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
567 |
+
# to avoid doing two forward passes
|
568 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
569 |
+
attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
570 |
+
# print("negative_generated_prompt_embeds",negative_generated_prompt_embeds.shape)
|
571 |
+
# print("generated_prompt_embeds",generated_prompt_embeds.shape)
|
572 |
+
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])
|
573 |
+
# if random.random() < 0.25:
|
574 |
+
# num = random.randint(0, 2)
|
575 |
+
# if num == 0:
|
576 |
+
# audiomae = torch.load("/data/home/fundwotsai/DreamSound/MAE_feature0_stride16.pt")
|
577 |
+
# elif num == 1:
|
578 |
+
# audiomae = torch.load("/data/home/fundwotsai/DreamSound/MAE_feature1_stride16.pt")
|
579 |
+
# else:
|
580 |
+
# audiomae = torch.load("/data/home/fundwotsai/DreamSound/MAE_feature2_stride16.pt")
|
581 |
+
# audiomae = audiomae.to(torch.float32)
|
582 |
+
# audiomae = audiomae.to("cuda")
|
583 |
+
# generated_prompt_embeds[1:2] = audiomae
|
584 |
+
|
585 |
+
return prompt_embeds, attention_mask, generated_prompt_embeds
|
586 |
+
|
587 |
+
# Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform
|
588 |
+
def mel_spectrogram_to_waveform(self, mel_spectrogram):
|
589 |
+
if mel_spectrogram.dim() == 4:
|
590 |
+
mel_spectrogram = mel_spectrogram.squeeze(1)
|
591 |
+
|
592 |
+
waveform = self.vocoder(mel_spectrogram)
|
593 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
594 |
+
waveform = waveform.cpu().float()
|
595 |
+
return waveform
|
596 |
+
|
597 |
+
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype):
|
598 |
+
if not is_librosa_available():
|
599 |
+
logger.info(
|
600 |
+
"Automatic scoring of the generated audio waveforms against the input prompt text requires the "
|
601 |
+
"`librosa` package to resample the generated waveforms. Returning the audios in the order they were "
|
602 |
+
"generated. To enable automatic scoring, install `librosa` with: `pip install librosa`."
|
603 |
+
)
|
604 |
+
return audio
|
605 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True)
|
606 |
+
resampled_audio = librosa.resample(
|
607 |
+
audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate
|
608 |
+
)
|
609 |
+
inputs["input_features"] = self.feature_extractor(
|
610 |
+
list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate
|
611 |
+
).input_features.type(dtype)
|
612 |
+
inputs = inputs.to(device)
|
613 |
+
|
614 |
+
# compute the audio-text similarity score using the CLAP model
|
615 |
+
logits_per_text = self.text_encoder(**inputs).logits_per_text
|
616 |
+
# sort by the highest matching generations per prompt
|
617 |
+
indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt]
|
618 |
+
audio = torch.index_select(audio, 0, indices.reshape(-1).cpu())
|
619 |
+
return audio
|
620 |
+
|
621 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
622 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
623 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
624 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
625 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
626 |
+
# and should be between [0, 1]
|
627 |
+
|
628 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
629 |
+
extra_step_kwargs = {}
|
630 |
+
if accepts_eta:
|
631 |
+
extra_step_kwargs["eta"] = eta
|
632 |
+
|
633 |
+
# check if the scheduler accepts generator
|
634 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
635 |
+
if accepts_generator:
|
636 |
+
extra_step_kwargs["generator"] = generator
|
637 |
+
return extra_step_kwargs
|
638 |
+
|
639 |
+
def check_inputs(
|
640 |
+
self,
|
641 |
+
prompt,
|
642 |
+
audio_length_in_s,
|
643 |
+
vocoder_upsample_factor,
|
644 |
+
callback_steps,
|
645 |
+
negative_prompt=None,
|
646 |
+
prompt_embeds=None,
|
647 |
+
negative_prompt_embeds=None,
|
648 |
+
generated_prompt_embeds=None,
|
649 |
+
negative_generated_prompt_embeds=None,
|
650 |
+
attention_mask=None,
|
651 |
+
negative_attention_mask=None,
|
652 |
+
):
|
653 |
+
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
|
654 |
+
if audio_length_in_s < min_audio_length_in_s:
|
655 |
+
raise ValueError(
|
656 |
+
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
|
657 |
+
f"is {audio_length_in_s}."
|
658 |
+
)
|
659 |
+
|
660 |
+
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
|
661 |
+
raise ValueError(
|
662 |
+
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
|
663 |
+
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
|
664 |
+
f"{self.vae_scale_factor}."
|
665 |
+
)
|
666 |
+
|
667 |
+
if (callback_steps is None) or (
|
668 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)):
|
669 |
+
raise ValueError(
|
670 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
671 |
+
f" {type(callback_steps)}."
|
672 |
+
)
|
673 |
+
|
674 |
+
if prompt is not None and prompt_embeds is not None:
|
675 |
+
raise ValueError(
|
676 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
677 |
+
" only forward one of the two."
|
678 |
+
)
|
679 |
+
elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None):
|
680 |
+
raise ValueError(
|
681 |
+
"Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave "
|
682 |
+
"`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`."
|
683 |
+
)
|
684 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
685 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
686 |
+
|
687 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
688 |
+
raise ValueError(
|
689 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
690 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
691 |
+
)
|
692 |
+
elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None:
|
693 |
+
raise ValueError(
|
694 |
+
"Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that"
|
695 |
+
"both arguments are specified"
|
696 |
+
)
|
697 |
+
|
698 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
699 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
700 |
+
raise ValueError(
|
701 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
702 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
703 |
+
f" {negative_prompt_embeds.shape}."
|
704 |
+
)
|
705 |
+
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
|
706 |
+
raise ValueError(
|
707 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
708 |
+
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
|
709 |
+
)
|
710 |
+
|
711 |
+
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None:
|
712 |
+
if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape:
|
713 |
+
raise ValueError(
|
714 |
+
"`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when "
|
715 |
+
f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != "
|
716 |
+
f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}."
|
717 |
+
)
|
718 |
+
if (
|
719 |
+
negative_attention_mask is not None
|
720 |
+
and negative_attention_mask.shape != negative_prompt_embeds.shape[:2]
|
721 |
+
):
|
722 |
+
raise ValueError(
|
723 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
724 |
+
f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}"
|
725 |
+
)
|
726 |
+
|
727 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
|
728 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
|
729 |
+
shape = (
|
730 |
+
batch_size,
|
731 |
+
num_channels_latents,
|
732 |
+
height // self.vae_scale_factor,
|
733 |
+
self.vocoder.config.model_in_dim // self.vae_scale_factor,
|
734 |
+
)
|
735 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
736 |
+
raise ValueError(
|
737 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
738 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
739 |
+
)
|
740 |
+
|
741 |
+
if latents is None:
|
742 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
743 |
+
else:
|
744 |
+
latents = latents.to(device)
|
745 |
+
|
746 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
747 |
+
latents = latents * self.scheduler.init_noise_sigma
|
748 |
+
return latents
|
749 |
+
|
750 |
+
@torch.no_grad()
|
751 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
752 |
+
def __call__(
|
753 |
+
self,
|
754 |
+
audio_file = None,
|
755 |
+
audio_file2 = None,
|
756 |
+
time_pooling = 8,
|
757 |
+
freq_pooling = 8,
|
758 |
+
prompt: Union[str, List[str]] = None,
|
759 |
+
audio_length_in_s: Optional[float] = None,
|
760 |
+
num_inference_steps: int = 200,
|
761 |
+
guidance_scale: float = 7.5,
|
762 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
763 |
+
num_waveforms_per_prompt: Optional[int] = 1,
|
764 |
+
eta: float = 0.0,
|
765 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
766 |
+
latents: Optional[torch.FloatTensor] = None,
|
767 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
768 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
769 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
770 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
771 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
772 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
773 |
+
max_new_tokens: Optional[int] = None,
|
774 |
+
return_dict: bool = True,
|
775 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
776 |
+
callback_steps: Optional[int] = 1,
|
777 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
778 |
+
output_type: Optional[str] = "np",
|
779 |
+
):
|
780 |
+
r"""
|
781 |
+
The call function to the pipeline for generation.
|
782 |
+
|
783 |
+
Args:
|
784 |
+
prompt (`str` or `List[str]`, *optional*):
|
785 |
+
The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
|
786 |
+
audio_length_in_s (`int`, *optional*, defaults to 10.24):
|
787 |
+
The length of the generated audio sample in seconds.
|
788 |
+
num_inference_steps (`int`, *optional*, defaults to 200):
|
789 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
|
790 |
+
expense of slower inference.
|
791 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
792 |
+
A higher guidance scale value encourages the model to generate audio that is closely linked to the text
|
793 |
+
`prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
|
794 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
795 |
+
The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
|
796 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
797 |
+
num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
|
798 |
+
The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, then automatic
|
799 |
+
scoring is performed between the generated outputs and the text prompt. This scoring ranks the
|
800 |
+
generated waveforms based on their cosine similarity with the text input in the joint text-audio
|
801 |
+
embedding space.
|
802 |
+
eta (`float`, *optional*, defaults to 0.0):
|
803 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
804 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
805 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
806 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
807 |
+
generation deterministic.
|
808 |
+
latents (`torch.FloatTensor`, *optional*):
|
809 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for spectrogram
|
810 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
811 |
+
tensor is generated by sampling using the supplied random `generator`.
|
812 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
813 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
814 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
815 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
816 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
817 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
818 |
+
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
819 |
+
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
|
820 |
+
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
|
821 |
+
argument.
|
822 |
+
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
823 |
+
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
|
824 |
+
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
825 |
+
`negative_prompt` input argument.
|
826 |
+
attention_mask (`torch.LongTensor`, *optional*):
|
827 |
+
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
828 |
+
be computed from `prompt` input argument.
|
829 |
+
negative_attention_mask (`torch.LongTensor`, *optional*):
|
830 |
+
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
|
831 |
+
mask will be computed from `negative_prompt` input argument.
|
832 |
+
max_new_tokens (`int`, *optional*, defaults to None):
|
833 |
+
Number of new tokens to generate with the GPT2 language model. If not provided, number of tokens will
|
834 |
+
be taken from the config of the model.
|
835 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
836 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
837 |
+
plain tuple.
|
838 |
+
callback (`Callable`, *optional*):
|
839 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
840 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
841 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
842 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
843 |
+
every step.
|
844 |
+
cross_attention_kwargs (`dict`, *optional*):
|
845 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
846 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
847 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
848 |
+
The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or
|
849 |
+
`"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
|
850 |
+
model (LDM) output.
|
851 |
+
|
852 |
+
Examples:
|
853 |
+
|
854 |
+
Returns:
|
855 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
856 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
857 |
+
otherwise a `tuple` is returned where the first element is a list with the generated audio.
|
858 |
+
"""
|
859 |
+
# 0. Convert audio input length from seconds to spectrogram height
|
860 |
+
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate
|
861 |
+
|
862 |
+
if audio_length_in_s is None:
|
863 |
+
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor
|
864 |
+
|
865 |
+
height = int(audio_length_in_s / vocoder_upsample_factor)
|
866 |
+
|
867 |
+
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
|
868 |
+
if height % self.vae_scale_factor != 0:
|
869 |
+
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
|
870 |
+
logger.info(
|
871 |
+
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
|
872 |
+
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
|
873 |
+
f"denoising process."
|
874 |
+
)
|
875 |
+
|
876 |
+
# 1. Check inputs. Raise error if not correct
|
877 |
+
self.check_inputs(
|
878 |
+
prompt,
|
879 |
+
audio_length_in_s,
|
880 |
+
vocoder_upsample_factor,
|
881 |
+
callback_steps,
|
882 |
+
negative_prompt,
|
883 |
+
prompt_embeds,
|
884 |
+
negative_prompt_embeds,
|
885 |
+
generated_prompt_embeds,
|
886 |
+
negative_generated_prompt_embeds,
|
887 |
+
attention_mask,
|
888 |
+
negative_attention_mask,
|
889 |
+
)
|
890 |
+
|
891 |
+
# 2. Define call parameters
|
892 |
+
if prompt is not None and isinstance(prompt, str):
|
893 |
+
batch_size = 1
|
894 |
+
elif prompt is not None and isinstance(prompt, list):
|
895 |
+
batch_size = len(prompt)
|
896 |
+
else:
|
897 |
+
batch_size = prompt_embeds.shape[0]
|
898 |
+
|
899 |
+
device = self._execution_device
|
900 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
901 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
902 |
+
# corresponds to doing no classifier free guidance.
|
903 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
904 |
+
|
905 |
+
# 3. Encode input prompt
|
906 |
+
prompt_embeds, attention_mask, generated_prompt_embeds = self.encode_prompt(
|
907 |
+
prompt,
|
908 |
+
device,
|
909 |
+
num_waveforms_per_prompt,
|
910 |
+
do_classifier_free_guidance,
|
911 |
+
negative_prompt,
|
912 |
+
prompt_embeds=prompt_embeds,
|
913 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
914 |
+
generated_prompt_embeds=generated_prompt_embeds,
|
915 |
+
negative_generated_prompt_embeds=negative_generated_prompt_embeds,
|
916 |
+
attention_mask=attention_mask,
|
917 |
+
negative_attention_mask=negative_attention_mask,
|
918 |
+
max_new_tokens=max_new_tokens,
|
919 |
+
)
|
920 |
+
# print("prompt_embeds",prompt_embeds.shape)
|
921 |
+
# print("attention_mask",attention_mask.shape)
|
922 |
+
# print("generated_prompt_embeds",generated_prompt_embeds.shape)
|
923 |
+
if audio_file != None:
|
924 |
+
waveform, sr = torchaudio.load(audio_file)
|
925 |
+
fbank = torch.zeros((1024, 128))
|
926 |
+
# print(sr)
|
927 |
+
ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank)
|
928 |
+
# print("ta_kaldi_fbank.shape",ta_kaldi_fbank.shape)
|
929 |
+
mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0)
|
930 |
+
model = AudioMAEConditionCTPoolRand().cuda()
|
931 |
+
model.eval()
|
932 |
+
LOA_embed = model(mel_spect_tensor, time_pool=time_pooling, freq_pool=freq_pooling)
|
933 |
+
uncond_LOA_embed = model(torch.zeros_like(mel_spect_tensor), time_pool=time_pooling, freq_pool=freq_pooling)
|
934 |
+
# print(LOA_embed[0].size(),uncond_LOA_embed[0].size())
|
935 |
+
# return LOA_embed[0], uncond_LOA_embed[0]
|
936 |
+
LOA_embeds = LOA_embed[0]
|
937 |
+
uncond_LOA_embeds = uncond_LOA_embed[0]
|
938 |
+
bs_embed, seq_len, _ = LOA_embeds.shape
|
939 |
+
num = prompt_embeds.shape[0] // 2
|
940 |
+
# print("num",num)
|
941 |
+
LOA_embeds = LOA_embeds.view(bs_embed , seq_len, -1)
|
942 |
+
LOA_embeds = LOA_embeds.repeat(num, 1, 1)
|
943 |
+
uncond_LOA_embeds = uncond_LOA_embeds.view(bs_embed , seq_len, -1)
|
944 |
+
uncond_LOA_embeds = uncond_LOA_embeds.repeat(num, 1, 1)
|
945 |
+
negative_g, g = generated_prompt_embeds.chunk(2)
|
946 |
+
# print("negative_g",negative_g.shape)
|
947 |
+
# print("uncond_LOA_embeds",uncond_LOA_embeds.shape)
|
948 |
+
# print("LOA_embeds",LOA_embeds.shape)
|
949 |
+
uncond = torch.cat([negative_g, uncond_LOA_embeds], dim=1)
|
950 |
+
cond = torch.cat([g, LOA_embeds], dim=1)
|
951 |
+
# print("uncond",uncond.shape)
|
952 |
+
# print("cond",cond.shape)
|
953 |
+
generated_prompt_embeds = torch.cat([uncond, cond], dim=0)
|
954 |
+
# generated_prompt_embeds[1:2] = LOA_embeds
|
955 |
+
# print("generated_prompt_embeds.shape", generated_prompt_embeds.shape)
|
956 |
+
# Assuming 'model' is your pre-defined model
|
957 |
+
model_dtype = next(self.unet.parameters()).dtype
|
958 |
+
# print(model_dtype)
|
959 |
+
# Convert your tensor to the same dtype as the model
|
960 |
+
generated_prompt_embeds = generated_prompt_embeds.to(model_dtype)
|
961 |
+
|
962 |
+
# generated_prompt_embeds = generated_prompt_embeds.to(torch.float32)
|
963 |
+
# print("generated_prompt_embeds.shape", generated_prompt_embeds.shape)
|
964 |
+
# print("LOA_embeds.shape", LOA_embeds.shape)
|
965 |
+
# generated_prompt_embeds[1:2] = LOA_embeds
|
966 |
+
|
967 |
+
# if random.random() < 0.25:
|
968 |
+
# num = random.randint(0, 2)
|
969 |
+
# if num == 0:
|
970 |
+
# audiomae = torch.load("/home/fundwotsai/DreamSound/MAE_feature1_stride-no-pool.pt")
|
971 |
+
# # elif num == 1:
|
972 |
+
# # audiomae = torch.load("/data/home/fundwotsai/DreamSound/MAE_feature1_stride16.pt")
|
973 |
+
# # else:
|
974 |
+
# # audiomae = torch.load("/data/home/fundwotsai/DreamSound/MAE_feature2_stride16.pt")
|
975 |
+
# audiomae = audiomae.to(torch.float32)
|
976 |
+
# audiomae = audiomae.to("cuda")
|
977 |
+
# print("generated_prompt_embeds",generated_prompt_embeds.shape)
|
978 |
+
# print("audiomae",audiomae.shape)
|
979 |
+
# generated_prompt_embeds[1:2] = audiomae
|
980 |
+
|
981 |
+
# print("generated_prompt_embeds",generated_prompt_embeds.shape)
|
982 |
+
# audiomae = torch.load("/home/fundwotsai/DreamSound/MAE_feature1_stride-no-pool.pt")
|
983 |
+
# audiomae = audiomae.to(torch.float16)
|
984 |
+
# audiomae = audiomae.to("cuda")
|
985 |
+
# generated_prompt_embeds[1:2] = audiomae
|
986 |
+
# 4. Prepare timesteps
|
987 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
988 |
+
timesteps = self.scheduler.timesteps
|
989 |
+
|
990 |
+
# 5. Prepare latent variables
|
991 |
+
num_channels_latents = self.unet.config.in_channels
|
992 |
+
latents = self.prepare_latents(
|
993 |
+
batch_size * num_waveforms_per_prompt,
|
994 |
+
num_channels_latents,
|
995 |
+
height,
|
996 |
+
prompt_embeds.dtype,
|
997 |
+
device,
|
998 |
+
generator,
|
999 |
+
latents,
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
# 6. Prepare extra step kwargs
|
1003 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1004 |
+
|
1005 |
+
# 7. Denoising loop
|
1006 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1007 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1008 |
+
for i, t in enumerate(timesteps):
|
1009 |
+
# print(f"t: {t}")
|
1010 |
+
# expand the latents if we are doing classifier free guidance
|
1011 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1012 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1013 |
+
|
1014 |
+
# print(f"latent_model_input dtype: {latent_model_input.dtype}")
|
1015 |
+
# print(f"generated_prompt_embeds dtype: {generated_prompt_embeds.dtype}")
|
1016 |
+
# print(f"prompt_embeds dtype: {prompt_embeds.dtype}")
|
1017 |
+
# print(f"attention_mask dtype: {attention_mask.dtype}")
|
1018 |
+
|
1019 |
+
# print(f"latent_model_input shape: {latent_model_input.shape}")
|
1020 |
+
# print(f"generated_prompt_embeds shape: {generated_prompt_embeds.shape}")
|
1021 |
+
# print(f"prompt_embeds shape: {prompt_embeds.shape}")
|
1022 |
+
# print(f"attention_mask shape: {attention_mask.shape}")
|
1023 |
+
|
1024 |
+
latent_model_input = latent_model_input.to(generated_prompt_embeds.dtype)
|
1025 |
+
|
1026 |
+
# predict the noise residual
|
1027 |
+
noise_pred = self.unet(
|
1028 |
+
latent_model_input,
|
1029 |
+
t,
|
1030 |
+
encoder_hidden_states=generated_prompt_embeds,
|
1031 |
+
encoder_hidden_states_1=prompt_embeds,
|
1032 |
+
encoder_attention_mask_1=attention_mask,
|
1033 |
+
return_dict=False,
|
1034 |
+
)[0]
|
1035 |
+
|
1036 |
+
# perform guidance
|
1037 |
+
if do_classifier_free_guidance:
|
1038 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1039 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1040 |
+
|
1041 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1042 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1043 |
+
# print(f"latents shape: {latents.shape}")
|
1044 |
+
# call the callback, if provided
|
1045 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1046 |
+
progress_bar.update()
|
1047 |
+
if callback is not None and i % callback_steps == 0:
|
1048 |
+
callback(i, t, latents)
|
1049 |
+
|
1050 |
+
self.maybe_free_model_hooks()
|
1051 |
+
|
1052 |
+
# 8. Post-processing
|
1053 |
+
if not output_type == "latent":
|
1054 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
1055 |
+
latents = latents.to(next(self.vae.parameters()).dtype)
|
1056 |
+
mel_spectrogram = self.vae.decode(latents).sample
|
1057 |
+
else:
|
1058 |
+
return AudioPipelineOutput(audios=latents)
|
1059 |
+
|
1060 |
+
audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
|
1061 |
+
|
1062 |
+
audio = audio[:, :original_waveform_length]
|
1063 |
+
|
1064 |
+
# 9. Automatic scoring
|
1065 |
+
if num_waveforms_per_prompt > 1 and prompt is not None:
|
1066 |
+
audio = self.score_waveforms(
|
1067 |
+
text=prompt,
|
1068 |
+
audio=audio,
|
1069 |
+
num_waveforms_per_prompt=num_waveforms_per_prompt,
|
1070 |
+
device=device,
|
1071 |
+
dtype=prompt_embeds.dtype,
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
if output_type == "np":
|
1075 |
+
audio = audio.numpy()
|
1076 |
+
|
1077 |
+
if not return_dict:
|
1078 |
+
return (audio,)
|
1079 |
+
|
1080 |
+
return AudioPipelineOutput(audios=audio)
|
pipeline/style_transfer_pipeline.py
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 CVSSP, ByteDance and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from train_ipadapter_v2 import wav_to_mel
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from transformers import (
|
21 |
+
ClapFeatureExtractor,
|
22 |
+
ClapModel,
|
23 |
+
GPT2Model,
|
24 |
+
RobertaTokenizer,
|
25 |
+
RobertaTokenizerFast,
|
26 |
+
SpeechT5HifiGan,
|
27 |
+
T5EncoderModel,
|
28 |
+
T5Tokenizer,
|
29 |
+
T5TokenizerFast,
|
30 |
+
)
|
31 |
+
|
32 |
+
from diffusers import AutoencoderKL
|
33 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
34 |
+
from diffusers.utils import (
|
35 |
+
is_accelerate_available,
|
36 |
+
is_accelerate_version,
|
37 |
+
is_librosa_available,
|
38 |
+
logging,
|
39 |
+
replace_example_docstring,
|
40 |
+
)
|
41 |
+
from diffusers.utils.torch_utils import randn_tensor
|
42 |
+
from diffusers.pipelines.pipeline_utils import AudioPipelineOutput, DiffusionPipeline
|
43 |
+
from .modeling_audioldm2 import AudioLDM2ProjectionModel, AudioLDM2UNet2DConditionModel
|
44 |
+
from diffusers.loaders import TextualInversionLoaderMixin
|
45 |
+
|
46 |
+
|
47 |
+
if is_librosa_available():
|
48 |
+
import librosa
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
EXAMPLE_DOC_STRING = """
|
53 |
+
Examples:
|
54 |
+
```py
|
55 |
+
>>> import scipy
|
56 |
+
>>> import torch
|
57 |
+
>>> from diffusers import AudioLDM2Pipeline
|
58 |
+
|
59 |
+
>>> repo_id = "cvssp/audioldm2"
|
60 |
+
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
61 |
+
>>> pipe = pipe.to("cuda")
|
62 |
+
|
63 |
+
>>> # define the prompts
|
64 |
+
>>> prompt = "The sound of a hammer hitting a wooden surface."
|
65 |
+
>>> negative_prompt = "Low quality."
|
66 |
+
|
67 |
+
>>> # set the seed for generator
|
68 |
+
>>> generator = torch.Generator("cuda").manual_seed(0)
|
69 |
+
|
70 |
+
>>> # run the generation
|
71 |
+
>>> audio = pipe(
|
72 |
+
... prompt,
|
73 |
+
... negative_prompt=negative_prompt,
|
74 |
+
... num_inference_steps=200,
|
75 |
+
... audio_length_in_s=10.0,
|
76 |
+
... num_waveforms_per_prompt=3,
|
77 |
+
... generator=generator,
|
78 |
+
... ).audios
|
79 |
+
|
80 |
+
>>> # save the best audio sample (index 0) as a .wav file
|
81 |
+
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio[0])
|
82 |
+
```
|
83 |
+
"""
|
84 |
+
|
85 |
+
|
86 |
+
def prepare_inputs_for_generation(
|
87 |
+
inputs_embeds,
|
88 |
+
attention_mask=None,
|
89 |
+
past_key_values=None,
|
90 |
+
**kwargs,
|
91 |
+
):
|
92 |
+
if past_key_values is not None:
|
93 |
+
# only last token for inputs_embeds if past is defined in kwargs
|
94 |
+
inputs_embeds = inputs_embeds[:, -1:]
|
95 |
+
|
96 |
+
return {
|
97 |
+
"inputs_embeds": inputs_embeds,
|
98 |
+
"attention_mask": attention_mask,
|
99 |
+
"past_key_values": past_key_values,
|
100 |
+
"use_cache": kwargs.get("use_cache"),
|
101 |
+
}
|
102 |
+
|
103 |
+
|
104 |
+
class AudioLDM2Pipeline(DiffusionPipeline,TextualInversionLoaderMixin):
|
105 |
+
r"""
|
106 |
+
Pipeline for text-to-audio generation using AudioLDM2.
|
107 |
+
|
108 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
109 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
110 |
+
|
111 |
+
Args:
|
112 |
+
vae ([`AutoencoderKL`]):
|
113 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
114 |
+
text_encoder ([`~transformers.ClapModel`]):
|
115 |
+
First frozen text-encoder. AudioLDM2 uses the joint audio-text embedding model
|
116 |
+
[CLAP](https://huggingface.co/docs/transformers/model_doc/clap#transformers.CLAPTextModelWithProjection),
|
117 |
+
specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. The
|
118 |
+
text branch is used to encode the text prompt to a prompt embedding. The full audio-text model is used to
|
119 |
+
rank generated waveforms against the text prompt by computing similarity scores.
|
120 |
+
text_encoder_2 ([`~transformers.T5EncoderModel`]):
|
121 |
+
Second frozen text-encoder. AudioLDM2 uses the encoder of
|
122 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
123 |
+
[google/flan-t5-large](https://huggingface.co/google/flan-t5-large) variant.
|
124 |
+
projection_model ([`AudioLDM2ProjectionModel`]):
|
125 |
+
A trained model used to linearly project the hidden-states from the first and second text encoder models
|
126 |
+
and insert learned SOS and EOS token embeddings. The projected hidden-states from the two text encoders are
|
127 |
+
concatenated to give the input to the language model.
|
128 |
+
language_model ([`~transformers.GPT2Model`]):
|
129 |
+
An auto-regressive language model used to generate a sequence of hidden-states conditioned on the projected
|
130 |
+
outputs from the two text encoders.
|
131 |
+
tokenizer ([`~transformers.RobertaTokenizer`]):
|
132 |
+
Tokenizer to tokenize text for the first frozen text-encoder.
|
133 |
+
tokenizer_2 ([`~transformers.T5Tokenizer`]):
|
134 |
+
Tokenizer to tokenize text for the second frozen text-encoder.
|
135 |
+
feature_extractor ([`~transformers.ClapFeatureExtractor`]):
|
136 |
+
Feature extractor to pre-process generated audio waveforms to log-mel spectrograms for automatic scoring.
|
137 |
+
unet ([`UNet2DConditionModel`]):
|
138 |
+
A `UNet2DConditionModel` to denoise the encoded audio latents.
|
139 |
+
scheduler ([`SchedulerMixin`]):
|
140 |
+
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
141 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
142 |
+
vocoder ([`~transformers.SpeechT5HifiGan`]):
|
143 |
+
Vocoder of class `SpeechT5HifiGan` to convert the mel-spectrogram latents to the final audio waveform.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
vae: AutoencoderKL,
|
149 |
+
text_encoder: ClapModel,
|
150 |
+
text_encoder_2: T5EncoderModel,
|
151 |
+
projection_model: AudioLDM2ProjectionModel,
|
152 |
+
language_model: GPT2Model,
|
153 |
+
tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
|
154 |
+
tokenizer_2: Union[T5Tokenizer, T5TokenizerFast],
|
155 |
+
feature_extractor: ClapFeatureExtractor,
|
156 |
+
unet: AudioLDM2UNet2DConditionModel,
|
157 |
+
scheduler: KarrasDiffusionSchedulers,
|
158 |
+
vocoder: SpeechT5HifiGan,
|
159 |
+
):
|
160 |
+
super().__init__()
|
161 |
+
|
162 |
+
self.register_modules(
|
163 |
+
vae=vae,
|
164 |
+
text_encoder=text_encoder,
|
165 |
+
text_encoder_2=text_encoder_2,
|
166 |
+
projection_model=projection_model,
|
167 |
+
language_model=language_model,
|
168 |
+
tokenizer=tokenizer,
|
169 |
+
tokenizer_2=tokenizer_2,
|
170 |
+
feature_extractor=feature_extractor,
|
171 |
+
unet=unet,
|
172 |
+
scheduler=scheduler,
|
173 |
+
vocoder=vocoder,
|
174 |
+
)
|
175 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
176 |
+
|
177 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
178 |
+
def enable_vae_slicing(self):
|
179 |
+
r"""
|
180 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
181 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
182 |
+
"""
|
183 |
+
self.vae.enable_slicing()
|
184 |
+
|
185 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
186 |
+
def disable_vae_slicing(self):
|
187 |
+
r"""
|
188 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
189 |
+
computing decoding in one step.
|
190 |
+
"""
|
191 |
+
self.vae.disable_slicing()
|
192 |
+
|
193 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
194 |
+
r"""
|
195 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
196 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
197 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
198 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
199 |
+
"""
|
200 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
201 |
+
from accelerate import cpu_offload_with_hook
|
202 |
+
else:
|
203 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
204 |
+
|
205 |
+
device = torch.device(f"cuda:{gpu_id}")
|
206 |
+
|
207 |
+
if self.device.type != "cpu":
|
208 |
+
self.to("cpu", silence_dtype_warnings=True)
|
209 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
210 |
+
|
211 |
+
model_sequence = [
|
212 |
+
self.text_encoder.text_model,
|
213 |
+
self.text_encoder.text_projection,
|
214 |
+
self.text_encoder_2,
|
215 |
+
self.projection_model,
|
216 |
+
self.language_model,
|
217 |
+
self.unet,
|
218 |
+
self.vae,
|
219 |
+
self.vocoder,
|
220 |
+
self.text_encoder,
|
221 |
+
]
|
222 |
+
|
223 |
+
hook = None
|
224 |
+
for cpu_offloaded_model in model_sequence:
|
225 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
226 |
+
|
227 |
+
# We'll offload the last model manually.
|
228 |
+
self.final_offload_hook = hook
|
229 |
+
|
230 |
+
def generate_language_model(
|
231 |
+
self,
|
232 |
+
inputs_embeds: torch.Tensor = None,
|
233 |
+
max_new_tokens: int = 8,
|
234 |
+
**model_kwargs,
|
235 |
+
):
|
236 |
+
"""
|
237 |
+
|
238 |
+
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
|
239 |
+
|
240 |
+
Parameters:
|
241 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
242 |
+
The sequence used as a prompt for the generation.
|
243 |
+
max_new_tokens (`int`):
|
244 |
+
Number of new tokens to generate.
|
245 |
+
model_kwargs (`Dict[str, Any]`, *optional*):
|
246 |
+
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
|
247 |
+
function of the model.
|
248 |
+
|
249 |
+
Return:
|
250 |
+
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
251 |
+
The sequence of generated hidden-states.
|
252 |
+
"""
|
253 |
+
max_new_tokens = max_new_tokens if max_new_tokens is not None else self.language_model.config.max_new_tokens
|
254 |
+
for _ in range(max_new_tokens):
|
255 |
+
# prepare model inputs
|
256 |
+
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)
|
257 |
+
|
258 |
+
# forward pass to get next hidden states
|
259 |
+
output = self.language_model(**model_inputs, return_dict=True)
|
260 |
+
|
261 |
+
next_hidden_states = output.last_hidden_state
|
262 |
+
|
263 |
+
# Update the model input
|
264 |
+
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
|
265 |
+
|
266 |
+
# Update generated hidden states, model inputs, and length for next step
|
267 |
+
model_kwargs = self.language_model._update_model_kwargs_for_generation(output, model_kwargs)
|
268 |
+
|
269 |
+
return inputs_embeds[:, -max_new_tokens:, :]
|
270 |
+
|
271 |
+
def encode_prompt(
|
272 |
+
self,
|
273 |
+
prompt,
|
274 |
+
device,
|
275 |
+
num_waveforms_per_prompt,
|
276 |
+
do_classifier_free_guidance,
|
277 |
+
negative_prompt=None,
|
278 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
279 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
280 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
281 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
282 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
283 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
284 |
+
max_new_tokens: Optional[int] = None,
|
285 |
+
):
|
286 |
+
r"""
|
287 |
+
Encodes the prompt into text encoder hidden states.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
prompt (`str` or `List[str]`, *optional*):
|
291 |
+
prompt to be encoded
|
292 |
+
device (`torch.device`):
|
293 |
+
torch device
|
294 |
+
num_waveforms_per_prompt (`int`):
|
295 |
+
number of waveforms that should be generated per prompt
|
296 |
+
do_classifier_free_guidance (`bool`):
|
297 |
+
whether to use classifier free guidance or not
|
298 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
299 |
+
The prompt or prompts not to guide the audio generation. If not defined, one has to pass
|
300 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
301 |
+
less than `1`).
|
302 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
303 |
+
Pre-computed text embeddings from the Flan T5 model. Can be used to easily tweak text inputs, *e.g.*
|
304 |
+
prompt weighting. If not provided, text embeddings will be computed from `prompt` input argument.
|
305 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
306 |
+
Pre-computed negative text embeddings from the Flan T5 model. Can be used to easily tweak text inputs,
|
307 |
+
*e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
308 |
+
`negative_prompt` input argument.
|
309 |
+
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
310 |
+
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
|
311 |
+
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
|
312 |
+
argument.
|
313 |
+
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
314 |
+
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
|
315 |
+
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
316 |
+
`negative_prompt` input argument.
|
317 |
+
attention_mask (`torch.LongTensor`, *optional*):
|
318 |
+
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
319 |
+
be computed from `prompt` input argument.
|
320 |
+
negative_attention_mask (`torch.LongTensor`, *optional*):
|
321 |
+
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
|
322 |
+
mask will be computed from `negative_prompt` input argument.
|
323 |
+
max_new_tokens (`int`, *optional*, defaults to None):
|
324 |
+
The number of new tokens to generate with the GPT2 language model.
|
325 |
+
Returns:
|
326 |
+
prompt_embeds (`torch.FloatTensor`):
|
327 |
+
Text embeddings from the Flan T5 model.
|
328 |
+
attention_mask (`torch.LongTensor`):
|
329 |
+
Attention mask to be applied to the `prompt_embeds`.
|
330 |
+
generated_prompt_embeds (`torch.FloatTensor`):
|
331 |
+
Text embeddings generated from the GPT2 langauge model.
|
332 |
+
|
333 |
+
Example:
|
334 |
+
|
335 |
+
```python
|
336 |
+
>>> import scipy
|
337 |
+
>>> import torch
|
338 |
+
>>> from diffusers import AudioLDM2Pipeline
|
339 |
+
|
340 |
+
>>> repo_id = "cvssp/audioldm2"
|
341 |
+
>>> pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
342 |
+
>>> pipe = pipe.to("cuda")
|
343 |
+
|
344 |
+
>>> # Get text embedding vectors
|
345 |
+
>>> prompt_embeds, attention_mask, generated_prompt_embeds = pipe.encode_prompt(
|
346 |
+
... prompt="Techno music with a strong, upbeat tempo and high melodic riffs",
|
347 |
+
... device="cuda",
|
348 |
+
... do_classifier_free_guidance=True,
|
349 |
+
... )
|
350 |
+
|
351 |
+
>>> # Pass text embeddings to pipeline for text-conditional audio generation
|
352 |
+
>>> audio = pipe(
|
353 |
+
... prompt_embeds=prompt_embeds,
|
354 |
+
... attention_mask=attention_mask,
|
355 |
+
... generated_prompt_embeds=generated_prompt_embeds,
|
356 |
+
... num_inference_steps=200,
|
357 |
+
... audio_length_in_s=10.0,
|
358 |
+
... ).audios[0]
|
359 |
+
|
360 |
+
>>> # save generated audio sample
|
361 |
+
>>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
|
362 |
+
```"""
|
363 |
+
if prompt is not None and isinstance(prompt, str):
|
364 |
+
batch_size = 1
|
365 |
+
elif prompt is not None and isinstance(prompt, list):
|
366 |
+
batch_size = len(prompt)
|
367 |
+
else:
|
368 |
+
batch_size = prompt_embeds.shape[0]
|
369 |
+
|
370 |
+
# Define tokenizers and text encoders
|
371 |
+
tokenizers = [self.tokenizer, self.tokenizer_2]
|
372 |
+
text_encoders = [self.text_encoder, self.text_encoder_2]
|
373 |
+
|
374 |
+
if prompt_embeds is None:
|
375 |
+
prompt_embeds_list = []
|
376 |
+
attention_mask_list = []
|
377 |
+
|
378 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
379 |
+
text_inputs = tokenizer(
|
380 |
+
prompt,
|
381 |
+
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
|
382 |
+
max_length=tokenizer.model_max_length,
|
383 |
+
truncation=True,
|
384 |
+
return_tensors="pt",
|
385 |
+
)
|
386 |
+
text_input_ids = text_inputs.input_ids
|
387 |
+
attention_mask = text_inputs.attention_mask
|
388 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
389 |
+
|
390 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
391 |
+
text_input_ids, untruncated_ids
|
392 |
+
):
|
393 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
394 |
+
logger.warning(
|
395 |
+
f"The following part of your input was truncated because {text_encoder.config.model_type} can "
|
396 |
+
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
|
397 |
+
)
|
398 |
+
|
399 |
+
text_input_ids = text_input_ids.to(device)
|
400 |
+
attention_mask = attention_mask.to(device)
|
401 |
+
|
402 |
+
if text_encoder.config.model_type == "clap":
|
403 |
+
prompt_embeds = text_encoder.get_text_features(
|
404 |
+
text_input_ids,
|
405 |
+
attention_mask=attention_mask,
|
406 |
+
)
|
407 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
408 |
+
prompt_embeds = prompt_embeds[:, None, :]
|
409 |
+
# make sure that we attend to this single hidden-state
|
410 |
+
attention_mask = attention_mask.new_ones((batch_size, 1))
|
411 |
+
else:
|
412 |
+
prompt_embeds = text_encoder(
|
413 |
+
text_input_ids,
|
414 |
+
attention_mask=attention_mask,
|
415 |
+
)
|
416 |
+
prompt_embeds = prompt_embeds[0]
|
417 |
+
|
418 |
+
prompt_embeds_list.append(prompt_embeds)
|
419 |
+
attention_mask_list.append(attention_mask)
|
420 |
+
|
421 |
+
projection_output = self.projection_model(
|
422 |
+
hidden_states=prompt_embeds_list[0],
|
423 |
+
hidden_states_1=prompt_embeds_list[1],
|
424 |
+
attention_mask=attention_mask_list[0],
|
425 |
+
attention_mask_1=attention_mask_list[1],
|
426 |
+
)
|
427 |
+
projected_prompt_embeds = projection_output.hidden_states
|
428 |
+
projected_attention_mask = projection_output.attention_mask
|
429 |
+
|
430 |
+
generated_prompt_embeds = self.generate_language_model(
|
431 |
+
projected_prompt_embeds,
|
432 |
+
attention_mask=projected_attention_mask,
|
433 |
+
max_new_tokens=max_new_tokens,
|
434 |
+
)
|
435 |
+
|
436 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
437 |
+
attention_mask = (
|
438 |
+
attention_mask.to(device=device)
|
439 |
+
if attention_mask is not None
|
440 |
+
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
441 |
+
)
|
442 |
+
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.language_model.dtype, device=device)
|
443 |
+
|
444 |
+
bs_embed, seq_len, hidden_size = prompt_embeds.shape
|
445 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
446 |
+
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
447 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)
|
448 |
+
|
449 |
+
# duplicate attention mask for each generation per prompt
|
450 |
+
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
|
451 |
+
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
|
452 |
+
|
453 |
+
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
|
454 |
+
# duplicate generated embeddings for each generation per prompt, using mps friendly method
|
455 |
+
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
456 |
+
generated_prompt_embeds = generated_prompt_embeds.view(
|
457 |
+
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
|
458 |
+
)
|
459 |
+
|
460 |
+
# get unconditional embeddings for classifier free guidance
|
461 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
462 |
+
uncond_tokens: List[str]
|
463 |
+
if negative_prompt is None:
|
464 |
+
uncond_tokens = [""] * batch_size
|
465 |
+
elif type(prompt) is not type(negative_prompt):
|
466 |
+
raise TypeError(
|
467 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
468 |
+
f" {type(prompt)}."
|
469 |
+
)
|
470 |
+
elif isinstance(negative_prompt, str):
|
471 |
+
uncond_tokens = [negative_prompt]
|
472 |
+
elif batch_size != len(negative_prompt):
|
473 |
+
raise ValueError(
|
474 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
475 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
476 |
+
" the batch size of `prompt`."
|
477 |
+
)
|
478 |
+
else:
|
479 |
+
uncond_tokens = negative_prompt
|
480 |
+
|
481 |
+
negative_prompt_embeds_list = []
|
482 |
+
negative_attention_mask_list = []
|
483 |
+
max_length = prompt_embeds.shape[1]
|
484 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
485 |
+
uncond_input = tokenizer(
|
486 |
+
uncond_tokens,
|
487 |
+
padding="max_length",
|
488 |
+
max_length=tokenizer.model_max_length
|
489 |
+
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
490 |
+
else max_length,
|
491 |
+
truncation=True,
|
492 |
+
return_tensors="pt",
|
493 |
+
)
|
494 |
+
|
495 |
+
uncond_input_ids = uncond_input.input_ids.to(device)
|
496 |
+
negative_attention_mask = uncond_input.attention_mask.to(device)
|
497 |
+
|
498 |
+
if text_encoder.config.model_type == "clap":
|
499 |
+
negative_prompt_embeds = text_encoder.get_text_features(
|
500 |
+
uncond_input_ids,
|
501 |
+
attention_mask=negative_attention_mask,
|
502 |
+
)
|
503 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
504 |
+
negative_prompt_embeds = negative_prompt_embeds[:, None, :]
|
505 |
+
# make sure that we attend to this single hidden-state
|
506 |
+
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
|
507 |
+
else:
|
508 |
+
negative_prompt_embeds = text_encoder(
|
509 |
+
uncond_input_ids,
|
510 |
+
attention_mask=negative_attention_mask,
|
511 |
+
)
|
512 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
513 |
+
|
514 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
515 |
+
negative_attention_mask_list.append(negative_attention_mask)
|
516 |
+
|
517 |
+
projection_output = self.projection_model(
|
518 |
+
hidden_states=negative_prompt_embeds_list[0],
|
519 |
+
hidden_states_1=negative_prompt_embeds_list[1],
|
520 |
+
attention_mask=negative_attention_mask_list[0],
|
521 |
+
attention_mask_1=negative_attention_mask_list[1],
|
522 |
+
)
|
523 |
+
negative_projected_prompt_embeds = projection_output.hidden_states
|
524 |
+
negative_projected_attention_mask = projection_output.attention_mask
|
525 |
+
|
526 |
+
negative_generated_prompt_embeds = self.generate_language_model(
|
527 |
+
negative_projected_prompt_embeds,
|
528 |
+
attention_mask=negative_projected_attention_mask,
|
529 |
+
max_new_tokens=max_new_tokens,
|
530 |
+
)
|
531 |
+
|
532 |
+
if do_classifier_free_guidance:
|
533 |
+
seq_len = negative_prompt_embeds.shape[1]
|
534 |
+
|
535 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
536 |
+
negative_attention_mask = (
|
537 |
+
negative_attention_mask.to(device=device)
|
538 |
+
if negative_attention_mask is not None
|
539 |
+
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
540 |
+
)
|
541 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
|
542 |
+
dtype=self.language_model.dtype, device=device
|
543 |
+
)
|
544 |
+
|
545 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
546 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
547 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
|
548 |
+
|
549 |
+
# duplicate unconditional attention mask for each generation per prompt
|
550 |
+
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
|
551 |
+
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)
|
552 |
+
|
553 |
+
# duplicate unconditional generated embeddings for each generation per prompt
|
554 |
+
seq_len = negative_generated_prompt_embeds.shape[1]
|
555 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
556 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
|
557 |
+
batch_size * num_waveforms_per_prompt, seq_len, -1
|
558 |
+
)
|
559 |
+
|
560 |
+
# For classifier free guidance, we need to do two forward passes.
|
561 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
562 |
+
# to avoid doing two forward passes
|
563 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
564 |
+
attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
565 |
+
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])
|
566 |
+
|
567 |
+
return prompt_embeds, attention_mask, generated_prompt_embeds
|
568 |
+
|
569 |
+
# Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform
|
570 |
+
def mel_spectrogram_to_waveform(self, mel_spectrogram):
|
571 |
+
if mel_spectrogram.dim() == 4:
|
572 |
+
mel_spectrogram = mel_spectrogram.squeeze(1)
|
573 |
+
|
574 |
+
waveform = self.vocoder(mel_spectrogram)
|
575 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
576 |
+
waveform = waveform.cpu().float()
|
577 |
+
return waveform
|
578 |
+
|
579 |
+
def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype):
|
580 |
+
if not is_librosa_available():
|
581 |
+
logger.info(
|
582 |
+
"Automatic scoring of the generated audio waveforms against the input prompt text requires the "
|
583 |
+
"`librosa` package to resample the generated waveforms. Returning the audios in the order they were "
|
584 |
+
"generated. To enable automatic scoring, install `librosa` with: `pip install librosa`."
|
585 |
+
)
|
586 |
+
return audio
|
587 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True)
|
588 |
+
resampled_audio = librosa.resample(
|
589 |
+
audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate
|
590 |
+
)
|
591 |
+
inputs["input_features"] = self.feature_extractor(
|
592 |
+
list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate
|
593 |
+
).input_features.type(dtype)
|
594 |
+
inputs = inputs.to(device)
|
595 |
+
|
596 |
+
# compute the audio-text similarity score using the CLAP model
|
597 |
+
logits_per_text = self.text_encoder(**inputs).logits_per_text
|
598 |
+
# sort by the highest matching generations per prompt
|
599 |
+
indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt]
|
600 |
+
audio = torch.index_select(audio, 0, indices.reshape(-1).cpu())
|
601 |
+
return audio
|
602 |
+
|
603 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
604 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
605 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
606 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
607 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
608 |
+
# and should be between [0, 1]
|
609 |
+
|
610 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
611 |
+
extra_step_kwargs = {}
|
612 |
+
if accepts_eta:
|
613 |
+
extra_step_kwargs["eta"] = eta
|
614 |
+
|
615 |
+
# check if the scheduler accepts generator
|
616 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
617 |
+
if accepts_generator:
|
618 |
+
extra_step_kwargs["generator"] = generator
|
619 |
+
return extra_step_kwargs
|
620 |
+
|
621 |
+
def check_inputs(
|
622 |
+
self,
|
623 |
+
prompt,
|
624 |
+
audio_length_in_s,
|
625 |
+
vocoder_upsample_factor,
|
626 |
+
callback_steps,
|
627 |
+
negative_prompt=None,
|
628 |
+
prompt_embeds=None,
|
629 |
+
negative_prompt_embeds=None,
|
630 |
+
generated_prompt_embeds=None,
|
631 |
+
negative_generated_prompt_embeds=None,
|
632 |
+
attention_mask=None,
|
633 |
+
negative_attention_mask=None,
|
634 |
+
):
|
635 |
+
min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
|
636 |
+
if audio_length_in_s < min_audio_length_in_s:
|
637 |
+
raise ValueError(
|
638 |
+
f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
|
639 |
+
f"is {audio_length_in_s}."
|
640 |
+
)
|
641 |
+
|
642 |
+
if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
|
643 |
+
raise ValueError(
|
644 |
+
f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
|
645 |
+
f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
|
646 |
+
f"{self.vae_scale_factor}."
|
647 |
+
)
|
648 |
+
|
649 |
+
if (callback_steps is None) or (
|
650 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
651 |
+
):
|
652 |
+
raise ValueError(
|
653 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
654 |
+
f" {type(callback_steps)}."
|
655 |
+
)
|
656 |
+
|
657 |
+
if prompt is not None and prompt_embeds is not None:
|
658 |
+
raise ValueError(
|
659 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
660 |
+
" only forward one of the two."
|
661 |
+
)
|
662 |
+
elif prompt is None and (prompt_embeds is None or generated_prompt_embeds is None):
|
663 |
+
raise ValueError(
|
664 |
+
"Provide either `prompt`, or `prompt_embeds` and `generated_prompt_embeds`. Cannot leave "
|
665 |
+
"`prompt` undefined without specifying both `prompt_embeds` and `generated_prompt_embeds`."
|
666 |
+
)
|
667 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
668 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
669 |
+
|
670 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
671 |
+
raise ValueError(
|
672 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
673 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
674 |
+
)
|
675 |
+
elif negative_prompt_embeds is not None and negative_generated_prompt_embeds is None:
|
676 |
+
raise ValueError(
|
677 |
+
"Cannot forward `negative_prompt_embeds` without `negative_generated_prompt_embeds`. Ensure that"
|
678 |
+
"both arguments are specified"
|
679 |
+
)
|
680 |
+
|
681 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
682 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
683 |
+
raise ValueError(
|
684 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
685 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
686 |
+
f" {negative_prompt_embeds.shape}."
|
687 |
+
)
|
688 |
+
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
|
689 |
+
raise ValueError(
|
690 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
691 |
+
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
|
692 |
+
)
|
693 |
+
|
694 |
+
if generated_prompt_embeds is not None and negative_generated_prompt_embeds is not None:
|
695 |
+
if generated_prompt_embeds.shape != negative_generated_prompt_embeds.shape:
|
696 |
+
raise ValueError(
|
697 |
+
"`generated_prompt_embeds` and `negative_generated_prompt_embeds` must have the same shape when "
|
698 |
+
f"passed directly, but got: `generated_prompt_embeds` {generated_prompt_embeds.shape} != "
|
699 |
+
f"`negative_generated_prompt_embeds` {negative_generated_prompt_embeds.shape}."
|
700 |
+
)
|
701 |
+
if (
|
702 |
+
negative_attention_mask is not None
|
703 |
+
and negative_attention_mask.shape != negative_prompt_embeds.shape[:2]
|
704 |
+
):
|
705 |
+
raise ValueError(
|
706 |
+
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
707 |
+
f"`attention_mask: {negative_attention_mask.shape} != `prompt_embeds` {negative_prompt_embeds.shape}"
|
708 |
+
)
|
709 |
+
|
710 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
|
711 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
|
712 |
+
shape = (
|
713 |
+
batch_size,
|
714 |
+
num_channels_latents,
|
715 |
+
height // self.vae_scale_factor,
|
716 |
+
self.vocoder.config.model_in_dim // self.vae_scale_factor,
|
717 |
+
)
|
718 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
719 |
+
raise ValueError(
|
720 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
721 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
722 |
+
)
|
723 |
+
|
724 |
+
if latents is None:
|
725 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
726 |
+
else:
|
727 |
+
latents = latents.to(device)
|
728 |
+
|
729 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
730 |
+
latents = latents * self.scheduler.init_noise_sigma
|
731 |
+
return latents
|
732 |
+
|
733 |
+
@torch.no_grad()
|
734 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
735 |
+
def __call__(
|
736 |
+
self,
|
737 |
+
audio_path = None,
|
738 |
+
prompt: Union[str, List[str]] = None,
|
739 |
+
audio_length_in_s: Optional[float] = None,
|
740 |
+
num_inference_steps: int = 200,
|
741 |
+
guidance_scale: float = 3.5,
|
742 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
743 |
+
num_waveforms_per_prompt: Optional[int] = 1,
|
744 |
+
eta: float = 0.0,
|
745 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
746 |
+
latents: Optional[torch.FloatTensor] = None,
|
747 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
748 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
749 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
750 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
751 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
752 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
753 |
+
max_new_tokens: Optional[int] = None,
|
754 |
+
return_dict: bool = True,
|
755 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
756 |
+
callback_steps: Optional[int] = 1,
|
757 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
758 |
+
output_type: Optional[str] = "np",
|
759 |
+
):
|
760 |
+
r"""
|
761 |
+
The call function to the pipeline for generation.
|
762 |
+
|
763 |
+
Args:
|
764 |
+
prompt (`str` or `List[str]`, *optional*):
|
765 |
+
The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
|
766 |
+
audio_length_in_s (`int`, *optional*, defaults to 10.24):
|
767 |
+
The length of the generated audio sample in seconds.
|
768 |
+
num_inference_steps (`int`, *optional*, defaults to 200):
|
769 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
|
770 |
+
expense of slower inference.
|
771 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
772 |
+
A higher guidance scale value encourages the model to generate audio that is closely linked to the text
|
773 |
+
`prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
|
774 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
775 |
+
The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
|
776 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
777 |
+
num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
|
778 |
+
The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, then automatic
|
779 |
+
scoring is performed between the generated outputs and the text prompt. This scoring ranks the
|
780 |
+
generated waveforms based on their cosine similarity with the text input in the joint text-audio
|
781 |
+
embedding space.
|
782 |
+
eta (`float`, *optional*, defaults to 0.0):
|
783 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
784 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
785 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
786 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
787 |
+
generation deterministic.
|
788 |
+
latents (`torch.FloatTensor`, *optional*):
|
789 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for spectrogram
|
790 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
791 |
+
tensor is generated by sampling using the supplied random `generator`.
|
792 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
793 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
794 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
795 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
796 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
797 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
798 |
+
generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
799 |
+
Pre-generated text embeddings from the GPT2 langauge model. Can be used to easily tweak text inputs,
|
800 |
+
*e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input
|
801 |
+
argument.
|
802 |
+
negative_generated_prompt_embeds (`torch.FloatTensor`, *optional*):
|
803 |
+
Pre-generated negative text embeddings from the GPT2 language model. Can be used to easily tweak text
|
804 |
+
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
805 |
+
`negative_prompt` input argument.
|
806 |
+
attention_mask (`torch.LongTensor`, *optional*):
|
807 |
+
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
808 |
+
be computed from `prompt` input argument.
|
809 |
+
negative_attention_mask (`torch.LongTensor`, *optional*):
|
810 |
+
Pre-computed attention mask to be applied to the `negative_prompt_embeds`. If not provided, attention
|
811 |
+
mask will be computed from `negative_prompt` input argument.
|
812 |
+
max_new_tokens (`int`, *optional*, defaults to None):
|
813 |
+
Number of new tokens to generate with the GPT2 language model. If not provided, number of tokens will
|
814 |
+
be taken from the config of the model.
|
815 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
816 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
817 |
+
plain tuple.
|
818 |
+
callback (`Callable`, *optional*):
|
819 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
820 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
821 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
822 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
823 |
+
every step.
|
824 |
+
cross_attention_kwargs (`dict`, *optional*):
|
825 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
826 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
827 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
828 |
+
The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or
|
829 |
+
`"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
|
830 |
+
model (LDM) output.
|
831 |
+
|
832 |
+
Examples:
|
833 |
+
|
834 |
+
Returns:
|
835 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
836 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
837 |
+
otherwise a `tuple` is returned where the first element is a list with the generated audio.
|
838 |
+
"""
|
839 |
+
# 0. Convert audio input length from seconds to spectrogram height
|
840 |
+
vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate
|
841 |
+
|
842 |
+
if audio_length_in_s is None:
|
843 |
+
audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor
|
844 |
+
|
845 |
+
height = int(audio_length_in_s / vocoder_upsample_factor)
|
846 |
+
|
847 |
+
original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
|
848 |
+
if height % self.vae_scale_factor != 0:
|
849 |
+
height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
|
850 |
+
logger.info(
|
851 |
+
f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
|
852 |
+
f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
|
853 |
+
f"denoising process."
|
854 |
+
)
|
855 |
+
|
856 |
+
# 1. Check inputs. Raise error if not correct
|
857 |
+
self.check_inputs(
|
858 |
+
prompt,
|
859 |
+
audio_length_in_s,
|
860 |
+
vocoder_upsample_factor,
|
861 |
+
callback_steps,
|
862 |
+
negative_prompt,
|
863 |
+
prompt_embeds,
|
864 |
+
negative_prompt_embeds,
|
865 |
+
generated_prompt_embeds,
|
866 |
+
negative_generated_prompt_embeds,
|
867 |
+
attention_mask,
|
868 |
+
negative_attention_mask,
|
869 |
+
)
|
870 |
+
|
871 |
+
# 2. Define call parameters
|
872 |
+
if prompt is not None and isinstance(prompt, str):
|
873 |
+
batch_size = 1
|
874 |
+
elif prompt is not None and isinstance(prompt, list):
|
875 |
+
batch_size = len(prompt)
|
876 |
+
else:
|
877 |
+
batch_size = prompt_embeds.shape[0]
|
878 |
+
|
879 |
+
device = self._execution_device
|
880 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
881 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
882 |
+
# corresponds to doing no classifier free guidance.
|
883 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
884 |
+
|
885 |
+
# 3. Encode input prompt
|
886 |
+
prompt_embeds, attention_mask, generated_prompt_embeds = self.encode_prompt(
|
887 |
+
prompt,
|
888 |
+
device,
|
889 |
+
num_waveforms_per_prompt,
|
890 |
+
do_classifier_free_guidance,
|
891 |
+
negative_prompt,
|
892 |
+
prompt_embeds=prompt_embeds,
|
893 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
894 |
+
generated_prompt_embeds=generated_prompt_embeds,
|
895 |
+
negative_generated_prompt_embeds=negative_generated_prompt_embeds,
|
896 |
+
attention_mask=attention_mask,
|
897 |
+
negative_attention_mask=negative_attention_mask,
|
898 |
+
max_new_tokens=max_new_tokens,
|
899 |
+
)
|
900 |
+
|
901 |
+
# 4. Prepare timesteps
|
902 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
903 |
+
timesteps = self.scheduler.timesteps
|
904 |
+
|
905 |
+
# 5. Prepare latent variables
|
906 |
+
num_channels_latents = self.unet.config.in_channels
|
907 |
+
|
908 |
+
mel = wav_to_mel(audio_path,
|
909 |
+
10,
|
910 |
+
augment_data=False,
|
911 |
+
mix_data=None,
|
912 |
+
snr=None)
|
913 |
+
# print("mel shape", mel.shape)
|
914 |
+
mel = mel.unsqueeze(0)
|
915 |
+
mel = mel.to(device)
|
916 |
+
mel = mel.to(torch.float16)
|
917 |
+
latents = self.vae.encode(mel).latent_dist.sample()
|
918 |
+
|
919 |
+
latents = latents * self.vae.config.scaling_factor
|
920 |
+
noise = torch.randn_like(latents)
|
921 |
+
print("timesteps",timesteps)
|
922 |
+
shallow_reverse_step = num_inference_steps // 4 *2
|
923 |
+
print("shallow_reverse_steps",timesteps[shallow_reverse_step:])
|
924 |
+
timesteps = timesteps[shallow_reverse_step:]
|
925 |
+
timesteps_tensor = torch.tensor([timesteps[0]], dtype=torch.int32)
|
926 |
+
noisy_sample = self.scheduler.add_noise(latents,noise,timesteps_tensor)
|
927 |
+
|
928 |
+
latents = self.prepare_latents(
|
929 |
+
batch_size * num_waveforms_per_prompt,
|
930 |
+
num_channels_latents,
|
931 |
+
height,
|
932 |
+
prompt_embeds.dtype,
|
933 |
+
device,
|
934 |
+
generator,
|
935 |
+
noisy_sample,
|
936 |
+
)
|
937 |
+
# latents = latents.squeeze(0)
|
938 |
+
# 6. Prepare extra step kwargs
|
939 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
940 |
+
|
941 |
+
# 7. Denoising loop
|
942 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
943 |
+
# timesteps = timesteps[:shallow_reverse_step]
|
944 |
+
# print("timesteps",timesteps)
|
945 |
+
print("latents",latents.shape)
|
946 |
+
latents = latents.repeat(8,1,1,1)
|
947 |
+
print("latents",latents.shape)
|
948 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
949 |
+
for i, t in enumerate(timesteps):
|
950 |
+
# expand the latents if we are doing classifier free guidance
|
951 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
952 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
953 |
+
# latent_model_input = latent_model_input[:,:,:250,:]
|
954 |
+
print("latent_model_input.shape",latent_model_input.shape)
|
955 |
+
print("t",t)
|
956 |
+
print("generated_prompt_embeds",generated_prompt_embeds.shape)
|
957 |
+
print("attention_mask",attention_mask.shape)
|
958 |
+
print("prompt_embeds",prompt_embeds.shape)
|
959 |
+
# predict the noise residual
|
960 |
+
noise_pred = self.unet(
|
961 |
+
latent_model_input,
|
962 |
+
t,
|
963 |
+
encoder_hidden_states=generated_prompt_embeds,
|
964 |
+
encoder_hidden_states_1=prompt_embeds,
|
965 |
+
encoder_attention_mask_1=attention_mask,
|
966 |
+
return_dict=False,
|
967 |
+
)[0]
|
968 |
+
|
969 |
+
# perform guidance
|
970 |
+
if do_classifier_free_guidance:
|
971 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
972 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
973 |
+
|
974 |
+
# compute the previous noisy sample x_t -> x_t-1
|
975 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
976 |
+
|
977 |
+
# call the callback, if provided
|
978 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
979 |
+
progress_bar.update()
|
980 |
+
if callback is not None and i % callback_steps == 0:
|
981 |
+
callback(i, t, latents)
|
982 |
+
|
983 |
+
self.maybe_free_model_hooks()
|
984 |
+
|
985 |
+
# 8. Post-processing
|
986 |
+
if not output_type == "latent":
|
987 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
988 |
+
mel_spectrogram = self.vae.decode(latents).sample
|
989 |
+
else:
|
990 |
+
return AudioPipelineOutput(audios=latents)
|
991 |
+
|
992 |
+
audio = self.mel_spectrogram_to_waveform(mel_spectrogram)
|
993 |
+
|
994 |
+
audio = audio[:, :original_waveform_length]
|
995 |
+
|
996 |
+
# 9. Automatic scoring
|
997 |
+
if num_waveforms_per_prompt > 1 and prompt is not None:
|
998 |
+
audio = self.score_waveforms(
|
999 |
+
text=prompt,
|
1000 |
+
audio=audio,
|
1001 |
+
num_waveforms_per_prompt=num_waveforms_per_prompt,
|
1002 |
+
device=device,
|
1003 |
+
dtype=prompt_embeds.dtype,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
if output_type == "np":
|
1007 |
+
audio = audio.numpy()
|
1008 |
+
|
1009 |
+
if not return_dict:
|
1010 |
+
return (audio,)
|
1011 |
+
|
1012 |
+
return AudioPipelineOutput(audios=audio)
|
utils/alpha_scheduler.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bisect
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import lpips
|
5 |
+
|
6 |
+
perceptual_loss = lpips.LPIPS()
|
7 |
+
|
8 |
+
|
9 |
+
def distance(img_a, img_b):
|
10 |
+
# return perceptual_loss(img_a, img_b).item()
|
11 |
+
return F.mse_loss(img_a, img_b).item()
|
12 |
+
|
13 |
+
|
14 |
+
class AlphaScheduler:
|
15 |
+
def __init__(self):
|
16 |
+
...
|
17 |
+
|
18 |
+
def from_imgs(self, imgs):
|
19 |
+
self.__num_values = len(imgs)
|
20 |
+
self.__values = [0]
|
21 |
+
for i in range(self.__num_values - 1):
|
22 |
+
dis = distance(imgs[i], imgs[i + 1])
|
23 |
+
self.__values.append(dis)
|
24 |
+
self.__values[i + 1] += self.__values[i]
|
25 |
+
for i in range(self.__num_values):
|
26 |
+
self.__values[i] /= self.__values[-1]
|
27 |
+
|
28 |
+
def save(self, filename):
|
29 |
+
torch.save(torch.tensor(self.__values), filename)
|
30 |
+
|
31 |
+
def load(self, filename):
|
32 |
+
self.__values = torch.load(filename).tolist()
|
33 |
+
self.__num_values = len(self.__values)
|
34 |
+
|
35 |
+
def get_x(self, y):
|
36 |
+
assert y >= 0 and y <= 1
|
37 |
+
id = bisect.bisect_left(self.__values, y)
|
38 |
+
id -= 1
|
39 |
+
if id < 0:
|
40 |
+
id = 0
|
41 |
+
yl = self.__values[id]
|
42 |
+
yr = self.__values[id + 1]
|
43 |
+
xl = id * (1 / (self.__num_values - 1))
|
44 |
+
xr = (id + 1) * (1 / (self.__num_values - 1))
|
45 |
+
x = (y - yl) / (yr - yl) * (xr - xl) + xl
|
46 |
+
return x
|
47 |
+
|
48 |
+
def get_list(self, len=None):
|
49 |
+
if len is None:
|
50 |
+
len = self.__num_values
|
51 |
+
|
52 |
+
ys = torch.linspace(0, 1, len)
|
53 |
+
res = [self.get_x(y) for y in ys]
|
54 |
+
return res
|
utils/lora_utils_successed_ver1.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from timeit import default_timer as timer
|
2 |
+
from datetime import timedelta
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
import itertools
|
6 |
+
import numpy as np
|
7 |
+
from einops import rearrange
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torchvision import transforms
|
11 |
+
import transformers
|
12 |
+
from accelerate import Accelerator
|
13 |
+
from accelerate.utils import set_seed
|
14 |
+
from packaging import version
|
15 |
+
from PIL import Image
|
16 |
+
import tqdm
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
19 |
+
from APadapter.ap_adapter.attention_processor import AttnProcessor2_0,IPAttnProcessor2_0
|
20 |
+
import diffusers
|
21 |
+
from diffusers import (
|
22 |
+
AutoencoderKL,
|
23 |
+
DDPMScheduler,
|
24 |
+
DiffusionPipeline,
|
25 |
+
DPMSolverMultistepScheduler,
|
26 |
+
StableDiffusionPipeline,
|
27 |
+
UNet2DConditionModel,
|
28 |
+
)
|
29 |
+
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
|
30 |
+
from diffusers.models.attention_processor import (
|
31 |
+
AttnAddedKVProcessor,
|
32 |
+
AttnAddedKVProcessor2_0,
|
33 |
+
LoRAAttnAddedKVProcessor,
|
34 |
+
LoRAAttnProcessor,
|
35 |
+
LoRAAttnProcessor2_0,
|
36 |
+
SlicedAttnAddedKVProcessor,
|
37 |
+
)
|
38 |
+
from diffusers.optimization import get_scheduler
|
39 |
+
from diffusers.utils import check_min_version
|
40 |
+
from diffusers.utils.import_utils import is_xformers_available
|
41 |
+
import torchaudio
|
42 |
+
from audio_encoder.AudioMAE import AudioMAEConditionCTPoolRand, extract_kaldi_fbank_feature
|
43 |
+
from audioldm.utils import default_audioldm_config
|
44 |
+
from audioldm.audio import TacotronSTFT, read_wav_file
|
45 |
+
from audioldm.audio.tools import get_mel_from_wav, _pad_spec, normalize_wav, pad_wav
|
46 |
+
from transformers import (
|
47 |
+
ClapFeatureExtractor,
|
48 |
+
ClapModel,
|
49 |
+
GPT2Model,
|
50 |
+
RobertaTokenizer,
|
51 |
+
RobertaTokenizerFast,
|
52 |
+
SpeechT5HifiGan,
|
53 |
+
T5EncoderModel,
|
54 |
+
T5Tokenizer,
|
55 |
+
T5TokenizerFast,
|
56 |
+
)
|
57 |
+
from diffusers.utils.torch_utils import randn_tensor
|
58 |
+
from peft import (
|
59 |
+
prepare_model_for_kbit_training,
|
60 |
+
LoraConfig,
|
61 |
+
get_peft_model,
|
62 |
+
PeftModel
|
63 |
+
)
|
64 |
+
from torchviz import make_dot
|
65 |
+
import json
|
66 |
+
from matplotlib import pyplot as plt
|
67 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
68 |
+
# check_min_version("0.17.0")
|
69 |
+
|
70 |
+
def wav_to_fbank(
|
71 |
+
filename,
|
72 |
+
target_length=1024,
|
73 |
+
fn_STFT=None,
|
74 |
+
augment_data=False,
|
75 |
+
mix_data=False,
|
76 |
+
snr=None
|
77 |
+
):
|
78 |
+
assert fn_STFT is not None
|
79 |
+
waveform = read_wav_file(filename, target_length * 160) # hop size is 160
|
80 |
+
waveform = waveform[0, ...]
|
81 |
+
waveform = torch.FloatTensor(waveform)
|
82 |
+
|
83 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
84 |
+
|
85 |
+
fbank = torch.FloatTensor(fbank.T)
|
86 |
+
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
|
87 |
+
|
88 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
89 |
+
log_magnitudes_stft, target_length
|
90 |
+
)
|
91 |
+
fbank = fbank.contiguous()
|
92 |
+
log_magnitudes_stft = log_magnitudes_stft.contiguous()
|
93 |
+
waveform = waveform.contiguous()
|
94 |
+
return fbank, log_magnitudes_stft, waveform
|
95 |
+
|
96 |
+
def wav_to_mel(
|
97 |
+
original_audio_file_path,
|
98 |
+
duration,
|
99 |
+
augment_data=False,
|
100 |
+
mix_data=False,
|
101 |
+
snr=None):
|
102 |
+
config=default_audioldm_config()
|
103 |
+
|
104 |
+
fn_STFT = TacotronSTFT(
|
105 |
+
config["preprocessing"]["stft"]["filter_length"],
|
106 |
+
config["preprocessing"]["stft"]["hop_length"],
|
107 |
+
config["preprocessing"]["stft"]["win_length"],
|
108 |
+
config["preprocessing"]["mel"]["n_mel_channels"],
|
109 |
+
config["preprocessing"]["audio"]["sampling_rate"],
|
110 |
+
config["preprocessing"]["mel"]["mel_fmin"],
|
111 |
+
config["preprocessing"]["mel"]["mel_fmax"],
|
112 |
+
)
|
113 |
+
|
114 |
+
mel, _, _ = wav_to_fbank(
|
115 |
+
original_audio_file_path,
|
116 |
+
target_length=int(duration * 102.4),
|
117 |
+
fn_STFT=fn_STFT,
|
118 |
+
augment_data=augment_data,
|
119 |
+
mix_data=mix_data,
|
120 |
+
snr=snr
|
121 |
+
)
|
122 |
+
mel = mel.unsqueeze(0)
|
123 |
+
return mel
|
124 |
+
|
125 |
+
def prepare_inputs_for_generation(
|
126 |
+
inputs_embeds,
|
127 |
+
attention_mask=None,
|
128 |
+
past_key_values=None,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
if past_key_values is not None:
|
132 |
+
# only last token for inputs_embeds if past is defined in kwargs
|
133 |
+
inputs_embeds = inputs_embeds[:, -1:]
|
134 |
+
kwargs["use_cache"] = True
|
135 |
+
return {
|
136 |
+
"inputs_embeds": inputs_embeds,
|
137 |
+
"attention_mask": attention_mask,
|
138 |
+
"past_key_values": past_key_values,
|
139 |
+
"use_cache": kwargs.get("use_cache"),
|
140 |
+
}
|
141 |
+
|
142 |
+
def generate_language_model(
|
143 |
+
language_model,
|
144 |
+
inputs_embeds: torch.Tensor = None,
|
145 |
+
max_new_tokens: int = 512,
|
146 |
+
**model_kwargs,
|
147 |
+
):
|
148 |
+
"""
|
149 |
+
|
150 |
+
Generates a sequence of hidden-states from the language model, conditioned on the embedding inputs.
|
151 |
+
|
152 |
+
Parameters:
|
153 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
154 |
+
The sequence used as a prompt for the generation.
|
155 |
+
max_new_tokens (`int`):
|
156 |
+
Number of new tokens to generate.
|
157 |
+
model_kwargs (`Dict[str, Any]`, *optional*):
|
158 |
+
Ad hoc parametrization of additional model-specific kwargs that will be forwarded to the `forward`
|
159 |
+
function of the model.
|
160 |
+
|
161 |
+
Return:
|
162 |
+
`inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
163 |
+
The sequence of generated hidden-states.
|
164 |
+
"""
|
165 |
+
max_new_tokens = max_new_tokens if max_new_tokens is not None else language_model.config.max_new_tokens
|
166 |
+
model_kwargs = language_model._get_initial_cache_position(inputs_embeds, model_kwargs)
|
167 |
+
for _ in range(max_new_tokens):
|
168 |
+
# prepare model inputs
|
169 |
+
model_inputs = prepare_inputs_for_generation(inputs_embeds, **model_kwargs)
|
170 |
+
|
171 |
+
# forward pass to get next hidden states
|
172 |
+
output = language_model(**model_inputs, return_dict=True)
|
173 |
+
next_hidden_states = output.last_hidden_state
|
174 |
+
|
175 |
+
# Update the model input
|
176 |
+
inputs_embeds = torch.cat([inputs_embeds, next_hidden_states[:, -1:, :]], dim=1)
|
177 |
+
|
178 |
+
# Update generated hidden states, model inputs, and length for next step
|
179 |
+
model_kwargs = language_model._update_model_kwargs_for_generation(output, model_kwargs)
|
180 |
+
|
181 |
+
return inputs_embeds[:, -max_new_tokens:, :]
|
182 |
+
|
183 |
+
def encode_prompt(
|
184 |
+
tokenizer,
|
185 |
+
tokenizer_2,
|
186 |
+
text_encoder,
|
187 |
+
text_encoder_2,
|
188 |
+
projection_model,
|
189 |
+
language_model,
|
190 |
+
prompt,
|
191 |
+
device,
|
192 |
+
num_waveforms_per_prompt,
|
193 |
+
do_classifier_free_guidance,
|
194 |
+
negative_prompt=None,
|
195 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
196 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
197 |
+
generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
198 |
+
negative_generated_prompt_embeds: Optional[torch.FloatTensor] = None,
|
199 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
200 |
+
negative_attention_mask: Optional[torch.LongTensor] = None,
|
201 |
+
max_new_tokens: Optional[int] = None,
|
202 |
+
):
|
203 |
+
if prompt is not None and isinstance(prompt, str):
|
204 |
+
batch_size = 1
|
205 |
+
elif prompt is not None and isinstance(prompt, list):
|
206 |
+
batch_size = len(prompt)
|
207 |
+
else:
|
208 |
+
batch_size = prompt_embeds.shape[0]
|
209 |
+
# Define tokenizers and text encoders
|
210 |
+
tokenizers = [tokenizer, tokenizer_2]
|
211 |
+
text_encoders = [text_encoder, text_encoder_2]
|
212 |
+
|
213 |
+
if prompt_embeds is None:
|
214 |
+
prompt_embeds_list = []
|
215 |
+
attention_mask_list = []
|
216 |
+
|
217 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
218 |
+
text_inputs = tokenizer(
|
219 |
+
prompt,
|
220 |
+
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
|
221 |
+
max_length=tokenizer.model_max_length,
|
222 |
+
truncation=True,
|
223 |
+
return_tensors="pt",
|
224 |
+
)
|
225 |
+
text_input_ids = text_inputs.input_ids
|
226 |
+
attention_mask = text_inputs.attention_mask
|
227 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
228 |
+
|
229 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
230 |
+
text_input_ids, untruncated_ids
|
231 |
+
):
|
232 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
233 |
+
# logger.warning(
|
234 |
+
# f"The following part of your input was truncated because {text_encoder.config.model_type} can "
|
235 |
+
# f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
|
236 |
+
# )
|
237 |
+
|
238 |
+
text_input_ids = text_input_ids.to(device)
|
239 |
+
attention_mask = attention_mask.to(device)
|
240 |
+
|
241 |
+
if text_encoder.config.model_type == "clap":
|
242 |
+
prompt_embeds = text_encoder.get_text_features(
|
243 |
+
text_input_ids,
|
244 |
+
attention_mask=attention_mask,
|
245 |
+
)
|
246 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
247 |
+
prompt_embeds = prompt_embeds[:, None, :]
|
248 |
+
# make sure that we attend to this single hidden-state
|
249 |
+
attention_mask = attention_mask.new_ones((batch_size, 1))
|
250 |
+
else:
|
251 |
+
prompt_embeds = text_encoder(
|
252 |
+
text_input_ids,
|
253 |
+
attention_mask=attention_mask,
|
254 |
+
)
|
255 |
+
prompt_embeds = prompt_embeds[0]
|
256 |
+
|
257 |
+
prompt_embeds_list.append(prompt_embeds)
|
258 |
+
attention_mask_list.append(attention_mask)
|
259 |
+
projection_output = projection_model(
|
260 |
+
hidden_states=prompt_embeds_list[0],
|
261 |
+
hidden_states_1=prompt_embeds_list[1],
|
262 |
+
attention_mask=attention_mask_list[0],
|
263 |
+
attention_mask_1=attention_mask_list[1],
|
264 |
+
)
|
265 |
+
projected_prompt_embeds = projection_output.hidden_states
|
266 |
+
projected_attention_mask = projection_output.attention_mask
|
267 |
+
|
268 |
+
generated_prompt_embeds = generate_language_model(
|
269 |
+
language_model,
|
270 |
+
projected_prompt_embeds,
|
271 |
+
attention_mask=projected_attention_mask,
|
272 |
+
max_new_tokens=max_new_tokens,
|
273 |
+
)
|
274 |
+
|
275 |
+
prompt_embeds = prompt_embeds.to(dtype=text_encoder_2.dtype, device=device)
|
276 |
+
attention_mask = (
|
277 |
+
attention_mask.to(device=device)
|
278 |
+
if attention_mask is not None
|
279 |
+
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
280 |
+
)
|
281 |
+
generated_prompt_embeds = generated_prompt_embeds.to(dtype=language_model.dtype, device=device)
|
282 |
+
|
283 |
+
bs_embed, seq_len, hidden_size = prompt_embeds.shape
|
284 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
285 |
+
prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
286 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len, hidden_size)
|
287 |
+
|
288 |
+
# duplicate attention mask for each generation per prompt
|
289 |
+
attention_mask = attention_mask.repeat(1, num_waveforms_per_prompt)
|
290 |
+
attention_mask = attention_mask.view(bs_embed * num_waveforms_per_prompt, seq_len)
|
291 |
+
|
292 |
+
bs_embed, seq_len, hidden_size = generated_prompt_embeds.shape
|
293 |
+
# duplicate generated embeddings for each generation per prompt, using mps friendly method
|
294 |
+
generated_prompt_embeds = generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
295 |
+
generated_prompt_embeds = generated_prompt_embeds.view(
|
296 |
+
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
|
297 |
+
)
|
298 |
+
|
299 |
+
# get unconditional embeddings for classifier free guidance
|
300 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
301 |
+
uncond_tokens: List[str]
|
302 |
+
if negative_prompt is None:
|
303 |
+
uncond_tokens = [""] * batch_size
|
304 |
+
elif type(prompt) is not type(negative_prompt):
|
305 |
+
raise TypeError(
|
306 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
307 |
+
f" {type(prompt)}."
|
308 |
+
)
|
309 |
+
elif isinstance(negative_prompt, str):
|
310 |
+
uncond_tokens = [negative_prompt]
|
311 |
+
elif batch_size != len(negative_prompt):
|
312 |
+
raise ValueError(
|
313 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
314 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
315 |
+
" the batch size of `prompt`."
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
uncond_tokens = negative_prompt
|
319 |
+
|
320 |
+
negative_prompt_embeds_list = []
|
321 |
+
negative_attention_mask_list = []
|
322 |
+
max_length = prompt_embeds.shape[1]
|
323 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
324 |
+
uncond_input = tokenizer(
|
325 |
+
uncond_tokens,
|
326 |
+
padding="max_length",
|
327 |
+
max_length=tokenizer.model_max_length
|
328 |
+
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
329 |
+
else max_length,
|
330 |
+
truncation=True,
|
331 |
+
return_tensors="pt",
|
332 |
+
)
|
333 |
+
|
334 |
+
uncond_input_ids = uncond_input.input_ids.to(device)
|
335 |
+
negative_attention_mask = uncond_input.attention_mask.to(device)
|
336 |
+
|
337 |
+
if text_encoder.config.model_type == "clap":
|
338 |
+
negative_prompt_embeds = text_encoder.get_text_features(
|
339 |
+
uncond_input_ids,
|
340 |
+
attention_mask=negative_attention_mask,
|
341 |
+
)
|
342 |
+
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
|
343 |
+
negative_prompt_embeds = negative_prompt_embeds[:, None, :]
|
344 |
+
# make sure that we attend to this single hidden-state
|
345 |
+
negative_attention_mask = negative_attention_mask.new_ones((batch_size, 1))
|
346 |
+
else:
|
347 |
+
negative_prompt_embeds = text_encoder(
|
348 |
+
uncond_input_ids,
|
349 |
+
attention_mask=negative_attention_mask,
|
350 |
+
)
|
351 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
352 |
+
|
353 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
354 |
+
negative_attention_mask_list.append(negative_attention_mask)
|
355 |
+
|
356 |
+
projection_output = projection_model(
|
357 |
+
hidden_states=negative_prompt_embeds_list[0],
|
358 |
+
hidden_states_1=negative_prompt_embeds_list[1],
|
359 |
+
attention_mask=negative_attention_mask_list[0],
|
360 |
+
attention_mask_1=negative_attention_mask_list[1],
|
361 |
+
)
|
362 |
+
negative_projected_prompt_embeds = projection_output.hidden_states
|
363 |
+
negative_projected_attention_mask = projection_output.attention_mask
|
364 |
+
|
365 |
+
negative_generated_prompt_embeds = generate_language_model(
|
366 |
+
language_model,
|
367 |
+
negative_projected_prompt_embeds,
|
368 |
+
attention_mask=negative_projected_attention_mask,
|
369 |
+
max_new_tokens=max_new_tokens,
|
370 |
+
)
|
371 |
+
|
372 |
+
if do_classifier_free_guidance:
|
373 |
+
seq_len = negative_prompt_embeds.shape[1]
|
374 |
+
|
375 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder_2.dtype, device=device)
|
376 |
+
negative_attention_mask = (
|
377 |
+
negative_attention_mask.to(device=device)
|
378 |
+
if negative_attention_mask is not None
|
379 |
+
else torch.ones(negative_prompt_embeds.shape[:2], dtype=torch.long, device=device)
|
380 |
+
)
|
381 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.to(
|
382 |
+
dtype=language_model.dtype, device=device
|
383 |
+
)
|
384 |
+
|
385 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
386 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
387 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len, -1)
|
388 |
+
|
389 |
+
# duplicate unconditional attention mask for each generation per prompt
|
390 |
+
negative_attention_mask = negative_attention_mask.repeat(1, num_waveforms_per_prompt)
|
391 |
+
negative_attention_mask = negative_attention_mask.view(batch_size * num_waveforms_per_prompt, seq_len)
|
392 |
+
|
393 |
+
# duplicate unconditional generated embeddings for each generation per prompt
|
394 |
+
seq_len = negative_generated_prompt_embeds.shape[1]
|
395 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
396 |
+
negative_generated_prompt_embeds = negative_generated_prompt_embeds.view(
|
397 |
+
batch_size * num_waveforms_per_prompt, seq_len, -1
|
398 |
+
)
|
399 |
+
|
400 |
+
# For classifier free guidance, we need to do two forward passes.
|
401 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
402 |
+
# to avoid doing two forward passes
|
403 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
404 |
+
attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
405 |
+
generated_prompt_embeds = torch.cat([negative_generated_prompt_embeds, generated_prompt_embeds])
|
406 |
+
|
407 |
+
return prompt_embeds, attention_mask, generated_prompt_embeds
|
408 |
+
|
409 |
+
def prepare_latents(vae, vocoder, scheduler, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
|
410 |
+
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
|
411 |
+
shape = (
|
412 |
+
batch_size,
|
413 |
+
num_channels_latents,
|
414 |
+
height // vae_scale_factor,
|
415 |
+
vocoder.config.model_in_dim // vae_scale_factor,
|
416 |
+
)
|
417 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
418 |
+
raise ValueError(
|
419 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
420 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
421 |
+
)
|
422 |
+
|
423 |
+
if latents is None:
|
424 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
425 |
+
else:
|
426 |
+
latents = latents.to(device)
|
427 |
+
|
428 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
429 |
+
latents = latents * scheduler.init_noise_sigma
|
430 |
+
return latents
|
431 |
+
|
432 |
+
def plot_loss(loss_history, loss_plot_path, lora_steps):
|
433 |
+
plt.figure(figsize=(10, 6))
|
434 |
+
plt.plot(range(1, lora_steps + 1), loss_history, label="Training Loss")
|
435 |
+
plt.xlabel("Steps")
|
436 |
+
plt.ylabel("Loss")
|
437 |
+
plt.title("Training Loss Over Steps")
|
438 |
+
plt.legend()
|
439 |
+
plt.grid(True)
|
440 |
+
plt.savefig(loss_plot_path)
|
441 |
+
plt.close()
|
442 |
+
# print(f"Loss plot saved to {loss_plot_path}")
|
443 |
+
|
444 |
+
|
445 |
+
# model_path: path of the model
|
446 |
+
# image: input image, have not been pre-processed
|
447 |
+
# save_lora_dir: the path to save the lora
|
448 |
+
# prompt: the user input prompt
|
449 |
+
# lora_steps: number of lora training step
|
450 |
+
# lora_lr: learning rate of lora training
|
451 |
+
# lora_rank: the rank of lora
|
452 |
+
def train_lora(audio_path ,height ,time_pooling ,freq_pooling ,prompt, negative_prompt, guidance_scale, save_lora_dir, tokenizer=None, tokenizer_2=None,
|
453 |
+
text_encoder=None, text_encoder_2=None, GPT2=None, projection_model=None, vocoder=None,
|
454 |
+
vae=None, unet=None, noise_scheduler=None, lora_steps=200, lora_lr=2e-4, lora_rank=16, weight_name=None, safe_serialization=False, progress=tqdm):
|
455 |
+
time_pooling = time_pooling
|
456 |
+
freq_pooling = freq_pooling
|
457 |
+
# initialize accelerator
|
458 |
+
# accelerator = Accelerator(
|
459 |
+
# gradient_accumulation_steps=1,
|
460 |
+
# mixed_precision='no'
|
461 |
+
# )
|
462 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
463 |
+
set_seed(0)
|
464 |
+
# set device and dtype
|
465 |
+
# prepare accelerator
|
466 |
+
# unet_lora_layers = accelerator.prepare_model(unet_lora_layers)
|
467 |
+
# optimizer = accelerator.prepare_optimizer(optimizer)
|
468 |
+
# lr_scheduler = accelerator.prepare_scheduler(lr_scheduler)
|
469 |
+
|
470 |
+
vae.requires_grad_(False)
|
471 |
+
text_encoder.requires_grad_(False)
|
472 |
+
text_encoder_2.requires_grad_(False)
|
473 |
+
GPT2.requires_grad_(False)
|
474 |
+
projection_model.requires_grad_(False)
|
475 |
+
vocoder.requires_grad_(False)
|
476 |
+
unet.requires_grad_(False)
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
|
481 |
+
for name, param in text_encoder_2.named_parameters():
|
482 |
+
if param.requires_grad:
|
483 |
+
print(name)
|
484 |
+
for name, param in GPT2.named_parameters():
|
485 |
+
if param.requires_grad:
|
486 |
+
print(name)
|
487 |
+
for name, param in vae.named_parameters():
|
488 |
+
if param.requires_grad:
|
489 |
+
print(name)
|
490 |
+
for name, param in vocoder.named_parameters():
|
491 |
+
if param.requires_grad:
|
492 |
+
print(name)
|
493 |
+
|
494 |
+
unet.to(device)
|
495 |
+
vae.to(device)
|
496 |
+
text_encoder.to(device)
|
497 |
+
|
498 |
+
|
499 |
+
# initialize UNet LoRA
|
500 |
+
unet_lora_attn_procs = {}
|
501 |
+
i = 0 # Counter variable to iterate through the cross-attention dimension array.
|
502 |
+
cross = [None, None, 768, 768, 1024, 1024, None, None] # Predefined cross-attention dimensions for different layers.
|
503 |
+
do_copy = False
|
504 |
+
for name, attn_processor in unet.attn_processors.items():
|
505 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
506 |
+
if name.startswith("mid_block"):
|
507 |
+
hidden_size = unet.config.block_out_channels[-1]
|
508 |
+
elif name.startswith("up_blocks"):
|
509 |
+
block_id = int(name[len("up_blocks.")])
|
510 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
511 |
+
elif name.startswith("down_blocks"):
|
512 |
+
block_id = int(name[len("down_blocks.")])
|
513 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
514 |
+
else:
|
515 |
+
raise NotImplementedError("name must start with up_blocks, mid_blocks, or down_blocks")
|
516 |
+
|
517 |
+
# if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
|
518 |
+
# lora_attn_processor_class = LoRAAttnAddedKVProcessor
|
519 |
+
# else:
|
520 |
+
# lora_attn_processor_class = (
|
521 |
+
# LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
522 |
+
# )
|
523 |
+
|
524 |
+
if cross_attention_dim is None:
|
525 |
+
unet_lora_attn_procs[name] = AttnProcessor2_0()
|
526 |
+
else:
|
527 |
+
cross_attention_dim = cross[i%8]
|
528 |
+
i += 1
|
529 |
+
if cross_attention_dim == 768:
|
530 |
+
unet_lora_attn_procs[name] = IPAttnProcessor2_0(
|
531 |
+
hidden_size=hidden_size,
|
532 |
+
name = name,
|
533 |
+
cross_attention_dim=cross_attention_dim,
|
534 |
+
scale=1.0,
|
535 |
+
num_tokens=8,
|
536 |
+
do_copy = do_copy
|
537 |
+
).to(device, dtype=torch.float32)
|
538 |
+
else:
|
539 |
+
unet_lora_attn_procs[name] = AttnProcessor2_0()
|
540 |
+
unet.set_attn_processor(unet_lora_attn_procs)
|
541 |
+
unet_lora_layers = AttnProcsLayers(unet.attn_processors)
|
542 |
+
|
543 |
+
# Optimizer creation
|
544 |
+
params_to_optimize = (unet_lora_layers.parameters())
|
545 |
+
optimizer = torch.optim.AdamW(
|
546 |
+
params_to_optimize,
|
547 |
+
lr=lora_lr,
|
548 |
+
betas=(0.9, 0.999),
|
549 |
+
weight_decay=1e-2,
|
550 |
+
eps=1e-08,
|
551 |
+
)
|
552 |
+
|
553 |
+
lr_scheduler = get_scheduler(
|
554 |
+
"constant",
|
555 |
+
optimizer=optimizer,
|
556 |
+
num_warmup_steps=0,
|
557 |
+
num_training_steps=lora_steps,
|
558 |
+
num_cycles=1,
|
559 |
+
power=1.0,
|
560 |
+
)
|
561 |
+
|
562 |
+
|
563 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
564 |
+
# initialize text embeddings
|
565 |
+
with torch.no_grad():
|
566 |
+
prompt_embeds, attention_mask, generated_prompt_embeds = encode_prompt(
|
567 |
+
tokenizer,
|
568 |
+
tokenizer_2,
|
569 |
+
text_encoder,
|
570 |
+
text_encoder_2,
|
571 |
+
projection_model,
|
572 |
+
GPT2,
|
573 |
+
prompt,
|
574 |
+
device,
|
575 |
+
num_waveforms_per_prompt = 1,
|
576 |
+
do_classifier_free_guidance= do_classifier_free_guidance,
|
577 |
+
negative_prompt = negative_prompt,
|
578 |
+
)
|
579 |
+
waveform, sr = torchaudio.load(audio_path)
|
580 |
+
fbank = torch.zeros((1024, 128))
|
581 |
+
ta_kaldi_fbank = extract_kaldi_fbank_feature(waveform, sr, fbank)
|
582 |
+
mel_spect_tensor = ta_kaldi_fbank.unsqueeze(0)
|
583 |
+
model = AudioMAEConditionCTPoolRand().to(device).to(dtype=torch.float32)
|
584 |
+
model.eval()
|
585 |
+
mel_spect_tensor = mel_spect_tensor.to(device, dtype=next(model.parameters()).dtype)
|
586 |
+
LOA_embed = model(mel_spect_tensor, time_pool=time_pooling, freq_pool=freq_pooling)
|
587 |
+
uncond_LOA_embed = model(torch.zeros_like(mel_spect_tensor), time_pool=time_pooling, freq_pool=freq_pooling)
|
588 |
+
LOA_embeds = LOA_embed[0]
|
589 |
+
uncond_LOA_embeds = uncond_LOA_embed[0]
|
590 |
+
bs_embed, seq_len, _ = LOA_embeds.shape
|
591 |
+
num = prompt_embeds.shape[0] // 2
|
592 |
+
LOA_embeds = LOA_embeds.view(bs_embed , seq_len, -1)
|
593 |
+
LOA_embeds = LOA_embeds.repeat(num, 1, 1)
|
594 |
+
uncond_LOA_embeds = uncond_LOA_embeds.view(bs_embed , seq_len, -1)
|
595 |
+
uncond_LOA_embeds = uncond_LOA_embeds.repeat(num, 1, 1)
|
596 |
+
negative_g, g = generated_prompt_embeds.chunk(2)
|
597 |
+
uncond = torch.cat([negative_g, uncond_LOA_embeds], dim=1)
|
598 |
+
cond = torch.cat([g, LOA_embeds], dim=1)
|
599 |
+
generated_prompt_embeds = torch.cat([uncond, cond], dim=0)
|
600 |
+
model_dtype = next(unet.parameters()).dtype
|
601 |
+
generated_prompt_embeds = generated_prompt_embeds.to(model_dtype)
|
602 |
+
|
603 |
+
# num_channels_latents = unet.config.in_channels
|
604 |
+
# batch_size = 1
|
605 |
+
# num_waveforms_per_prompt = 1
|
606 |
+
# generator = None
|
607 |
+
# latents = None
|
608 |
+
# latents = prepare_latents(
|
609 |
+
# vae,
|
610 |
+
# vocoder,
|
611 |
+
# noise_scheduler,
|
612 |
+
# batch_size * num_waveforms_per_prompt,
|
613 |
+
# num_channels_latents,
|
614 |
+
# height,
|
615 |
+
# prompt_embeds.dtype,
|
616 |
+
# device,
|
617 |
+
# generator,
|
618 |
+
# latents,
|
619 |
+
# )
|
620 |
+
|
621 |
+
loss_history = []
|
622 |
+
if not os.path.exists(save_lora_dir):
|
623 |
+
os.makedirs(save_lora_dir)
|
624 |
+
weight_path = os.path.join(save_lora_dir, weight_name)
|
625 |
+
base_name, _ = os.path.splitext(weight_path)
|
626 |
+
save_image_path = f"{base_name}.png"
|
627 |
+
print(f'Save image path: {save_image_path}')
|
628 |
+
mel_spect_tensor = wav_to_mel(audio_path, duration = 10).unsqueeze(0).to(next(vae.parameters()).dtype)
|
629 |
+
|
630 |
+
for step in progress.tqdm(range(lora_steps), desc="Training LoRA..."):
|
631 |
+
unet.train()
|
632 |
+
# with accelerator.accumulate(unet):
|
633 |
+
latents_dist = vae.encode(mel_spect_tensor.to(device)).latent_dist
|
634 |
+
model_input = torch.cat([latents_dist.sample()] * 2) if do_classifier_free_guidance else latents_dist.sample()
|
635 |
+
model_input = model_input * vae.config.scaling_factor
|
636 |
+
# Sample noise that we'll add to the latents
|
637 |
+
noise = torch.randn_like(model_input).to(model_input.device)
|
638 |
+
bsz, channels, height, width = model_input.shape
|
639 |
+
# Sample a random timestep for each image
|
640 |
+
timesteps = torch.randint(
|
641 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
|
642 |
+
)
|
643 |
+
timesteps = timesteps.long()
|
644 |
+
# Add noise to the model input according to the noise magnitude at each timestep (this is the forward diffusion process)
|
645 |
+
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
|
646 |
+
generated_prompt_embeds = generated_prompt_embeds.to(device)
|
647 |
+
prompt_embeds = prompt_embeds.to(device)
|
648 |
+
attention_mask = attention_mask.to(device)
|
649 |
+
# Predict the noise residual
|
650 |
+
model_pred = unet(sample=noisy_model_input,
|
651 |
+
timestep=timesteps,
|
652 |
+
encoder_hidden_states=generated_prompt_embeds,
|
653 |
+
encoder_hidden_states_1=prompt_embeds,
|
654 |
+
encoder_attention_mask_1=attention_mask,
|
655 |
+
return_dict=False,
|
656 |
+
)[0]
|
657 |
+
|
658 |
+
# Get the target for loss depending on the prediction type
|
659 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
660 |
+
target = noise
|
661 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
662 |
+
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
|
663 |
+
else:
|
664 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
665 |
+
loss = F.mse_loss(model_pred, target, reduction="mean")
|
666 |
+
loss_history.append(loss.item())
|
667 |
+
loss.requires_grad = True
|
668 |
+
loss.backward()
|
669 |
+
optimizer.step()
|
670 |
+
lr_scheduler.step()
|
671 |
+
optimizer.zero_grad()
|
672 |
+
# with open(loss_log_path, "w") as f:
|
673 |
+
# json.dump(loss_history, f)
|
674 |
+
|
675 |
+
plot_loss(loss_history, save_image_path, step+1)
|
676 |
+
|
677 |
+
|
678 |
+
LoraLoaderMixin.save_lora_weights(
|
679 |
+
save_directory=save_lora_dir,
|
680 |
+
unet_lora_layers=unet_lora_layers,
|
681 |
+
text_encoder_lora_layers=None,
|
682 |
+
weight_name=weight_name,
|
683 |
+
safe_serialization=safe_serialization
|
684 |
+
)
|
685 |
+
|
686 |
+
def load_lora(unet, lora_0, lora_1, alpha):
|
687 |
+
attn_procs = unet.attn_processors
|
688 |
+
for name, processor in attn_procs.items():
|
689 |
+
if hasattr(processor, 'to_v_ip') or hasattr(processor, 'to_k_ip'):
|
690 |
+
weight_name_v = name + ".to_v_ip.weight"
|
691 |
+
weight_name_k = name + ".to_k_ip.weight"
|
692 |
+
if weight_name_v in lora_0 and weight_name_v in lora_1:
|
693 |
+
v_weight = (1 - alpha) * lora_0[weight_name_v] + alpha * lora_1[weight_name_v]
|
694 |
+
processor.to_v_ip.weight = torch.nn.Parameter(v_weight.half())
|
695 |
+
|
696 |
+
if weight_name_k in lora_0 and weight_name_k in lora_1:
|
697 |
+
k_weight = (1 - alpha) * lora_0[weight_name_k] + alpha * lora_1[weight_name_k]
|
698 |
+
processor.to_k_ip.weight = torch.nn.Parameter(k_weight.half())
|
699 |
+
unet.set_attn_processor(attn_procs)
|
700 |
+
return unet
|
utils/model_utils.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torchvision import transforms
|
4 |
+
|
5 |
+
def calc_mean_std(feat, eps=1e-5):
|
6 |
+
# eps is a small value added to the variance to avoid divide-by-zero.
|
7 |
+
size = feat.size()
|
8 |
+
|
9 |
+
N, C = size[:2]
|
10 |
+
feat_var = feat.view(N, C, -1).var(dim=2) + eps
|
11 |
+
if len(size) == 3:
|
12 |
+
feat_std = feat_var.sqrt().view(N, C, 1)
|
13 |
+
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1)
|
14 |
+
else:
|
15 |
+
feat_std = feat_var.sqrt().view(N, C, 1, 1)
|
16 |
+
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
|
17 |
+
return feat_mean, feat_std
|
18 |
+
|
19 |
+
|
20 |
+
def get_img(img, resolution=512):
|
21 |
+
norm_mean = [0.5, 0.5, 0.5]
|
22 |
+
norm_std = [0.5, 0.5, 0.5]
|
23 |
+
transform = transforms.Compose([
|
24 |
+
transforms.Resize((resolution, resolution)),
|
25 |
+
transforms.ToTensor(),
|
26 |
+
transforms.Normalize(norm_mean, norm_std)
|
27 |
+
])
|
28 |
+
img = transform(img)
|
29 |
+
return img.unsqueeze(0)
|
30 |
+
|
31 |
+
@torch.no_grad()
|
32 |
+
def slerp(p0, p1, fract_mixing: float, adain=True):
|
33 |
+
r""" Copied from lunarring/latentblending
|
34 |
+
Helper function to correctly mix two random variables using spherical interpolation.
|
35 |
+
The function will always cast up to float64 for sake of extra 4.
|
36 |
+
Args:
|
37 |
+
p0:
|
38 |
+
First tensor for interpolation
|
39 |
+
p1:
|
40 |
+
Second tensor for interpolation
|
41 |
+
fract_mixing: float
|
42 |
+
Mixing coefficient of interval [0, 1].
|
43 |
+
0 will return in p0
|
44 |
+
1 will return in p1
|
45 |
+
0.x will return a mix between both preserving angular velocity.
|
46 |
+
"""
|
47 |
+
if p0.dtype == torch.float16:
|
48 |
+
recast_to = 'fp16'
|
49 |
+
else:
|
50 |
+
recast_to = 'fp32'
|
51 |
+
|
52 |
+
p0 = p0.double()
|
53 |
+
p1 = p1.double()
|
54 |
+
|
55 |
+
if adain:
|
56 |
+
mean1, std1 = calc_mean_std(p0)
|
57 |
+
mean2, std2 = calc_mean_std(p1)
|
58 |
+
mean = mean1 * (1 - fract_mixing) + mean2 * fract_mixing
|
59 |
+
std = std1 * (1 - fract_mixing) + std2 * fract_mixing
|
60 |
+
|
61 |
+
norm = torch.linalg.norm(p0) * torch.linalg.norm(p1)
|
62 |
+
epsilon = 1e-7
|
63 |
+
dot = torch.sum(p0 * p1) / norm
|
64 |
+
dot = dot.clamp(-1+epsilon, 1-epsilon)
|
65 |
+
|
66 |
+
theta_0 = torch.arccos(dot)
|
67 |
+
sin_theta_0 = torch.sin(theta_0)
|
68 |
+
theta_t = theta_0 * fract_mixing
|
69 |
+
s0 = torch.sin(theta_0 - theta_t) / sin_theta_0
|
70 |
+
s1 = torch.sin(theta_t) / sin_theta_0
|
71 |
+
interp = p0*s0 + p1*s1
|
72 |
+
|
73 |
+
if adain:
|
74 |
+
interp = F.instance_norm(interp) * std + mean
|
75 |
+
|
76 |
+
if recast_to == 'fp16':
|
77 |
+
interp = interp.half()
|
78 |
+
elif recast_to == 'fp32':
|
79 |
+
interp = interp.float()
|
80 |
+
|
81 |
+
return interp
|
82 |
+
|
83 |
+
|
84 |
+
def do_replace_attn(key: str):
|
85 |
+
# return key.startswith('up_blocks.2') or key.startswith('up_blocks.3')
|
86 |
+
return key.startswith('up')
|