Spaces:
Sleeping
Sleeping
from smolagents import tool | |
from langchain_community.document_loaders import WikipediaLoader | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query. | |
""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def read_excel_file(file_path: str, query: str) -> str: | |
""" | |
This function uses pandas to read an Excel file and perform some basic analysis. | |
It returns the number of rows and columns, the column names, and some summary statistics. | |
Args: | |
file_path: Path to the Excel file | |
query: Question about the data | |
""" | |
try: | |
import pandas as pd | |
df = pd.read_excel(file_path) | |
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" | |
result += f"Columns: {', '.join(df.columns)}\n\n" | |
result += "Summary statistics:\n" | |
result += str(df.describe()) | |
return result | |
except ImportError: | |
return "Error: pandasis not installed. Please install it with 'pip install pandas'." | |
except Exception as e: | |
return f"Error analyzing Excel file: {str(e)}" | |
def transcribe_audio_file(mp3_file_path: str) -> str: | |
""" | |
Transcribe text from an mp3 file. | |
It returns the text extracted from the mp3 file. | |
Args: | |
mp3_file_path (str): Path to the mp3 file. | |
""" | |
try: | |
import speech_recognition as sr | |
from pydub import AudioSegment | |
import os | |
file, _ = os.path.splitext(mp3_file_path) | |
audio = AudioSegment.from_mp3(mp3_file_path) | |
wav_file = f"{file}.wav" | |
audio.export(wav_file, format="wav") | |
recognizer = sr.Recognizer() | |
with sr.AudioFile(wav_file) as source: | |
audio_data = recognizer.record(source) | |
text = recognizer.recognize_google(audio_data) | |
return text | |
except Exception as e: | |
return f"Error transcribing mp3 file: {e}" | |
def transcribe_from_youtube(youtube_id: str) -> str: | |
""" | |
Transcribe text from a youtube video. | |
It returns the text extracted from the youtube video. | |
Args: | |
youtube_id (str): ID of the youtube video. Not the full URL. Example: "dQw4w9WgXcQ" | |
""" | |
try: | |
from youtube_transcript_api import YouTubeTranscriptApi | |
ytt_api = YouTubeTranscriptApi() | |
fetched_transcript = ytt_api.fetch(youtube_id) | |
plaintext = " ".join(snippet.text for snippet in fetched_transcript) | |
return plaintext | |
except: | |
return "Could not extract transcript from YouTube video." | |