Demo750's picture
Upload folder using huggingface_hub
569f484 verified
import torch
import torch.distributed as dist
from vlmeval.config import supported_VLM
from vlmeval.utils import track_progress_rich
from vlmeval.smp import *
FAIL_MSG = 'Failed to obtain answer via API.'
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, nargs='+', required=True)
parser.add_argument('--model', type=str, nargs='+', required=True)
parser.add_argument('--nproc', type=int, default=4, required=True)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
# Only API model is accepted
def infer_data_api(work_dir, model_name, dataset, nframe=8, pack=False, samples_dict={}, api_nproc=4):
rank, world_size = get_rank_and_world_size()
assert rank == 0 and world_size == 1
dataset_name = dataset.dataset_name
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
assert getattr(model, 'is_api', False)
indices = list(samples_dict.keys())
structs = [dataset.build_prompt(samples_dict[idx], num_frames=nframe,
video_llm=getattr(model, 'VIDEO_LLM', False)) for idx in indices]
packstr = 'pack' if pack else 'nopack'
out_file = f'{work_dir}/{model_name}_{dataset_name}_{nframe}frame_{packstr}_supp.pkl'
res = load(out_file) if osp.exists(out_file) else {}
structs = [s for i, s in zip(indices, structs) if i not in res]
indices = [i for i in indices if i not in res]
gen_func = model.generate
structs = [dict(message=struct, dataset=dataset_name) for struct in structs]
if len(structs):
track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)
res = load(out_file)
return res
def infer_data(model_name, work_dir, dataset, out_file, nframe=8, pack=False, verbose=False, api_nproc=4):
res = load(out_file) if osp.exists(out_file) else {}
rank, world_size = get_rank_and_world_size()
dataset_name = dataset.dataset_name
sample_indices = list(dataset.videos) if pack else list(dataset.data['index'])
samples = list(dataset.videos) if pack else list(range(len(dataset.data)))
sample_map = {i: s for i, s in zip(sample_indices, samples)}
sample_indices_sub = sample_indices[rank::world_size]
if np.all([idx in res for idx in sample_indices_sub]):
return model_name
sample_indices_subrem = [x for x in sample_indices_sub if x not in res]
model = supported_VLM[model_name]() if isinstance(model_name, str) else model_name
is_api = getattr(model, 'is_api', False)
if is_api:
assert world_size == 1
supp = infer_data_api(
work_dir=work_dir,
model_name=model_name,
dataset=dataset,
nframe=nframe,
pack=pack,
samples_dict={k: sample_map[k] for k in sample_indices_subrem},
api_nproc=api_nproc)
for k in sample_indices_subrem:
assert k in supp
res.update(supp)
dump(res, out_file)
return model_name
for i, idx in tqdm(enumerate(sample_indices_subrem)):
if idx in res:
continue
# adapt to model frame sample number first
nframe = getattr(model, 'nframe', 0) if getattr(model, 'nframe', 0) > 0 else nframe
# when using video-llm, build prompt returns video+question; otherwise, several frames+question
struct = dataset.build_prompt(sample_map[idx], num_frames=nframe, video_llm=getattr(model, 'VIDEO_LLM', False))
response = model.generate(message=struct, dataset=dataset_name)
torch.cuda.empty_cache()
if verbose:
print(response, flush=True)
res[idx] = response
if (i + 1) % 20 == 0:
dump(res, out_file)
res = {k: res[k] for k in sample_indices_sub}
dump(res, out_file)
return model
# A wrapper for infer_data, do the pre & post processing
def infer_data_job_video(
model,
work_dir,
model_name,
dataset,
nframe=8,
pack=False,
verbose=False,
subtitle=False,
api_nproc=4):
dataset_name = dataset.dataset_name
packstr = 'pack' if pack else 'nopack'
rank, world_size = get_rank_and_world_size()
result_file = osp.join(work_dir, f'{model_name}_{dataset_name}_{nframe}frame_{packstr}.xlsx')
if dataset_name == 'Video-MME':
subtitle_str = 'subs' if subtitle else 'nosubs'
result_file = result_file.replace('.xlsx', f'_{subtitle_str}.xlsx')
# Dump Predictions to Prev File if result file exists
if osp.exists(result_file):
return model_name
tmpl = osp.join(work_dir, '{}' + f'{world_size}_{dataset_name}_{nframe}frame_{packstr}.pkl')
if dataset_name == 'Video-MME':
subtitle_str = 'subs' if subtitle else 'nosubs'
tmpl = tmpl.replace('.pkl', f'_{subtitle_str}.pkl')
out_file = tmpl.format(rank)
model = infer_data(
model,
work_dir=work_dir,
dataset=dataset,
nframe=nframe,
pack=pack,
out_file=out_file,
verbose=verbose,
api_nproc=api_nproc)
if world_size > 1:
dist.barrier()
if rank == 0:
data_all = {}
for i in range(world_size):
data_all.update(load(tmpl.format(i)))
meta = dataset.data
if dataset_name == 'MMBench-Video' and pack:
meta, vstats = dataset.load_pack_answers(data_all)
print(f'Statitics of Pack Video Inference: {vstats}')
else:
for x in meta['index']:
assert x in data_all
meta['prediction'] = [str(data_all[x]) for x in meta['index']]
if 'image' in meta:
meta.pop('image')
dump(meta, result_file)
for i in range(world_size):
os.remove(tmpl.format(i))
return model