Spaces:
Sleeping
Sleeping
DeepLearning101
commited on
Commit
•
d131d1a
1
Parent(s):
1f544f7
Upload 2 files
Browse files
models/span_extraction/global_pointer.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2022/4/21 5:30 下午
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : global_pointer.py
|
5 |
+
from typing import Optional
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import torch.nn as nn
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from torch.nn import BCEWithLogitsLoss
|
11 |
+
from transformers import MegatronBertModel, MegatronBertPreTrainedModel
|
12 |
+
from transformers.file_utils import ModelOutput
|
13 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
14 |
+
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
|
15 |
+
from roformer import RoFormerPreTrainedModel, RoFormerModel, RoFormerModel
|
16 |
+
|
17 |
+
|
18 |
+
class RawGlobalPointer(nn.Module):
|
19 |
+
def __init__(self, encoder, ent_type_size, inner_dim, RoPE=True):
|
20 |
+
# encodr: RoBerta-Large as encoder
|
21 |
+
# inner_dim: 64
|
22 |
+
# ent_type_size: ent_cls_num
|
23 |
+
super().__init__()
|
24 |
+
self.encoder = encoder
|
25 |
+
self.ent_type_size = ent_type_size
|
26 |
+
self.inner_dim = inner_dim
|
27 |
+
self.hidden_size = encoder.config.hidden_size
|
28 |
+
self.dense = nn.Linear(self.hidden_size, self.ent_type_size * self.inner_dim * 2)
|
29 |
+
|
30 |
+
self.RoPE = RoPE
|
31 |
+
|
32 |
+
def sinusoidal_position_embedding(self, batch_size, seq_len, output_dim):
|
33 |
+
position_ids = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(-1)
|
34 |
+
|
35 |
+
indices = torch.arange(0, output_dim // 2, dtype=torch.float)
|
36 |
+
indices = torch.pow(10000, -2 * indices / output_dim)
|
37 |
+
embeddings = position_ids * indices
|
38 |
+
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
|
39 |
+
embeddings = embeddings.repeat((batch_size, *([1] * len(embeddings.shape))))
|
40 |
+
embeddings = torch.reshape(embeddings, (batch_size, seq_len, output_dim))
|
41 |
+
embeddings = embeddings.to(self.device)
|
42 |
+
return embeddings
|
43 |
+
|
44 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
45 |
+
self.device = input_ids.device
|
46 |
+
|
47 |
+
context_outputs = self.encoder(input_ids, attention_mask, token_type_ids)
|
48 |
+
# last_hidden_state:(batch_size, seq_len, hidden_size)
|
49 |
+
last_hidden_state = context_outputs[0]
|
50 |
+
|
51 |
+
batch_size = last_hidden_state.size()[0]
|
52 |
+
seq_len = last_hidden_state.size()[1]
|
53 |
+
|
54 |
+
outputs = self.dense(last_hidden_state)
|
55 |
+
outputs = torch.split(outputs, self.inner_dim * 2, dim=-1)
|
56 |
+
outputs = torch.stack(outputs, dim=-2)
|
57 |
+
qw, kw = outputs[..., :self.inner_dim], outputs[..., self.inner_dim:]
|
58 |
+
if self.RoPE:
|
59 |
+
# pos_emb:(batch_size, seq_len, inner_dim)
|
60 |
+
pos_emb = self.sinusoidal_position_embedding(batch_size, seq_len, self.inner_dim)
|
61 |
+
cos_pos = pos_emb[..., None, 1::2].repeat_interleave(2, dim=-1)
|
62 |
+
sin_pos = pos_emb[..., None, ::2].repeat_interleave(2, dim=-1)
|
63 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], -1)
|
64 |
+
qw2 = qw2.reshape(qw.shape)
|
65 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
66 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], -1)
|
67 |
+
kw2 = kw2.reshape(kw.shape)
|
68 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
69 |
+
# logits:(batch_size, ent_type_size, seq_len, seq_len)
|
70 |
+
logits = torch.einsum("bmhd,bnhd->bhmn", qw, kw)
|
71 |
+
|
72 |
+
# padding mask
|
73 |
+
pad_mask = attention_mask.unsqueeze(1).unsqueeze(1).expand(batch_size, self.ent_type_size, seq_len, seq_len)
|
74 |
+
logits = logits * pad_mask - (1 - pad_mask) * 1e12
|
75 |
+
|
76 |
+
# 排除下三角
|
77 |
+
mask = torch.tril(torch.ones_like(logits), -1)
|
78 |
+
logits = logits - mask * 1e12
|
79 |
+
|
80 |
+
return logits / self.inner_dim ** 0.5
|
81 |
+
|
82 |
+
|
83 |
+
class SinusoidalPositionEmbedding(nn.Module):
|
84 |
+
"""定义Sin-Cos位置Embedding
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self, output_dim, merge_mode="add", custom_position_ids=False):
|
89 |
+
super(SinusoidalPositionEmbedding, self).__init__()
|
90 |
+
self.output_dim = output_dim
|
91 |
+
self.merge_mode = merge_mode
|
92 |
+
self.custom_position_ids = custom_position_ids
|
93 |
+
|
94 |
+
def forward(self, inputs):
|
95 |
+
if self.custom_position_ids:
|
96 |
+
seq_len = inputs.shape[1]
|
97 |
+
inputs, position_ids = inputs
|
98 |
+
position_ids = position_ids.type(torch.float)
|
99 |
+
else:
|
100 |
+
input_shape = inputs.shape
|
101 |
+
batch_size, seq_len = input_shape[0], input_shape[1]
|
102 |
+
position_ids = torch.arange(seq_len).type(torch.float)[None]
|
103 |
+
indices = torch.arange(self.output_dim // 2).type(torch.float)
|
104 |
+
indices = torch.pow(10000.0, -2 * indices / self.output_dim)
|
105 |
+
embeddings = torch.einsum("bn,d->bnd", position_ids, indices)
|
106 |
+
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
|
107 |
+
embeddings = torch.reshape(embeddings, (-1, seq_len, self.output_dim))
|
108 |
+
if self.merge_mode == "add":
|
109 |
+
return inputs + embeddings.to(inputs.device)
|
110 |
+
elif self.merge_mode == "mul":
|
111 |
+
return inputs * (embeddings + 1.0).to(inputs.device)
|
112 |
+
elif self.merge_mode == "zero":
|
113 |
+
return embeddings.to(inputs.device)
|
114 |
+
|
115 |
+
|
116 |
+
def multilabel_categorical_crossentropy(y_pred, y_true):
|
117 |
+
y_pred = (1 - 2 * y_true) * y_pred # -1 -> pos classes, 1 -> neg classes
|
118 |
+
y_pred_neg = y_pred - y_true * 1e12 # mask the pred outputs of pos classes
|
119 |
+
y_pred_pos = y_pred - (1 - y_true) * 1e12 # mask the pred outputs of neg classes
|
120 |
+
zeros = torch.zeros_like(y_pred[..., :1])
|
121 |
+
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
|
122 |
+
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
|
123 |
+
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
|
124 |
+
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
|
125 |
+
# print(y_pred, y_true, pos_loss)
|
126 |
+
return (neg_loss + pos_loss).mean()
|
127 |
+
|
128 |
+
|
129 |
+
def multilabel_categorical_crossentropy2(y_pred, y_true):
|
130 |
+
y_pred = (1 - 2 * y_true) * y_pred # -1 -> pos classes, 1 -> neg classes
|
131 |
+
y_pred_neg = y_pred.clone()
|
132 |
+
y_pred_pos = y_pred.clone()
|
133 |
+
y_pred_neg[y_true>0] -= float("inf")
|
134 |
+
y_pred_pos[y_true<1] -= float("inf")
|
135 |
+
# y_pred_neg = y_pred - y_true * float("inf") # mask the pred outputs of pos classes
|
136 |
+
# y_pred_pos = y_pred - (1 - y_true) * float("inf") # mask the pred outputs of neg classes
|
137 |
+
zeros = torch.zeros_like(y_pred[..., :1])
|
138 |
+
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
|
139 |
+
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
|
140 |
+
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
|
141 |
+
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
|
142 |
+
# print(y_pred, y_true, pos_loss)
|
143 |
+
return (neg_loss + pos_loss).mean()
|
144 |
+
|
145 |
+
@dataclass
|
146 |
+
class GlobalPointerOutput(ModelOutput):
|
147 |
+
loss: Optional[torch.FloatTensor] = None
|
148 |
+
topk_probs: torch.FloatTensor = None
|
149 |
+
topk_indices: torch.IntTensor = None
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
class BertForEffiGlobalPointer(BertPreTrainedModel):
|
154 |
+
def __init__(self, config):
|
155 |
+
# encodr: RoBerta-Large as encoder
|
156 |
+
# inner_dim: 64
|
157 |
+
# ent_type_size: ent_cls_num
|
158 |
+
super().__init__(config)
|
159 |
+
self.bert = BertModel(config)
|
160 |
+
self.ent_type_size = config.ent_type_size
|
161 |
+
self.inner_dim = config.inner_dim
|
162 |
+
self.hidden_size = config.hidden_size
|
163 |
+
self.RoPE = config.RoPE
|
164 |
+
|
165 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
166 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
167 |
+
|
168 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
169 |
+
if mask is None:
|
170 |
+
return x
|
171 |
+
else:
|
172 |
+
if value == "-inf":
|
173 |
+
value = -1e12
|
174 |
+
elif value == "inf":
|
175 |
+
value = 1e12
|
176 |
+
assert axis > 0, "axis must be greater than 0"
|
177 |
+
for _ in range(axis - 1):
|
178 |
+
mask = torch.unsqueeze(mask, 1)
|
179 |
+
for _ in range(x.ndim - mask.ndim):
|
180 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
181 |
+
return x * mask + value * (1 - mask)
|
182 |
+
|
183 |
+
def add_mask_tril(self, logits, mask):
|
184 |
+
if mask.dtype != logits.dtype:
|
185 |
+
mask = mask.type(logits.dtype)
|
186 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
187 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
188 |
+
# 排除下三角
|
189 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
190 |
+
logits = logits - mask * 1e12
|
191 |
+
return logits
|
192 |
+
|
193 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
194 |
+
# with torch.no_grad():
|
195 |
+
context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
|
196 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
197 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
198 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
199 |
+
batch_size = input_ids.shape[0]
|
200 |
+
if self.RoPE:
|
201 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
202 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
203 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
204 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
205 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
206 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
207 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
208 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
209 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
210 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
211 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
212 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
213 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
214 |
+
loss = None
|
215 |
+
|
216 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
217 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
218 |
+
if labels is not None:
|
219 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
220 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
221 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
222 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
223 |
+
|
224 |
+
with torch.no_grad():
|
225 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
226 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
227 |
+
|
228 |
+
|
229 |
+
return GlobalPointerOutput(
|
230 |
+
loss=loss,
|
231 |
+
topk_probs=topk.values,
|
232 |
+
topk_indices=topk.indices
|
233 |
+
)
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
class RobertaForEffiGlobalPointer(RobertaPreTrainedModel):
|
238 |
+
def __init__(self, config):
|
239 |
+
# encodr: RoBerta-Large as encoder
|
240 |
+
# inner_dim: 64
|
241 |
+
# ent_type_size: ent_cls_num
|
242 |
+
super().__init__(config)
|
243 |
+
self.roberta = RobertaModel(config)
|
244 |
+
self.ent_type_size = config.ent_type_size
|
245 |
+
self.inner_dim = config.inner_dim
|
246 |
+
self.hidden_size = config.hidden_size
|
247 |
+
self.RoPE = config.RoPE
|
248 |
+
|
249 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
250 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
251 |
+
|
252 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
253 |
+
if mask is None:
|
254 |
+
return x
|
255 |
+
else:
|
256 |
+
if value == "-inf":
|
257 |
+
value = -1e12
|
258 |
+
elif value == "inf":
|
259 |
+
value = 1e12
|
260 |
+
assert axis > 0, "axis must be greater than 0"
|
261 |
+
for _ in range(axis - 1):
|
262 |
+
mask = torch.unsqueeze(mask, 1)
|
263 |
+
for _ in range(x.ndim - mask.ndim):
|
264 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
265 |
+
return x * mask + value * (1 - mask)
|
266 |
+
|
267 |
+
def add_mask_tril(self, logits, mask):
|
268 |
+
if mask.dtype != logits.dtype:
|
269 |
+
mask = mask.type(logits.dtype)
|
270 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
271 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
272 |
+
# 排除下三角
|
273 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
274 |
+
logits = logits - mask * 1e12
|
275 |
+
return logits
|
276 |
+
|
277 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
278 |
+
# with torch.no_grad():
|
279 |
+
context_outputs = self.roberta(input_ids, attention_mask, token_type_ids)
|
280 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
281 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
282 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
283 |
+
batch_size = input_ids.shape[0]
|
284 |
+
if self.RoPE:
|
285 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
286 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
287 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
288 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
289 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
290 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
291 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
292 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
293 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
294 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
295 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
296 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
297 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
298 |
+
loss = None
|
299 |
+
|
300 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
301 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
302 |
+
if labels is not None:
|
303 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
304 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
305 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
306 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
307 |
+
|
308 |
+
with torch.no_grad():
|
309 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
310 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
311 |
+
|
312 |
+
|
313 |
+
return GlobalPointerOutput(
|
314 |
+
loss=loss,
|
315 |
+
topk_probs=topk.values,
|
316 |
+
topk_indices=topk.indices
|
317 |
+
)
|
318 |
+
|
319 |
+
|
320 |
+
class RoformerForEffiGlobalPointer(RoFormerPreTrainedModel):
|
321 |
+
def __init__(self, config):
|
322 |
+
# encodr: RoBerta-Large as encoder
|
323 |
+
# inner_dim: 64
|
324 |
+
# ent_type_size: ent_cls_num
|
325 |
+
super().__init__(config)
|
326 |
+
self.roformer = RoFormerModel(config)
|
327 |
+
self.ent_type_size = config.ent_type_size
|
328 |
+
self.inner_dim = config.inner_dim
|
329 |
+
self.hidden_size = config.hidden_size
|
330 |
+
self.RoPE = config.RoPE
|
331 |
+
|
332 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
333 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
334 |
+
|
335 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
336 |
+
if mask is None:
|
337 |
+
return x
|
338 |
+
else:
|
339 |
+
if value == "-inf":
|
340 |
+
value = -1e12
|
341 |
+
elif value == "inf":
|
342 |
+
value = 1e12
|
343 |
+
assert axis > 0, "axis must be greater than 0"
|
344 |
+
for _ in range(axis - 1):
|
345 |
+
mask = torch.unsqueeze(mask, 1)
|
346 |
+
for _ in range(x.ndim - mask.ndim):
|
347 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
348 |
+
return x * mask + value * (1 - mask)
|
349 |
+
|
350 |
+
def add_mask_tril(self, logits, mask):
|
351 |
+
if mask.dtype != logits.dtype:
|
352 |
+
mask = mask.type(logits.dtype)
|
353 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
354 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
355 |
+
# 排除下三角
|
356 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
357 |
+
logits = logits - mask * 1e12
|
358 |
+
return logits
|
359 |
+
|
360 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
361 |
+
# with torch.no_grad():
|
362 |
+
context_outputs = self.roformer(input_ids, attention_mask, token_type_ids)
|
363 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
364 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
365 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
366 |
+
batch_size = input_ids.shape[0]
|
367 |
+
if self.RoPE:
|
368 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
369 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
370 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
371 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
372 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
373 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
374 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
375 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
376 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
377 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
378 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
379 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
380 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
381 |
+
loss = None
|
382 |
+
|
383 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
384 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
385 |
+
if labels is not None:
|
386 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
387 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
388 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
389 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
390 |
+
|
391 |
+
with torch.no_grad():
|
392 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
393 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
394 |
+
|
395 |
+
|
396 |
+
return GlobalPointerOutput(
|
397 |
+
loss=loss,
|
398 |
+
topk_probs=topk.values,
|
399 |
+
topk_indices=topk.indices
|
400 |
+
)
|
401 |
+
|
402 |
+
class MegatronForEffiGlobalPointer(MegatronBertPreTrainedModel):
|
403 |
+
def __init__(self, config):
|
404 |
+
# encodr: RoBerta-Large as encoder
|
405 |
+
# inner_dim: 64
|
406 |
+
# ent_type_size: ent_cls_num
|
407 |
+
super().__init__(config)
|
408 |
+
self.bert = MegatronBertModel(config)
|
409 |
+
self.ent_type_size = config.ent_type_size
|
410 |
+
self.inner_dim = config.inner_dim
|
411 |
+
self.hidden_size = config.hidden_size
|
412 |
+
self.RoPE = config.RoPE
|
413 |
+
|
414 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.inner_dim * 2)
|
415 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.ent_type_size * 2) # 原版的dense2是(inner_dim * 2, ent_type_size * 2)
|
416 |
+
|
417 |
+
def sequence_masking(self, x, mask, value="-inf", axis=None):
|
418 |
+
if mask is None:
|
419 |
+
return x
|
420 |
+
else:
|
421 |
+
if value == "-inf":
|
422 |
+
value = -1e12
|
423 |
+
elif value == "inf":
|
424 |
+
value = 1e12
|
425 |
+
assert axis > 0, "axis must be greater than 0"
|
426 |
+
for _ in range(axis - 1):
|
427 |
+
mask = torch.unsqueeze(mask, 1)
|
428 |
+
for _ in range(x.ndim - mask.ndim):
|
429 |
+
mask = torch.unsqueeze(mask, mask.ndim)
|
430 |
+
return x * mask + value * (1 - mask)
|
431 |
+
|
432 |
+
def add_mask_tril(self, logits, mask):
|
433 |
+
if mask.dtype != logits.dtype:
|
434 |
+
mask = mask.type(logits.dtype)
|
435 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 2)
|
436 |
+
logits = self.sequence_masking(logits, mask, "-inf", logits.ndim - 1)
|
437 |
+
# 排除下三角
|
438 |
+
mask = torch.tril(torch.ones_like(logits), diagonal=-1)
|
439 |
+
logits = logits - mask * 1e12
|
440 |
+
return logits
|
441 |
+
|
442 |
+
def forward(self, input_ids, attention_mask, token_type_ids, labels=None, short_labels=None):
|
443 |
+
# with torch.no_grad():
|
444 |
+
context_outputs = self.bert(input_ids, attention_mask, token_type_ids)
|
445 |
+
last_hidden_state = context_outputs.last_hidden_state # [bz, seq_len, hidden_dim]
|
446 |
+
outputs = self.dense_1(last_hidden_state) # [bz, seq_len, 2*inner_dim]
|
447 |
+
qw, kw = outputs[..., ::2], outputs[..., 1::2] # 从0,1开始间隔为2 最后一个纬度,从0开始,取奇数位置所有向量汇总
|
448 |
+
batch_size = input_ids.shape[0]
|
449 |
+
if self.RoPE:
|
450 |
+
pos = SinusoidalPositionEmbedding(self.inner_dim, "zero")(outputs)
|
451 |
+
cos_pos = pos[..., 1::2].repeat_interleave(2, dim=-1) # e.g. [0.34, 0.90] -> [0.34, 0.34, 0.90, 0.90]
|
452 |
+
sin_pos = pos[..., ::2].repeat_interleave(2, dim=-1)
|
453 |
+
qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], 3)
|
454 |
+
qw2 = torch.reshape(qw2, qw.shape)
|
455 |
+
qw = qw * cos_pos + qw2 * sin_pos
|
456 |
+
kw2 = torch.stack([-kw[..., 1::2], kw[..., ::2]], 3)
|
457 |
+
kw2 = torch.reshape(kw2, kw.shape)
|
458 |
+
kw = kw * cos_pos + kw2 * sin_pos
|
459 |
+
logits = torch.einsum("bmd,bnd->bmn", qw, kw) / self.inner_dim ** 0.5
|
460 |
+
bias = torch.einsum("bnh->bhn", self.dense_2(last_hidden_state)) / 2
|
461 |
+
logits = logits[:, None] + bias[:, ::2, None] + bias[:, 1::2, :, None] # logits[:, None] 增加一个维度
|
462 |
+
# logit_mask = self.add_mask_tril(logits, mask=attention_mask)
|
463 |
+
loss = None
|
464 |
+
|
465 |
+
mask = torch.triu(attention_mask.unsqueeze(2) * attention_mask.unsqueeze(1)) # 上三角矩阵
|
466 |
+
# mask = torch.where(mask > 0, 0.0, 1)
|
467 |
+
if labels is not None:
|
468 |
+
y_pred = logits - (1-mask.unsqueeze(1))*1e12
|
469 |
+
y_true = labels.view(input_ids.shape[0] * self.ent_type_size, -1)
|
470 |
+
y_pred = y_pred.view(input_ids.shape[0] * self.ent_type_size, -1)
|
471 |
+
loss = multilabel_categorical_crossentropy(y_pred, y_true)
|
472 |
+
|
473 |
+
with torch.no_grad():
|
474 |
+
prob = torch.sigmoid(logits) * mask.unsqueeze(1)
|
475 |
+
topk = torch.topk(prob.view(batch_size, self.ent_type_size, -1), 50, dim=-1)
|
476 |
+
|
477 |
+
|
478 |
+
return GlobalPointerOutput(
|
479 |
+
loss=loss,
|
480 |
+
topk_probs=topk.values,
|
481 |
+
topk_indices=topk.indices
|
482 |
+
)
|
models/span_extraction/span_for_ner.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel
|
5 |
+
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel
|
6 |
+
from transformers.models.albert.modeling_albert import AlbertPreTrainedModel, AlbertModel
|
7 |
+
from transformers.models.megatron_bert.modeling_megatron_bert import MegatronBertPreTrainedModel, MegatronBertModel
|
8 |
+
from models.basic_modules.linears import PoolerEndLogits, PoolerStartLogits
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from loss.focal_loss import FocalLoss
|
11 |
+
from loss.label_smoothing import LabelSmoothingCrossEntropy
|
12 |
+
|
13 |
+
class BertSpanForNer(BertPreTrainedModel):
|
14 |
+
def __init__(self, config,):
|
15 |
+
super(BertSpanForNer, self).__init__(config)
|
16 |
+
self.soft_label = config.soft_label
|
17 |
+
self.num_labels = config.num_labels
|
18 |
+
self.loss_type = config.loss_type
|
19 |
+
self.bert = BertModel(config)
|
20 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
21 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
22 |
+
if self.soft_label:
|
23 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
24 |
+
else:
|
25 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
26 |
+
self.init_weights()
|
27 |
+
|
28 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
29 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
30 |
+
sequence_output = outputs[0]
|
31 |
+
sequence_output = self.dropout(sequence_output)
|
32 |
+
start_logits = self.start_fc(sequence_output)
|
33 |
+
if start_positions is not None and self.training:
|
34 |
+
if self.soft_label:
|
35 |
+
batch_size = input_ids.size(0)
|
36 |
+
seq_len = input_ids.size(1)
|
37 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
38 |
+
label_logits.zero_()
|
39 |
+
label_logits = label_logits.to(input_ids.device)
|
40 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
41 |
+
else:
|
42 |
+
label_logits = start_positions.unsqueeze(2).float()
|
43 |
+
else:
|
44 |
+
label_logits = F.softmax(start_logits, -1)
|
45 |
+
if not self.soft_label:
|
46 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
47 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
48 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
49 |
+
|
50 |
+
if start_positions is not None and end_positions is not None:
|
51 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
52 |
+
if self.loss_type =="lsr":
|
53 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
54 |
+
elif self.loss_type == "focal":
|
55 |
+
loss_fct = FocalLoss()
|
56 |
+
else:
|
57 |
+
loss_fct = CrossEntropyLoss()
|
58 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
59 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
60 |
+
active_loss = attention_mask.view(-1) == 1
|
61 |
+
active_start_logits = start_logits[active_loss]
|
62 |
+
active_end_logits = end_logits[active_loss]
|
63 |
+
|
64 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
65 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
66 |
+
|
67 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
68 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
69 |
+
total_loss = (start_loss + end_loss) / 2
|
70 |
+
outputs = (total_loss,) + outputs
|
71 |
+
return outputs
|
72 |
+
|
73 |
+
class RobertaSpanForNer(RobertaPreTrainedModel):
|
74 |
+
def __init__(self, config,):
|
75 |
+
super(RobertaSpanForNer, self).__init__(config)
|
76 |
+
self.soft_label = config.soft_label
|
77 |
+
self.num_labels = config.num_labels
|
78 |
+
self.loss_type = config.loss_type
|
79 |
+
self.roberta = RobertaModel(config)
|
80 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
81 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
82 |
+
if self.soft_label:
|
83 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
84 |
+
else:
|
85 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
86 |
+
self.init_weights()
|
87 |
+
|
88 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
89 |
+
outputs = self.roberta(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
90 |
+
sequence_output = outputs[0]
|
91 |
+
sequence_output = self.dropout(sequence_output)
|
92 |
+
start_logits = self.start_fc(sequence_output)
|
93 |
+
if start_positions is not None and self.training:
|
94 |
+
if self.soft_label:
|
95 |
+
batch_size = input_ids.size(0)
|
96 |
+
seq_len = input_ids.size(1)
|
97 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
98 |
+
label_logits.zero_()
|
99 |
+
label_logits = label_logits.to(input_ids.device)
|
100 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
101 |
+
else:
|
102 |
+
label_logits = start_positions.unsqueeze(2).float()
|
103 |
+
else:
|
104 |
+
label_logits = F.softmax(start_logits, -1)
|
105 |
+
if not self.soft_label:
|
106 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
107 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
108 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
109 |
+
|
110 |
+
if start_positions is not None and end_positions is not None:
|
111 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
112 |
+
if self.loss_type =="lsr":
|
113 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
114 |
+
elif self.loss_type == "focal":
|
115 |
+
loss_fct = FocalLoss()
|
116 |
+
else:
|
117 |
+
loss_fct = CrossEntropyLoss()
|
118 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
119 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
120 |
+
active_loss = attention_mask.view(-1) == 1
|
121 |
+
active_start_logits = start_logits[active_loss]
|
122 |
+
active_end_logits = end_logits[active_loss]
|
123 |
+
|
124 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
125 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
126 |
+
|
127 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
128 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
129 |
+
total_loss = (start_loss + end_loss) / 2
|
130 |
+
outputs = (total_loss,) + outputs
|
131 |
+
return outputs
|
132 |
+
|
133 |
+
class AlbertSpanForNer(AlbertPreTrainedModel):
|
134 |
+
def __init__(self, config,):
|
135 |
+
super(AlbertSpanForNer, self).__init__(config)
|
136 |
+
self.soft_label = config.soft_label
|
137 |
+
self.num_labels = config.num_labels
|
138 |
+
self.loss_type = config.loss_type
|
139 |
+
self.bert = AlbertModel(config)
|
140 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
141 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
142 |
+
if self.soft_label:
|
143 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
144 |
+
else:
|
145 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
146 |
+
self.init_weights()
|
147 |
+
|
148 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
149 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
150 |
+
sequence_output = outputs[0]
|
151 |
+
sequence_output = self.dropout(sequence_output)
|
152 |
+
start_logits = self.start_fc(sequence_output)
|
153 |
+
if start_positions is not None and self.training:
|
154 |
+
if self.soft_label:
|
155 |
+
batch_size = input_ids.size(0)
|
156 |
+
seq_len = input_ids.size(1)
|
157 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
158 |
+
label_logits.zero_()
|
159 |
+
label_logits = label_logits.to(input_ids.device)
|
160 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
161 |
+
else:
|
162 |
+
label_logits = start_positions.unsqueeze(2).float()
|
163 |
+
else:
|
164 |
+
label_logits = F.softmax(start_logits, -1)
|
165 |
+
if not self.soft_label:
|
166 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
167 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
168 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
169 |
+
|
170 |
+
if start_positions is not None and end_positions is not None:
|
171 |
+
assert self.loss_type in ["lsr","focal","ce"]
|
172 |
+
if self.loss_type =="lsr":
|
173 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
174 |
+
elif self.loss_type == "focal":
|
175 |
+
loss_fct = FocalLoss()
|
176 |
+
else:
|
177 |
+
loss_fct = CrossEntropyLoss()
|
178 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
179 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
180 |
+
active_loss = attention_mask.view(-1) == 1
|
181 |
+
active_start_logits = start_logits[active_loss]
|
182 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
183 |
+
active_end_logits = end_logits[active_loss]
|
184 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
185 |
+
|
186 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
187 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
188 |
+
total_loss = (start_loss + end_loss) / 2
|
189 |
+
outputs = (total_loss,) + outputs
|
190 |
+
return outputs
|
191 |
+
|
192 |
+
class MegatronBertSpanForNer(MegatronBertPreTrainedModel):
|
193 |
+
def __init__(self, config,):
|
194 |
+
super(BertSpanForNer, self).__init__(config)
|
195 |
+
# self.soft_label = config.soft_label
|
196 |
+
self.soft_label = True
|
197 |
+
self.num_labels = config.num_labels
|
198 |
+
# self.loss_type = config.loss_type
|
199 |
+
self.loss_type = "ce"
|
200 |
+
self.bert = MegatronBertModel(config)
|
201 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
202 |
+
self.start_fc = PoolerStartLogits(config.hidden_size, self.num_labels)
|
203 |
+
if self.soft_label:
|
204 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + self.num_labels, self.num_labels)
|
205 |
+
else:
|
206 |
+
self.end_fc = PoolerEndLogits(config.hidden_size + 1, self.num_labels)
|
207 |
+
self.init_weights()
|
208 |
+
|
209 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,end_positions=None):
|
210 |
+
outputs = self.bert(input_ids = input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)
|
211 |
+
sequence_output = outputs[0]
|
212 |
+
sequence_output = self.dropout(sequence_output)
|
213 |
+
start_logits = self.start_fc(sequence_output)
|
214 |
+
if start_positions is not None and self.training:
|
215 |
+
if self.soft_label:
|
216 |
+
batch_size = input_ids.size(0)
|
217 |
+
seq_len = input_ids.size(1)
|
218 |
+
label_logits = torch.FloatTensor(batch_size, seq_len, self.num_labels)
|
219 |
+
label_logits.zero_()
|
220 |
+
label_logits = label_logits.to(input_ids.device)
|
221 |
+
label_logits.scatter_(2, start_positions.unsqueeze(2), 1)
|
222 |
+
else:
|
223 |
+
label_logits = start_positions.unsqueeze(2).float()
|
224 |
+
else:
|
225 |
+
label_logits = F.softmax(start_logits, -1)
|
226 |
+
if not self.soft_label:
|
227 |
+
label_logits = torch.argmax(label_logits, -1).unsqueeze(2).float()
|
228 |
+
end_logits = self.end_fc(sequence_output, label_logits)
|
229 |
+
outputs = (start_logits, end_logits,) + outputs[2:]
|
230 |
+
|
231 |
+
if start_positions is not None and end_positions is not None:
|
232 |
+
assert self.loss_type in ["lsr", "focal", "ce"]
|
233 |
+
if self.loss_type =="lsr":
|
234 |
+
loss_fct = LabelSmoothingCrossEntropy()
|
235 |
+
elif self.loss_type == "focal":
|
236 |
+
loss_fct = FocalLoss()
|
237 |
+
else:
|
238 |
+
loss_fct = CrossEntropyLoss()
|
239 |
+
start_logits = start_logits.view(-1, self.num_labels)
|
240 |
+
end_logits = end_logits.view(-1, self.num_labels)
|
241 |
+
active_loss = attention_mask.view(-1) == 1
|
242 |
+
active_start_logits = start_logits[active_loss]
|
243 |
+
active_end_logits = end_logits[active_loss]
|
244 |
+
|
245 |
+
active_start_labels = start_positions.view(-1)[active_loss]
|
246 |
+
active_end_labels = end_positions.view(-1)[active_loss]
|
247 |
+
|
248 |
+
start_loss = loss_fct(active_start_logits, active_start_labels)
|
249 |
+
end_loss = loss_fct(active_end_logits, active_end_labels)
|
250 |
+
total_loss = (start_loss + end_loss) / 2
|
251 |
+
outputs = (total_loss,) + outputs
|
252 |
+
return outputs
|