Spaces:
Runtime error
Runtime error
DeepLearning101
commited on
Commit
•
b0ebb46
1
Parent(s):
45311fe
Upload 4 files
Browse files
models/sequence_classification/causal_prompt_cls.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import transformers
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import numpy as np
|
8 |
+
from typing import Optional, Tuple, Union
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from transformers import AutoModelForCausalLM
|
11 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
12 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel, GPT2Model, GPT2LMHeadModel
|
13 |
+
from transformers.modeling_outputs import ModelOutput
|
14 |
+
from tools.runner_utils.log_util import logging
|
15 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
freezer = ParameterFreeze()
|
19 |
+
|
20 |
+
|
21 |
+
"""
|
22 |
+
Function: Use Causal LM to prompt for cls
|
23 |
+
Notes:
|
24 |
+
- For classification, the model only calculate the loss at the position of label, the other position is set as -100
|
25 |
+
- During inference, generate result at the last position.
|
26 |
+
"""
|
27 |
+
class PromptGPT2ForSequenceClassification(GPT2PreTrainedModel):
|
28 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
29 |
+
|
30 |
+
def __init__(self, config):
|
31 |
+
super().__init__(config)
|
32 |
+
self.transformer = GPT2Model(config)
|
33 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
34 |
+
|
35 |
+
if self.config.use_freezing:
|
36 |
+
self.transformer = freezer.freeze_lm(self.transformer)
|
37 |
+
|
38 |
+
# Model parallel
|
39 |
+
self.model_parallel = False
|
40 |
+
self.device_map = None
|
41 |
+
|
42 |
+
# These attributes should be assigned once the model is initialized
|
43 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.transformer.device)
|
44 |
+
|
45 |
+
# Initialize weights and apply final processing
|
46 |
+
self.post_init()
|
47 |
+
|
48 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
49 |
+
if use_freezing:
|
50 |
+
self.bert = freezer.freeze_lm(self.bert)
|
51 |
+
else:
|
52 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
53 |
+
|
54 |
+
def get_output_embeddings(self):
|
55 |
+
return self.lm_head
|
56 |
+
|
57 |
+
def set_output_embeddings(self, new_embeddings):
|
58 |
+
self.lm_head = new_embeddings
|
59 |
+
|
60 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
61 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
62 |
+
# only last token for inputs_ids if past is defined in kwargs
|
63 |
+
if past:
|
64 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
65 |
+
if token_type_ids is not None:
|
66 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
67 |
+
|
68 |
+
attention_mask = kwargs.get("attention_mask", None)
|
69 |
+
position_ids = kwargs.get("position_ids", None)
|
70 |
+
|
71 |
+
if attention_mask is not None and position_ids is None:
|
72 |
+
# create position_ids on the fly for batch generation
|
73 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
74 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
75 |
+
if past:
|
76 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
77 |
+
else:
|
78 |
+
position_ids = None
|
79 |
+
return {
|
80 |
+
"input_ids": input_ids,
|
81 |
+
"past_key_values": past,
|
82 |
+
"use_cache": kwargs.get("use_cache"),
|
83 |
+
"position_ids": position_ids,
|
84 |
+
"attention_mask": attention_mask,
|
85 |
+
"token_type_ids": token_type_ids,
|
86 |
+
}
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
input_ids: Optional[torch.LongTensor] = None,
|
91 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
92 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
93 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
94 |
+
position_ids: Optional[torch.LongTensor] = None,
|
95 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
96 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
97 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
98 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
99 |
+
labels: Optional[torch.LongTensor] = None,
|
100 |
+
use_cache: Optional[bool] = None,
|
101 |
+
output_attentions: Optional[bool] = None,
|
102 |
+
output_hidden_states: Optional[bool] = None,
|
103 |
+
return_dict: Optional[bool] = None,
|
104 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
105 |
+
r"""
|
106 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
107 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
108 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
109 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
110 |
+
"""
|
111 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
112 |
+
|
113 |
+
transformer_outputs = self.transformer(
|
114 |
+
input_ids,
|
115 |
+
past_key_values=past_key_values,
|
116 |
+
attention_mask=attention_mask,
|
117 |
+
token_type_ids=token_type_ids,
|
118 |
+
position_ids=position_ids,
|
119 |
+
head_mask=head_mask,
|
120 |
+
inputs_embeds=inputs_embeds,
|
121 |
+
encoder_hidden_states=encoder_hidden_states,
|
122 |
+
encoder_attention_mask=encoder_attention_mask,
|
123 |
+
use_cache=use_cache,
|
124 |
+
output_attentions=output_attentions,
|
125 |
+
output_hidden_states=output_hidden_states,
|
126 |
+
return_dict=return_dict,
|
127 |
+
)
|
128 |
+
hidden_states = transformer_outputs[0]
|
129 |
+
|
130 |
+
# Set device for model parallelism
|
131 |
+
if self.model_parallel:
|
132 |
+
torch.cuda.set_device(self.transformer.first_device)
|
133 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
134 |
+
|
135 |
+
lm_logits = self.lm_head(hidden_states)
|
136 |
+
|
137 |
+
loss = None
|
138 |
+
if labels is not None:
|
139 |
+
# Shift so that tokens < n predict n
|
140 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
141 |
+
shift_labels = labels[..., 1:].contiguous()
|
142 |
+
# print("shift_labels=", shift_labels)
|
143 |
+
# Flatten the tokens
|
144 |
+
loss_fct = CrossEntropyLoss()
|
145 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
146 |
+
|
147 |
+
if not return_dict:
|
148 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
149 |
+
return ((loss,) + output) if loss is not None else output
|
150 |
+
|
151 |
+
return CausalLMOutputWithCrossAttentions(
|
152 |
+
loss=loss,
|
153 |
+
logits=lm_logits,
|
154 |
+
past_key_values=transformer_outputs.past_key_values,
|
155 |
+
hidden_states=transformer_outputs.hidden_states,
|
156 |
+
attentions=transformer_outputs.attentions,
|
157 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
158 |
+
)
|
159 |
+
|
160 |
+
@staticmethod
|
161 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
162 |
+
"""
|
163 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
164 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
165 |
+
beam_idx at every generation step.
|
166 |
+
"""
|
167 |
+
return tuple(
|
168 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
169 |
+
for layer_past in past
|
170 |
+
)
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
# if __name__ == "__main__":
|
176 |
+
# from transformers import GPT2Tokenizer
|
177 |
+
# tokenizer = GPT2Tokenizer.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
178 |
+
# model = GPT2ForInContextLearning.from_pretrained("/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2")
|
179 |
+
|
180 |
+
# # In-Context Learning for classification
|
181 |
+
# # input_text = "The capital city of China is Beijing. \n\n The capital city of Japan is Tokyo. \n\n The capital city of America is"
|
182 |
+
# input_text = "What are follows emotions? \n\n Input: The book is very nice.\n Output: Great. \n\n Input: I never eat chocolate!\n Output:"
|
183 |
+
# # input_text = "This film is wonderful.\n Great."
|
184 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
185 |
+
# inputs = tokenizer(input_text, return_tensors="pt")
|
186 |
+
# input_len = inputs["input_ids"].shape[-1]
|
187 |
+
# gen_output = model.generate(**inputs, max_length=input_len + 10)
|
188 |
+
# gen_result = tokenizer.decode(gen_output[0])
|
189 |
+
# print("classification result:\n", gen_result)
|
190 |
+
|
191 |
+
# # In-Context Learning for generation
|
192 |
+
# input_text = "Please tell me what is the transformer? "
|
193 |
+
# # input_text = "This film is wonderful.\n Great."
|
194 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
195 |
+
# inputs = tokenizer(input_text, return_tensors="pt")
|
196 |
+
# input_len = inputs["input_ids"].shape[-1]
|
197 |
+
# gen_output = model.generate(**inputs, max_length=input_len + 60)
|
198 |
+
# gen_result = tokenizer.decode(gen_output[0])
|
199 |
+
# print("generation result:\n", gen_result)
|
models/sequence_classification/classification.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2021/8/19 10:54 上午
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : classification.py
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
8 |
+
from transformers import RobertaModel
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.models.electra import ElectraModel
|
11 |
+
from transformers.models.roformer import RoFormerModel
|
12 |
+
from transformers.models.albert import AlbertModel
|
13 |
+
from transformers.models.bert import BertModel, BertPreTrainedModel
|
14 |
+
from transformers.models.deberta_v2 import DebertaV2Model, DebertaV2PreTrainedModel
|
15 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
16 |
+
from transformers.models.roberta import RobertaPreTrainedModel
|
17 |
+
from transformers.models.bert.modeling_bert import BertForSequenceClassification
|
18 |
+
from transformers.models.megatron_bert import MegatronBertPreTrainedModel, MegatronBertModel
|
19 |
+
|
20 |
+
PRETRAINED_MODEL_MAP = {
|
21 |
+
"bert": BertPreTrainedModel,
|
22 |
+
"deberta-v2": DebertaV2PreTrainedModel,
|
23 |
+
"roberta": RobertaPreTrainedModel,
|
24 |
+
"erlangshen": MegatronBertPreTrainedModel
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class BertPooler(nn.Module):
|
29 |
+
def __init__(self, hidden_size, hidden_act, hidden_dropout_prob):
|
30 |
+
super().__init__()
|
31 |
+
self.dense = nn.Linear(hidden_size, hidden_size)
|
32 |
+
# self.activation = nn.Tanh()
|
33 |
+
self.activation = ACT2FN[hidden_act]
|
34 |
+
# self.dropout = nn.Dropout(hidden_dropout_prob)
|
35 |
+
|
36 |
+
def forward(self, features):
|
37 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
38 |
+
# x = self.dropout(x)
|
39 |
+
x = self.dense(x)
|
40 |
+
x = self.activation(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
def build_cls_model(config):
|
45 |
+
BaseClass = PRETRAINED_MODEL_MAP[config.model_type]
|
46 |
+
|
47 |
+
class BertForClassification(BaseClass):
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
super().__init__(config)
|
51 |
+
self.num_labels = config.num_labels
|
52 |
+
self.config = config
|
53 |
+
self.model_type = config.model_type
|
54 |
+
self.problem_type = config.problem_type
|
55 |
+
|
56 |
+
if self.model_type == "bert":
|
57 |
+
self.bert = BertModel(config)
|
58 |
+
elif self.model_type == "albert":
|
59 |
+
self.albert = AlbertModel(config)
|
60 |
+
# elif self.model_type == "chinesebert":
|
61 |
+
# self.bert = ChineseBertModel(config)
|
62 |
+
elif self.model_type == "roformer":
|
63 |
+
self.roformer = RoFormerModel(config)
|
64 |
+
elif self.model_type == "electra":
|
65 |
+
self.electra = ElectraModel(config)
|
66 |
+
elif self.model_type == "deberta-v2":
|
67 |
+
self.deberta = DebertaV2Model(config)
|
68 |
+
elif self.model_type == "roberta":
|
69 |
+
self.roberta = RobertaModel(config)
|
70 |
+
elif self.model_type == "erlangshen":
|
71 |
+
self.bert = MegatronBertModel(config)
|
72 |
+
self.pooler = BertPooler(config.hidden_size, config.hidden_act, config.hidden_dropout_prob)
|
73 |
+
if hasattr(config, "cls_dropout_rate"):
|
74 |
+
cls_dropout_rate = config.cls_dropout_rate
|
75 |
+
else:
|
76 |
+
cls_dropout_rate = config.hidden_dropout_prob
|
77 |
+
self.dropout = nn.Dropout(cls_dropout_rate)
|
78 |
+
add_feature_dims = config.additional_feature_dims if hasattr(config, "additional_feature_dims") else 0
|
79 |
+
# self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
80 |
+
cls_hidden = config.hidden_size + add_feature_dims
|
81 |
+
if hasattr(config, "is_relation_task"):
|
82 |
+
cls_hidden = config.hidden_size * 2
|
83 |
+
self.classifier = nn.Linear(cls_hidden, config.num_labels)
|
84 |
+
|
85 |
+
self.init_weights()
|
86 |
+
|
87 |
+
def forward(
|
88 |
+
self,
|
89 |
+
input_ids=None,
|
90 |
+
attention_mask=None,
|
91 |
+
token_type_ids=None,
|
92 |
+
position_ids=None,
|
93 |
+
head_mask=None,
|
94 |
+
inputs_embeds=None,
|
95 |
+
labels=None,
|
96 |
+
output_attentions=None,
|
97 |
+
output_hidden_states=None,
|
98 |
+
return_dict=None,
|
99 |
+
pseudo_label=None,
|
100 |
+
pinyin_ids=None,
|
101 |
+
additional_features=None
|
102 |
+
):
|
103 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
104 |
+
logits, outputs = None, None
|
105 |
+
inputs = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "position_ids": position_ids,
|
106 |
+
"head_mask": head_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions,
|
107 |
+
"output_hidden_states": output_hidden_states, "return_dict": return_dict, "pinyin_ids": pinyin_ids}
|
108 |
+
inputs = {k: v for k, v in inputs.items() if v is not None}
|
109 |
+
if self.model_type == "chinesebert":
|
110 |
+
outputs = self.bert(**inputs)
|
111 |
+
elif self.model_type == "bert":
|
112 |
+
outputs = self.bert(**inputs)
|
113 |
+
elif self.model_type == "albert":
|
114 |
+
outputs = self.albert(**inputs)
|
115 |
+
elif self.model_type == "electra":
|
116 |
+
outputs = self.electra(**inputs)
|
117 |
+
elif self.model_type == "roformer":
|
118 |
+
outputs = self.roformer(**inputs)
|
119 |
+
elif self.model_type == "deberta-v2":
|
120 |
+
outputs = self.deberta(**inputs)
|
121 |
+
elif self.model_type == "roberta":
|
122 |
+
outputs = self.roberta(**inputs)
|
123 |
+
elif self.model_type == "erlangshen":
|
124 |
+
outputs = self.bert(**inputs)
|
125 |
+
|
126 |
+
if hasattr(self.config, "is_relation_task"):
|
127 |
+
w = torch.logical_and(input_ids >= min(self.config.start_token_ids), input_ids <= max(self.config.start_token_ids))
|
128 |
+
start_index = w.nonzero()[:, 1].view(-1, 2)
|
129 |
+
# <start_entity> + <end_entity> 进分类
|
130 |
+
pooler_output = torch.cat([torch.cat([x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y in zip(outputs.last_hidden_state, start_index)])
|
131 |
+
# [CLS] + <start_entity> + <end_entity> 进分类
|
132 |
+
# pooler_output = torch.cat([torch.cat([z, x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y, z in zip(outputs.last_hidden_state, start_index, outputs.last_hidden_state[:, 0])])
|
133 |
+
|
134 |
+
elif "pooler_output" in outputs:
|
135 |
+
pooler_output = outputs.pooler_output
|
136 |
+
else:
|
137 |
+
pooler_output = self.pooler(outputs[0])
|
138 |
+
pooler_output = self.dropout(pooler_output)
|
139 |
+
# pooler_output = self.LayerNorm(pooler_output)
|
140 |
+
if additional_features is not None:
|
141 |
+
pooler_output = torch.cat((pooler_output, additional_features), dim=1)
|
142 |
+
logits = self.classifier(pooler_output)
|
143 |
+
|
144 |
+
loss = None
|
145 |
+
if labels is not None:
|
146 |
+
if self.problem_type == "regression":
|
147 |
+
loss_fct = MSELoss()
|
148 |
+
if self.num_labels == 1:
|
149 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
150 |
+
else:
|
151 |
+
loss = loss_fct(logits, labels)
|
152 |
+
elif self.problem_type == "multi_label_classification":
|
153 |
+
loss_fct = BCEWithLogitsLoss()
|
154 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.float().view(-1, self.num_labels))
|
155 |
+
# elif self.problem_type in ["single_label_classification"] or hasattr(self.config, "is_relation_task"):
|
156 |
+
else:
|
157 |
+
# loss_fct = FocalLoss()
|
158 |
+
loss_fct = CrossEntropyLoss()
|
159 |
+
# 伪标签
|
160 |
+
if pseudo_label is not None:
|
161 |
+
train_logits, pseudo_logits = logits[pseudo_label > 0.9], logits[pseudo_label < 0.1]
|
162 |
+
train_labels, pseudo_labels = labels[pseudo_label > 0.9], labels[pseudo_label < 0.1]
|
163 |
+
train_loss = loss_fct(train_logits.view(-1, self.num_labels), train_labels.view(-1)) if train_labels.nelement() else 0
|
164 |
+
pseudo_loss = loss_fct(pseudo_logits.view(-1, self.num_labels), pseudo_labels.view(-1)) if pseudo_labels.nelement() else 0
|
165 |
+
loss = 0.9 * train_loss + 0.1 * pseudo_loss
|
166 |
+
else:
|
167 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
168 |
+
return SequenceClassifierOutput(
|
169 |
+
loss=loss,
|
170 |
+
logits=logits,
|
171 |
+
hidden_states=outputs.hidden_states,
|
172 |
+
attentions=outputs.attentions,
|
173 |
+
)
|
174 |
+
|
175 |
+
return BertForClassification
|
models/sequence_classification/head_cls.py
ADDED
@@ -0,0 +1,1284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Head Tuning with Prefix / Adapter
|
3 |
+
"""
|
4 |
+
from typing import Optional, List, Union, Tuple
|
5 |
+
import torch
|
6 |
+
from torch._C import NoopLogger
|
7 |
+
import torch.nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
11 |
+
|
12 |
+
from transformers import BertModel, BertPreTrainedModel
|
13 |
+
from transformers import RobertaModel, RobertaPreTrainedModel
|
14 |
+
from transformers.models.deberta.modeling_deberta import DebertaModel, DebertaPreTrainedModel, ContextPooler, StableDropout
|
15 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2PreTrainedModel
|
16 |
+
from transformers.models.bart.modeling_bart import BartPretrainedModel, BartClassificationHead, BartModel
|
17 |
+
from transformers.models.roberta.modeling_roberta import RobertaClassificationHead
|
18 |
+
from transformers.models.bart.configuration_bart import BartConfig
|
19 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, Seq2SeqSequenceClassifierOutput, SequenceClassifierOutputWithPast
|
20 |
+
|
21 |
+
from models.basic_modules.prefix_encoder import PrefixEncoder
|
22 |
+
|
23 |
+
from models.basic_modules.adapter import BertAdaModel, RobertaAdaModel, init_adapter
|
24 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
25 |
+
|
26 |
+
from tools.runner_utils.log_util import logging
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
freezer = ParameterFreeze()
|
31 |
+
|
32 |
+
## ======== BERT ========
|
33 |
+
|
34 |
+
# Vanilla Fine-tuning For BERT
|
35 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
36 |
+
def __init__(self, config):
|
37 |
+
super().__init__(config)
|
38 |
+
self.num_labels = config.num_labels
|
39 |
+
self.config = config
|
40 |
+
|
41 |
+
self.bert = BertModel(config)
|
42 |
+
if self.config.use_freezing:
|
43 |
+
self.bert = freezer.freeze_lm(self.bert)
|
44 |
+
|
45 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
46 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
47 |
+
|
48 |
+
self.init_weights()
|
49 |
+
|
50 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
51 |
+
if use_freezing:
|
52 |
+
self.bert = freezer.freeze_lm(self.bert)
|
53 |
+
else:
|
54 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
input_ids=None,
|
59 |
+
attention_mask=None,
|
60 |
+
token_type_ids=None,
|
61 |
+
position_ids=None,
|
62 |
+
head_mask=None,
|
63 |
+
inputs_embeds=None,
|
64 |
+
labels=None,
|
65 |
+
output_attentions=None,
|
66 |
+
output_hidden_states=None,
|
67 |
+
return_dict=None,
|
68 |
+
):
|
69 |
+
r"""
|
70 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
71 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
72 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
73 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
74 |
+
"""
|
75 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
76 |
+
|
77 |
+
# print("input_ids.shape=", input_ids.shape) # e.g., [8, 128]
|
78 |
+
# print("attention_mask.shape=", attention_mask.shape) # e.g., [8, 128]
|
79 |
+
# print("token_type_ids.shape=", token_type_ids.shape) # e.g., [8, 128]
|
80 |
+
|
81 |
+
outputs = self.bert(
|
82 |
+
input_ids,
|
83 |
+
attention_mask=attention_mask,
|
84 |
+
token_type_ids=token_type_ids,
|
85 |
+
position_ids=position_ids,
|
86 |
+
head_mask=head_mask,
|
87 |
+
inputs_embeds=inputs_embeds,
|
88 |
+
output_attentions=output_attentions,
|
89 |
+
output_hidden_states=output_hidden_states,
|
90 |
+
return_dict=return_dict,
|
91 |
+
)
|
92 |
+
|
93 |
+
pooled_output = outputs[1]
|
94 |
+
|
95 |
+
pooled_output = self.dropout(pooled_output)
|
96 |
+
logits = self.classifier(pooled_output)
|
97 |
+
|
98 |
+
loss = None
|
99 |
+
if labels is not None:
|
100 |
+
if self.config.problem_type is None:
|
101 |
+
if self.num_labels == 1:
|
102 |
+
self.config.problem_type = "regression"
|
103 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
104 |
+
self.config.problem_type = "single_label_classification"
|
105 |
+
else:
|
106 |
+
self.config.problem_type = "multi_label_classification"
|
107 |
+
|
108 |
+
if self.config.problem_type == "regression":
|
109 |
+
loss_fct = MSELoss()
|
110 |
+
if self.num_labels == 1:
|
111 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
112 |
+
else:
|
113 |
+
loss = loss_fct(logits, labels)
|
114 |
+
elif self.config.problem_type == "single_label_classification":
|
115 |
+
loss_fct = CrossEntropyLoss()
|
116 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
117 |
+
elif self.config.problem_type == "multi_label_classification":
|
118 |
+
loss_fct = BCEWithLogitsLoss()
|
119 |
+
loss = loss_fct(logits, labels)
|
120 |
+
if not return_dict:
|
121 |
+
output = (logits,) + outputs[2:]
|
122 |
+
return ((loss,) + output) if loss is not None else output
|
123 |
+
|
124 |
+
return SequenceClassifierOutput(
|
125 |
+
loss=loss,
|
126 |
+
logits=logits,
|
127 |
+
hidden_states=outputs.hidden_states,
|
128 |
+
attentions=outputs.attentions,
|
129 |
+
)
|
130 |
+
|
131 |
+
# Prefix-tuning For BERT
|
132 |
+
class BertPrefixForSequenceClassification(BertPreTrainedModel):
|
133 |
+
def __init__(self, config):
|
134 |
+
super().__init__(config)
|
135 |
+
self.num_labels = config.num_labels
|
136 |
+
self.config = config
|
137 |
+
self.bert = BertModel(config)
|
138 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
139 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
140 |
+
|
141 |
+
# for param in self.bert.parameters():
|
142 |
+
# param.requires_grad = False
|
143 |
+
|
144 |
+
if self.config.use_freezing:
|
145 |
+
self.bert = freezer.freeze_lm(self.bert)
|
146 |
+
|
147 |
+
self.pre_seq_len = config.pre_seq_len
|
148 |
+
self.n_layer = config.num_hidden_layers
|
149 |
+
self.n_head = config.num_attention_heads
|
150 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
151 |
+
|
152 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
153 |
+
|
154 |
+
self.prefix_encoder = PrefixEncoder(config)
|
155 |
+
|
156 |
+
bert_param = 0
|
157 |
+
for name, param in self.bert.named_parameters():
|
158 |
+
bert_param += param.numel()
|
159 |
+
all_param = 0
|
160 |
+
for name, param in self.named_parameters():
|
161 |
+
all_param += param.numel()
|
162 |
+
total_param = all_param - bert_param
|
163 |
+
print("total param is {}".format(total_param)) # 9860105
|
164 |
+
|
165 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
166 |
+
if use_freezing:
|
167 |
+
self.bert = freezer.freeze_lm(self.bert)
|
168 |
+
else:
|
169 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
170 |
+
|
171 |
+
def get_prompt(self, batch_size):
|
172 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
173 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
174 |
+
# bsz, seqlen, _ = past_key_values.shape
|
175 |
+
past_key_values = past_key_values.view(
|
176 |
+
batch_size,
|
177 |
+
self.pre_seq_len,
|
178 |
+
self.n_layer * 2,
|
179 |
+
self.n_head,
|
180 |
+
self.n_embd
|
181 |
+
)
|
182 |
+
past_key_values = self.dropout(past_key_values)
|
183 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
184 |
+
return past_key_values
|
185 |
+
|
186 |
+
def forward(
|
187 |
+
self,
|
188 |
+
input_ids=None,
|
189 |
+
attention_mask=None,
|
190 |
+
token_type_ids=None,
|
191 |
+
position_ids=None,
|
192 |
+
head_mask=None,
|
193 |
+
inputs_embeds=None,
|
194 |
+
labels=None,
|
195 |
+
output_attentions=None,
|
196 |
+
output_hidden_states=None,
|
197 |
+
return_dict=None,
|
198 |
+
):
|
199 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
200 |
+
|
201 |
+
# print("input_ids.shape=", input_ids.shape) # e.g., [8, 128]
|
202 |
+
# print("attention_mask.shape=", attention_mask.shape) # e.g., [8, 128]
|
203 |
+
# print("token_type_ids.shape=", token_type_ids.shape) # e.g., [8, 128]
|
204 |
+
|
205 |
+
batch_size = input_ids.shape[0]
|
206 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
207 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
208 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
209 |
+
|
210 |
+
if position_ids is None:
|
211 |
+
position_ids = torch.tensor([i for i in range(input_ids.shape[-1])]).expand(batch_size, -1).to(self.bert.device)
|
212 |
+
|
213 |
+
outputs = self.bert(
|
214 |
+
input_ids,
|
215 |
+
attention_mask=attention_mask,
|
216 |
+
token_type_ids=token_type_ids,
|
217 |
+
position_ids=position_ids,
|
218 |
+
head_mask=head_mask,
|
219 |
+
inputs_embeds=inputs_embeds,
|
220 |
+
output_attentions=output_attentions,
|
221 |
+
output_hidden_states=output_hidden_states,
|
222 |
+
return_dict=return_dict,
|
223 |
+
past_key_values=past_key_values,
|
224 |
+
)
|
225 |
+
|
226 |
+
pooled_output = outputs[1]
|
227 |
+
|
228 |
+
pooled_output = self.dropout(pooled_output)
|
229 |
+
logits = self.classifier(pooled_output)
|
230 |
+
|
231 |
+
loss = None
|
232 |
+
if labels is not None:
|
233 |
+
if self.config.problem_type is None:
|
234 |
+
if self.num_labels == 1:
|
235 |
+
self.config.problem_type = "regression"
|
236 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
237 |
+
self.config.problem_type = "single_label_classification"
|
238 |
+
else:
|
239 |
+
self.config.problem_type = "multi_label_classification"
|
240 |
+
|
241 |
+
if self.config.problem_type == "regression":
|
242 |
+
loss_fct = MSELoss()
|
243 |
+
if self.num_labels == 1:
|
244 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
245 |
+
else:
|
246 |
+
loss = loss_fct(logits, labels)
|
247 |
+
elif self.config.problem_type == "single_label_classification":
|
248 |
+
loss_fct = CrossEntropyLoss()
|
249 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
250 |
+
elif self.config.problem_type == "multi_label_classification":
|
251 |
+
loss_fct = BCEWithLogitsLoss()
|
252 |
+
loss = loss_fct(logits, labels)
|
253 |
+
if not return_dict:
|
254 |
+
output = (logits,) + outputs[2:]
|
255 |
+
return ((loss,) + output) if loss is not None else output
|
256 |
+
|
257 |
+
return SequenceClassifierOutput(
|
258 |
+
loss=loss,
|
259 |
+
logits=logits,
|
260 |
+
hidden_states=outputs.hidden_states,
|
261 |
+
attentions=outputs.attentions,
|
262 |
+
)
|
263 |
+
|
264 |
+
|
265 |
+
# Prompt-tuning For BERT
|
266 |
+
class BertPtuningForSequenceClassification(BertPreTrainedModel):
|
267 |
+
def __init__(self, config):
|
268 |
+
super().__init__(config)
|
269 |
+
self.num_labels = config.num_labels
|
270 |
+
self.bert = BertModel(config)
|
271 |
+
self.embeddings = self.bert.embeddings
|
272 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
273 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
274 |
+
|
275 |
+
# for param in self.bert.parameters():
|
276 |
+
# param.requires_grad = False
|
277 |
+
|
278 |
+
if self.config.use_freezing:
|
279 |
+
self.bert = freezer.freeze_lm(self.bert)
|
280 |
+
|
281 |
+
self.pre_seq_len = config.pre_seq_len
|
282 |
+
self.n_layer = config.num_hidden_layers
|
283 |
+
self.n_head = config.num_attention_heads
|
284 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
285 |
+
|
286 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
287 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
288 |
+
|
289 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
290 |
+
if use_freezing:
|
291 |
+
self.bert = freezer.freeze_lm(self.bert)
|
292 |
+
else:
|
293 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
294 |
+
|
295 |
+
def get_prompt(self, batch_size):
|
296 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
297 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
298 |
+
return prompts
|
299 |
+
|
300 |
+
def forward(
|
301 |
+
self,
|
302 |
+
input_ids=None,
|
303 |
+
attention_mask=None,
|
304 |
+
token_type_ids=None,
|
305 |
+
position_ids=None,
|
306 |
+
head_mask=None,
|
307 |
+
inputs_embeds=None,
|
308 |
+
labels=None,
|
309 |
+
output_attentions=None,
|
310 |
+
output_hidden_states=None,
|
311 |
+
return_dict=None,
|
312 |
+
):
|
313 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
314 |
+
|
315 |
+
batch_size = input_ids.shape[0]
|
316 |
+
raw_embedding = self.embeddings(
|
317 |
+
input_ids=input_ids,
|
318 |
+
position_ids=position_ids,
|
319 |
+
token_type_ids=token_type_ids,
|
320 |
+
)
|
321 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
322 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
323 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
324 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
325 |
+
|
326 |
+
outputs = self.bert(
|
327 |
+
# input_ids,
|
328 |
+
attention_mask=attention_mask,
|
329 |
+
# token_type_ids=token_type_ids,
|
330 |
+
# position_ids=position_ids,
|
331 |
+
head_mask=head_mask,
|
332 |
+
inputs_embeds=inputs_embeds,
|
333 |
+
output_attentions=output_attentions,
|
334 |
+
output_hidden_states=output_hidden_states,
|
335 |
+
return_dict=return_dict,
|
336 |
+
# past_key_values=past_key_values,
|
337 |
+
)
|
338 |
+
|
339 |
+
# pooled_output = outputs[1]
|
340 |
+
sequence_output = outputs[0]
|
341 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
342 |
+
first_token_tensor = sequence_output[:, 0]
|
343 |
+
pooled_output = self.bert.pooler.dense(first_token_tensor)
|
344 |
+
pooled_output = self.bert.pooler.activation(pooled_output)
|
345 |
+
|
346 |
+
pooled_output = self.dropout(pooled_output)
|
347 |
+
logits = self.classifier(pooled_output)
|
348 |
+
|
349 |
+
loss = None
|
350 |
+
if labels is not None:
|
351 |
+
if self.config.problem_type is None:
|
352 |
+
if self.num_labels == 1:
|
353 |
+
self.config.problem_type = "regression"
|
354 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
355 |
+
self.config.problem_type = "single_label_classification"
|
356 |
+
else:
|
357 |
+
self.config.problem_type = "multi_label_classification"
|
358 |
+
|
359 |
+
if self.config.problem_type == "regression":
|
360 |
+
loss_fct = MSELoss()
|
361 |
+
if self.num_labels == 1:
|
362 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
363 |
+
else:
|
364 |
+
loss = loss_fct(logits, labels)
|
365 |
+
elif self.config.problem_type == "single_label_classification":
|
366 |
+
loss_fct = CrossEntropyLoss()
|
367 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
368 |
+
elif self.config.problem_type == "multi_label_classification":
|
369 |
+
loss_fct = BCEWithLogitsLoss()
|
370 |
+
loss = loss_fct(logits, labels)
|
371 |
+
if not return_dict:
|
372 |
+
output = (logits,) + outputs[2:]
|
373 |
+
return ((loss,) + output) if loss is not None else output
|
374 |
+
|
375 |
+
return SequenceClassifierOutput(
|
376 |
+
loss=loss,
|
377 |
+
logits=logits,
|
378 |
+
hidden_states=outputs.hidden_states,
|
379 |
+
attentions=outputs.attentions,
|
380 |
+
)
|
381 |
+
|
382 |
+
# Adapter-tuning For BERT
|
383 |
+
class BertAdapterForSequenceClassification(BertPreTrainedModel):
|
384 |
+
def __init__(self, config):
|
385 |
+
super().__init__(config)
|
386 |
+
self.num_labels = config.num_labels
|
387 |
+
self.bert = BertAdaModel(config)
|
388 |
+
self.embeddings = self.bert.embeddings
|
389 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
390 |
+
self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
391 |
+
|
392 |
+
# for param in self.bert.parameters():
|
393 |
+
# param.requires_grad = False
|
394 |
+
if self.config.use_freezing:
|
395 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
396 |
+
|
397 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
398 |
+
if use_freezing:
|
399 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
400 |
+
else:
|
401 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
402 |
+
|
403 |
+
|
404 |
+
def forward(
|
405 |
+
self,
|
406 |
+
input_ids=None,
|
407 |
+
attention_mask=None,
|
408 |
+
token_type_ids=None,
|
409 |
+
position_ids=None,
|
410 |
+
head_mask=None,
|
411 |
+
inputs_embeds=None,
|
412 |
+
labels=None,
|
413 |
+
output_attentions=None,
|
414 |
+
output_hidden_states=None,
|
415 |
+
return_dict=None,
|
416 |
+
):
|
417 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
418 |
+
|
419 |
+
batch_size = input_ids.shape[0]
|
420 |
+
inputs_embeds = self.embeddings(
|
421 |
+
input_ids=input_ids,
|
422 |
+
position_ids=position_ids,
|
423 |
+
token_type_ids=token_type_ids,
|
424 |
+
)
|
425 |
+
outputs = self.bert(
|
426 |
+
# input_ids,
|
427 |
+
attention_mask=attention_mask,
|
428 |
+
# token_type_ids=token_type_ids,
|
429 |
+
# position_ids=position_ids,
|
430 |
+
head_mask=head_mask,
|
431 |
+
inputs_embeds=inputs_embeds,
|
432 |
+
output_attentions=output_attentions,
|
433 |
+
output_hidden_states=output_hidden_states,
|
434 |
+
return_dict=return_dict,
|
435 |
+
# past_key_values=past_key_values,
|
436 |
+
)
|
437 |
+
|
438 |
+
# pooled_output = outputs[1]
|
439 |
+
sequence_output = outputs[0]
|
440 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
441 |
+
first_token_tensor = sequence_output[:, 0]
|
442 |
+
pooled_output = self.bert.pooler.dense(first_token_tensor)
|
443 |
+
pooled_output = self.bert.pooler.activation(pooled_output)
|
444 |
+
|
445 |
+
pooled_output = self.dropout(pooled_output)
|
446 |
+
logits = self.classifier(pooled_output)
|
447 |
+
|
448 |
+
loss = None
|
449 |
+
if labels is not None:
|
450 |
+
if self.config.problem_type is None:
|
451 |
+
if self.num_labels == 1:
|
452 |
+
self.config.problem_type = "regression"
|
453 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
454 |
+
self.config.problem_type = "single_label_classification"
|
455 |
+
else:
|
456 |
+
self.config.problem_type = "multi_label_classification"
|
457 |
+
|
458 |
+
if self.config.problem_type == "regression":
|
459 |
+
loss_fct = MSELoss()
|
460 |
+
if self.num_labels == 1:
|
461 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
462 |
+
else:
|
463 |
+
loss = loss_fct(logits, labels)
|
464 |
+
elif self.config.problem_type == "single_label_classification":
|
465 |
+
loss_fct = CrossEntropyLoss()
|
466 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
467 |
+
elif self.config.problem_type == "multi_label_classification":
|
468 |
+
loss_fct = BCEWithLogitsLoss()
|
469 |
+
loss = loss_fct(logits, labels)
|
470 |
+
if not return_dict:
|
471 |
+
output = (logits,) + outputs[2:]
|
472 |
+
return ((loss,) + output) if loss is not None else output
|
473 |
+
|
474 |
+
return SequenceClassifierOutput(
|
475 |
+
loss=loss,
|
476 |
+
logits=logits,
|
477 |
+
hidden_states=outputs.hidden_states,
|
478 |
+
attentions=outputs.attentions,
|
479 |
+
)
|
480 |
+
|
481 |
+
|
482 |
+
|
483 |
+
# ========= RoBERTa =========
|
484 |
+
|
485 |
+
# Vanilla Fine-tuning For RoBERTa
|
486 |
+
class RobertaForSequenceClassification(RobertaPreTrainedModel):
|
487 |
+
def __init__(self, config):
|
488 |
+
super().__init__(config)
|
489 |
+
self.num_labels = config.num_labels
|
490 |
+
self.config = config
|
491 |
+
self.roberta = RobertaModel(config)
|
492 |
+
if self.config.use_freezing:
|
493 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
494 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
495 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
496 |
+
self.classifier = RobertaClassificationHead(config)
|
497 |
+
self.init_weights()
|
498 |
+
|
499 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
500 |
+
if use_freezing:
|
501 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
502 |
+
else:
|
503 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
504 |
+
|
505 |
+
def forward(
|
506 |
+
self,
|
507 |
+
input_ids=None,
|
508 |
+
attention_mask=None,
|
509 |
+
token_type_ids=None,
|
510 |
+
position_ids=None,
|
511 |
+
head_mask=None,
|
512 |
+
inputs_embeds=None,
|
513 |
+
labels=None,
|
514 |
+
output_attentions=None,
|
515 |
+
output_hidden_states=None,
|
516 |
+
return_dict=None,
|
517 |
+
):
|
518 |
+
r"""
|
519 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
520 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
521 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
522 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
523 |
+
"""
|
524 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
525 |
+
|
526 |
+
outputs = self.roberta(
|
527 |
+
input_ids,
|
528 |
+
attention_mask=attention_mask,
|
529 |
+
token_type_ids=token_type_ids,
|
530 |
+
position_ids=position_ids,
|
531 |
+
head_mask=head_mask,
|
532 |
+
inputs_embeds=inputs_embeds,
|
533 |
+
output_attentions=output_attentions,
|
534 |
+
output_hidden_states=output_hidden_states,
|
535 |
+
return_dict=return_dict,
|
536 |
+
)
|
537 |
+
|
538 |
+
pooled_output = outputs[1]
|
539 |
+
|
540 |
+
pooled_output = self.dropout(pooled_output)
|
541 |
+
logits = self.classifier(pooled_output)
|
542 |
+
|
543 |
+
loss = None
|
544 |
+
if labels is not None:
|
545 |
+
if self.config.problem_type is None:
|
546 |
+
if self.num_labels == 1:
|
547 |
+
self.config.problem_type = "regression"
|
548 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
549 |
+
self.config.problem_type = "single_label_classification"
|
550 |
+
else:
|
551 |
+
self.config.problem_type = "multi_label_classification"
|
552 |
+
|
553 |
+
if self.config.problem_type == "regression":
|
554 |
+
loss_fct = MSELoss()
|
555 |
+
if self.num_labels == 1:
|
556 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
557 |
+
else:
|
558 |
+
loss = loss_fct(logits, labels)
|
559 |
+
elif self.config.problem_type == "single_label_classification":
|
560 |
+
loss_fct = CrossEntropyLoss()
|
561 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
562 |
+
elif self.config.problem_type == "multi_label_classification":
|
563 |
+
loss_fct = BCEWithLogitsLoss()
|
564 |
+
loss = loss_fct(logits, labels)
|
565 |
+
if not return_dict:
|
566 |
+
output = (logits,) + outputs[2:]
|
567 |
+
return ((loss,) + output) if loss is not None else output
|
568 |
+
|
569 |
+
return SequenceClassifierOutput(
|
570 |
+
loss=loss,
|
571 |
+
logits=logits,
|
572 |
+
hidden_states=outputs.hidden_states,
|
573 |
+
attentions=outputs.attentions,
|
574 |
+
)
|
575 |
+
|
576 |
+
# Prefix-tuning For RoBERTa
|
577 |
+
class RobertaPrefixForSequenceClassification(RobertaPreTrainedModel):
|
578 |
+
def __init__(self, config):
|
579 |
+
super().__init__(config)
|
580 |
+
self.num_labels = config.num_labels
|
581 |
+
self.config = config
|
582 |
+
self.roberta = RobertaModel(config)
|
583 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
584 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
585 |
+
self.classifier = RobertaClassificationHead(config)
|
586 |
+
self.init_weights()
|
587 |
+
|
588 |
+
for param in self.roberta.parameters():
|
589 |
+
param.requires_grad = False
|
590 |
+
|
591 |
+
self.pre_seq_len = config.pre_seq_len
|
592 |
+
self.n_layer = config.num_hidden_layers
|
593 |
+
self.n_head = config.num_attention_heads
|
594 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
595 |
+
|
596 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
597 |
+
self.prefix_encoder = PrefixEncoder(config)
|
598 |
+
|
599 |
+
bert_param = 0
|
600 |
+
for name, param in self.roberta.named_parameters():
|
601 |
+
bert_param += param.numel()
|
602 |
+
all_param = 0
|
603 |
+
for name, param in self.named_parameters():
|
604 |
+
all_param += param.numel()
|
605 |
+
total_param = all_param - bert_param
|
606 |
+
print("total param is {}".format(total_param)) # 9860105
|
607 |
+
|
608 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
609 |
+
if use_freezing:
|
610 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
611 |
+
else:
|
612 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
613 |
+
|
614 |
+
|
615 |
+
def get_prompt(self, batch_size):
|
616 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
617 |
+
# print("prefix_tokens.shape=", prefix_tokens.shape)
|
618 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
619 |
+
# print("past_key_values[0].shape=", past_key_values[0].shape)
|
620 |
+
past_key_values = past_key_values.view(
|
621 |
+
batch_size,
|
622 |
+
self.pre_seq_len,
|
623 |
+
self.n_layer * 2,
|
624 |
+
self.n_head,
|
625 |
+
self.n_embd
|
626 |
+
)
|
627 |
+
# print("past_key_values[0].shape=", past_key_values[0].shape)
|
628 |
+
past_key_values = self.dropout(past_key_values)
|
629 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
630 |
+
# print("past_key_values[0].shape=", past_key_values[0].shape)
|
631 |
+
return past_key_values
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
input_ids=None,
|
636 |
+
attention_mask=None,
|
637 |
+
token_type_ids=None,
|
638 |
+
position_ids=None,
|
639 |
+
head_mask=None,
|
640 |
+
inputs_embeds=None,
|
641 |
+
labels=None,
|
642 |
+
output_attentions=None,
|
643 |
+
output_hidden_states=None,
|
644 |
+
return_dict=None,
|
645 |
+
):
|
646 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
647 |
+
|
648 |
+
batch_size = input_ids.shape[0]
|
649 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
650 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
651 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
652 |
+
|
653 |
+
if position_ids is None:
|
654 |
+
position_ids = torch.tensor([i for i in range(input_ids.shape[-1])]).expand(batch_size, -1).to(self.roberta.device)
|
655 |
+
|
656 |
+
outputs = self.roberta(
|
657 |
+
input_ids,
|
658 |
+
attention_mask=attention_mask,
|
659 |
+
token_type_ids=token_type_ids,
|
660 |
+
position_ids=position_ids,
|
661 |
+
head_mask=head_mask,
|
662 |
+
inputs_embeds=inputs_embeds,
|
663 |
+
output_attentions=output_attentions,
|
664 |
+
output_hidden_states=output_hidden_states,
|
665 |
+
return_dict=return_dict,
|
666 |
+
past_key_values=past_key_values,
|
667 |
+
)
|
668 |
+
|
669 |
+
pooled_output = outputs[1]
|
670 |
+
|
671 |
+
pooled_output = self.dropout(pooled_output)
|
672 |
+
logits = self.classifier(pooled_output)
|
673 |
+
|
674 |
+
loss = None
|
675 |
+
if labels is not None:
|
676 |
+
labels = (labels < 0).long().to(labels.device) + labels
|
677 |
+
|
678 |
+
if self.config.problem_type is None:
|
679 |
+
if self.num_labels == 1:
|
680 |
+
self.config.problem_type = "regression"
|
681 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
682 |
+
self.config.problem_type = "single_label_classification"
|
683 |
+
else:
|
684 |
+
self.config.problem_type = "multi_label_classification"
|
685 |
+
|
686 |
+
if self.config.problem_type == "regression":
|
687 |
+
loss_fct = MSELoss()
|
688 |
+
if self.num_labels == 1:
|
689 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
690 |
+
else:
|
691 |
+
loss = loss_fct(logits, labels)
|
692 |
+
elif self.config.problem_type == "single_label_classification":
|
693 |
+
loss_fct = CrossEntropyLoss()
|
694 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
695 |
+
elif self.config.problem_type == "multi_label_classification":
|
696 |
+
loss_fct = BCEWithLogitsLoss()
|
697 |
+
loss = loss_fct(logits, labels)
|
698 |
+
if not return_dict:
|
699 |
+
output = (logits,) + outputs[2:]
|
700 |
+
return ((loss,) + output) if loss is not None else output
|
701 |
+
|
702 |
+
return SequenceClassifierOutput(
|
703 |
+
loss=loss,
|
704 |
+
logits=logits,
|
705 |
+
hidden_states=outputs.hidden_states,
|
706 |
+
attentions=outputs.attentions,
|
707 |
+
)
|
708 |
+
|
709 |
+
# Prompt-tuning For RoBERTa
|
710 |
+
class RobertaPtuningForSequenceClassification(RobertaPreTrainedModel):
|
711 |
+
def __init__(self, config):
|
712 |
+
super().__init__(config)
|
713 |
+
self.num_labels = config.num_labels
|
714 |
+
self.roberta = RobertaModel(config)
|
715 |
+
self.embeddings = self.roberta.embeddings
|
716 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
717 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
718 |
+
self.classifier = RobertaClassificationHead(config)
|
719 |
+
|
720 |
+
# for param in self.roberta.parameters():
|
721 |
+
# param.requires_grad = False
|
722 |
+
|
723 |
+
if self.config.use_freezing:
|
724 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
725 |
+
|
726 |
+
self.pre_seq_len = config.pre_seq_len
|
727 |
+
self.n_layer = config.num_hidden_layers
|
728 |
+
self.n_head = config.num_attention_heads
|
729 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
730 |
+
|
731 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
732 |
+
self.prefix_encoder = torch.nn.Embedding(self.pre_seq_len, config.hidden_size)
|
733 |
+
|
734 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
735 |
+
if use_freezing:
|
736 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
737 |
+
else:
|
738 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
739 |
+
|
740 |
+
def get_prompt(self, batch_size):
|
741 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.roberta.device)
|
742 |
+
prompts = self.prefix_encoder(prefix_tokens)
|
743 |
+
return prompts
|
744 |
+
|
745 |
+
def forward(
|
746 |
+
self,
|
747 |
+
input_ids=None,
|
748 |
+
attention_mask=None,
|
749 |
+
token_type_ids=None,
|
750 |
+
position_ids=None,
|
751 |
+
head_mask=None,
|
752 |
+
inputs_embeds=None,
|
753 |
+
labels=None,
|
754 |
+
output_attentions=None,
|
755 |
+
output_hidden_states=None,
|
756 |
+
return_dict=None,
|
757 |
+
):
|
758 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
759 |
+
|
760 |
+
batch_size = input_ids.shape[0]
|
761 |
+
raw_embedding = self.embeddings(
|
762 |
+
input_ids=input_ids,
|
763 |
+
position_ids=position_ids,
|
764 |
+
token_type_ids=token_type_ids,
|
765 |
+
)
|
766 |
+
prompts = self.get_prompt(batch_size=batch_size)
|
767 |
+
inputs_embeds = torch.cat((prompts, raw_embedding), dim=1)
|
768 |
+
# print(input_embeddings.shape)
|
769 |
+
# exit()
|
770 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.roberta.device)
|
771 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
772 |
+
|
773 |
+
outputs = self.roberta(
|
774 |
+
# input_ids,
|
775 |
+
attention_mask=attention_mask,
|
776 |
+
# token_type_ids=token_type_ids,
|
777 |
+
# position_ids=position_ids,
|
778 |
+
head_mask=head_mask,
|
779 |
+
inputs_embeds=inputs_embeds,
|
780 |
+
output_attentions=output_attentions,
|
781 |
+
output_hidden_states=output_hidden_states,
|
782 |
+
return_dict=return_dict,
|
783 |
+
# past_key_values=past_key_values,
|
784 |
+
)
|
785 |
+
|
786 |
+
# pooled_output = outputs[1]
|
787 |
+
sequence_output = outputs[0]
|
788 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
789 |
+
first_token_tensor = sequence_output[:, 0]
|
790 |
+
pooled_output = self.roberta.pooler.dense(first_token_tensor)
|
791 |
+
pooled_output = self.roberta.pooler.activation(pooled_output)
|
792 |
+
|
793 |
+
pooled_output = self.dropout(pooled_output)
|
794 |
+
logits = self.classifier(pooled_output)
|
795 |
+
|
796 |
+
loss = None
|
797 |
+
if labels is not None:
|
798 |
+
if self.config.problem_type is None:
|
799 |
+
if self.num_labels == 1:
|
800 |
+
self.config.problem_type = "regression"
|
801 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
802 |
+
self.config.problem_type = "single_label_classification"
|
803 |
+
else:
|
804 |
+
self.config.problem_type = "multi_label_classification"
|
805 |
+
|
806 |
+
if self.config.problem_type == "regression":
|
807 |
+
loss_fct = MSELoss()
|
808 |
+
if self.num_labels == 1:
|
809 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
810 |
+
else:
|
811 |
+
loss = loss_fct(logits, labels)
|
812 |
+
elif self.config.problem_type == "single_label_classification":
|
813 |
+
loss_fct = CrossEntropyLoss()
|
814 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
815 |
+
elif self.config.problem_type == "multi_label_classification":
|
816 |
+
loss_fct = BCEWithLogitsLoss()
|
817 |
+
loss = loss_fct(logits, labels)
|
818 |
+
if not return_dict:
|
819 |
+
output = (logits,) + outputs[2:]
|
820 |
+
return ((loss,) + output) if loss is not None else output
|
821 |
+
|
822 |
+
return SequenceClassifierOutput(
|
823 |
+
loss=loss,
|
824 |
+
logits=logits,
|
825 |
+
hidden_states=outputs.hidden_states,
|
826 |
+
attentions=outputs.attentions,
|
827 |
+
)
|
828 |
+
|
829 |
+
# Adapter-tuning For RoBERTa
|
830 |
+
class RobertaAdapterForSequenceClassification(RobertaPreTrainedModel):
|
831 |
+
def __init__(self, config):
|
832 |
+
super().__init__(config)
|
833 |
+
self.num_labels = config.num_labels
|
834 |
+
self.roberta = RobertaAdaModel(config)
|
835 |
+
self.embeddings = self.roberta.embeddings
|
836 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
837 |
+
# self.classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
|
838 |
+
self.classifier = RobertaClassificationHead(config)
|
839 |
+
|
840 |
+
self.init_weights()
|
841 |
+
# for param in self.roberta.parameters():
|
842 |
+
# param.requires_grad = False
|
843 |
+
self.roberta = init_adapter(self.roberta)
|
844 |
+
if self.config.use_freezing:
|
845 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
846 |
+
|
847 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
848 |
+
if use_freezing:
|
849 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
850 |
+
else:
|
851 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
852 |
+
|
853 |
+
def forward(
|
854 |
+
self,
|
855 |
+
input_ids=None,
|
856 |
+
attention_mask=None,
|
857 |
+
token_type_ids=None,
|
858 |
+
position_ids=None,
|
859 |
+
head_mask=None,
|
860 |
+
inputs_embeds=None,
|
861 |
+
labels=None,
|
862 |
+
output_attentions=None,
|
863 |
+
output_hidden_states=None,
|
864 |
+
return_dict=None,
|
865 |
+
):
|
866 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
867 |
+
|
868 |
+
batch_size = input_ids.shape[0]
|
869 |
+
inputs_embeds = self.embeddings(
|
870 |
+
input_ids=input_ids,
|
871 |
+
position_ids=position_ids,
|
872 |
+
token_type_ids=token_type_ids,
|
873 |
+
)
|
874 |
+
|
875 |
+
outputs = self.roberta(
|
876 |
+
# input_ids,
|
877 |
+
attention_mask=attention_mask,
|
878 |
+
# token_type_ids=token_type_ids,
|
879 |
+
# position_ids=position_ids,
|
880 |
+
head_mask=head_mask,
|
881 |
+
inputs_embeds=inputs_embeds,
|
882 |
+
output_attentions=output_attentions,
|
883 |
+
output_hidden_states=output_hidden_states,
|
884 |
+
return_dict=return_dict,
|
885 |
+
# past_key_values=past_key_values,
|
886 |
+
)
|
887 |
+
|
888 |
+
# pooled_output = outputs[1]
|
889 |
+
sequence_output = outputs[0]
|
890 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
891 |
+
first_token_tensor = sequence_output[:, 0]
|
892 |
+
pooled_output = self.roberta.pooler.dense(first_token_tensor)
|
893 |
+
pooled_output = self.roberta.pooler.activation(pooled_output)
|
894 |
+
|
895 |
+
pooled_output = self.dropout(pooled_output)
|
896 |
+
logits = self.classifier(pooled_output)
|
897 |
+
|
898 |
+
loss = None
|
899 |
+
if labels is not None:
|
900 |
+
if self.config.problem_type is None:
|
901 |
+
if self.num_labels == 1:
|
902 |
+
self.config.problem_type = "regression"
|
903 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
904 |
+
self.config.problem_type = "single_label_classification"
|
905 |
+
else:
|
906 |
+
self.config.problem_type = "multi_label_classification"
|
907 |
+
|
908 |
+
if self.config.problem_type == "regression":
|
909 |
+
loss_fct = MSELoss()
|
910 |
+
if self.num_labels == 1:
|
911 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
912 |
+
else:
|
913 |
+
loss = loss_fct(logits, labels)
|
914 |
+
elif self.config.problem_type == "single_label_classification":
|
915 |
+
loss_fct = CrossEntropyLoss()
|
916 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
917 |
+
elif self.config.problem_type == "multi_label_classification":
|
918 |
+
loss_fct = BCEWithLogitsLoss()
|
919 |
+
loss = loss_fct(logits, labels)
|
920 |
+
if not return_dict:
|
921 |
+
output = (logits,) + outputs[2:]
|
922 |
+
return ((loss,) + output) if loss is not None else output
|
923 |
+
|
924 |
+
return SequenceClassifierOutput(
|
925 |
+
loss=loss,
|
926 |
+
logits=logits,
|
927 |
+
hidden_states=outputs.hidden_states,
|
928 |
+
attentions=outputs.attentions,
|
929 |
+
)
|
930 |
+
|
931 |
+
|
932 |
+
# ========= DeBERTa =========
|
933 |
+
|
934 |
+
# Prefix-tuning For DeBERTa
|
935 |
+
class DebertaPrefixForSequenceClassification(DebertaPreTrainedModel):
|
936 |
+
def __init__(self, config):
|
937 |
+
super().__init__(config)
|
938 |
+
self.num_labels = config.num_labels
|
939 |
+
self.config = config
|
940 |
+
self.deberta = DebertaModel(config)
|
941 |
+
self.pooler = ContextPooler(config)
|
942 |
+
output_dim = self.pooler.output_dim
|
943 |
+
self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
944 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
945 |
+
self.init_weights()
|
946 |
+
|
947 |
+
# for param in self.deberta.parameters():
|
948 |
+
# param.requires_grad = False
|
949 |
+
|
950 |
+
if self.config.use_freezing:
|
951 |
+
self.deberta = freezer.freeze_lm(self.deberta)
|
952 |
+
|
953 |
+
self.pre_seq_len = config.pre_seq_len
|
954 |
+
self.n_layer = config.num_hidden_layers
|
955 |
+
self.n_head = config.num_attention_heads
|
956 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
957 |
+
|
958 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
959 |
+
self.prefix_encoder = PrefixEncoder(config)
|
960 |
+
|
961 |
+
deberta_param = 0
|
962 |
+
for name, param in self.deberta.named_parameters():
|
963 |
+
deberta_param += param.numel()
|
964 |
+
all_param = 0
|
965 |
+
for name, param in self.named_parameters():
|
966 |
+
all_param += param.numel()
|
967 |
+
total_param = all_param - deberta_param
|
968 |
+
print("total param is {}".format(total_param)) # 9860105
|
969 |
+
|
970 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
971 |
+
if use_freezing:
|
972 |
+
self.deberta = freezer.freeze_lm(self.deberta)
|
973 |
+
else:
|
974 |
+
self.deberta = freezer.unfreeze_lm(self.deberta)
|
975 |
+
|
976 |
+
def get_prompt(self, batch_size):
|
977 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
978 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
979 |
+
# bsz, seqlen, _ = past_key_values.shape
|
980 |
+
past_key_values = past_key_values.view(
|
981 |
+
batch_size,
|
982 |
+
self.pre_seq_len,
|
983 |
+
self.n_layer * 2,
|
984 |
+
self.n_head,
|
985 |
+
self.n_embd
|
986 |
+
)
|
987 |
+
past_key_values = self.dropout(past_key_values)
|
988 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
989 |
+
return past_key_values
|
990 |
+
|
991 |
+
def forward(
|
992 |
+
self,
|
993 |
+
input_ids=None,
|
994 |
+
attention_mask=None,
|
995 |
+
token_type_ids=None,
|
996 |
+
position_ids=None,
|
997 |
+
head_mask=None,
|
998 |
+
inputs_embeds=None,
|
999 |
+
labels=None,
|
1000 |
+
output_attentions=None,
|
1001 |
+
output_hidden_states=None,
|
1002 |
+
return_dict=None,
|
1003 |
+
):
|
1004 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1005 |
+
|
1006 |
+
batch_size = input_ids.shape[0]
|
1007 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
1008 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
1009 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
1010 |
+
|
1011 |
+
outputs = self.deberta(
|
1012 |
+
input_ids,
|
1013 |
+
attention_mask=attention_mask,
|
1014 |
+
token_type_ids=token_type_ids,
|
1015 |
+
position_ids=position_ids,
|
1016 |
+
inputs_embeds=inputs_embeds,
|
1017 |
+
output_attentions=output_attentions,
|
1018 |
+
output_hidden_states=output_hidden_states,
|
1019 |
+
return_dict=return_dict,
|
1020 |
+
past_key_values=past_key_values,
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
encoder_layer = outputs[0]
|
1024 |
+
pooled_output = self.pooler(encoder_layer)
|
1025 |
+
pooled_output = self.dropout(pooled_output)
|
1026 |
+
logits = self.classifier(pooled_output)
|
1027 |
+
|
1028 |
+
loss = None
|
1029 |
+
if labels is not None:
|
1030 |
+
if self.num_labels == 1:
|
1031 |
+
# regression task
|
1032 |
+
loss_fn = torch.nn.MSELoss()
|
1033 |
+
logits = logits.view(-1).to(labels.dtype)
|
1034 |
+
loss = loss_fn(logits, labels.view(-1))
|
1035 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
1036 |
+
label_index = (labels >= 0).nonzero()
|
1037 |
+
labels = labels.long()
|
1038 |
+
if label_index.size(0) > 0:
|
1039 |
+
labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0), logits.size(1)))
|
1040 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
1041 |
+
loss_fct = CrossEntropyLoss()
|
1042 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
1043 |
+
else:
|
1044 |
+
loss = torch.tensor(0).to(logits)
|
1045 |
+
else:
|
1046 |
+
log_softmax = torch.nn.LogSoftmax(-1)
|
1047 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
1048 |
+
if not return_dict:
|
1049 |
+
output = (logits,) + outputs[1:]
|
1050 |
+
return ((loss,) + output) if loss is not None else output
|
1051 |
+
else:
|
1052 |
+
return SequenceClassifierOutput(
|
1053 |
+
loss=loss,
|
1054 |
+
logits=logits,
|
1055 |
+
hidden_states=outputs.hidden_states,
|
1056 |
+
attentions=outputs.attentions,
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
|
1060 |
+
# GPT2 for classification
|
1061 |
+
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
1062 |
+
|
1063 |
+
def __init__(self, config):
|
1064 |
+
super().__init__(config)
|
1065 |
+
self.num_labels = config.num_labels
|
1066 |
+
self.transformer = GPT2Model(config)
|
1067 |
+
self.score = torch.nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1068 |
+
|
1069 |
+
# Model parallel
|
1070 |
+
self.model_parallel = False
|
1071 |
+
self.device_map = None
|
1072 |
+
|
1073 |
+
# Initialize weights and apply final processing
|
1074 |
+
self.post_init()
|
1075 |
+
|
1076 |
+
def forward(
|
1077 |
+
self,
|
1078 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1079 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1080 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1081 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1082 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1083 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1084 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1085 |
+
labels: Optional[torch.LongTensor] = None,
|
1086 |
+
use_cache: Optional[bool] = None,
|
1087 |
+
output_attentions: Optional[bool] = None,
|
1088 |
+
output_hidden_states: Optional[bool] = None,
|
1089 |
+
return_dict: Optional[bool] = None,
|
1090 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1091 |
+
r"""
|
1092 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1093 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1094 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1095 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1096 |
+
"""
|
1097 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1098 |
+
|
1099 |
+
transformer_outputs = self.transformer(
|
1100 |
+
input_ids,
|
1101 |
+
past_key_values=past_key_values,
|
1102 |
+
attention_mask=attention_mask,
|
1103 |
+
token_type_ids=token_type_ids,
|
1104 |
+
position_ids=position_ids,
|
1105 |
+
head_mask=head_mask,
|
1106 |
+
inputs_embeds=inputs_embeds,
|
1107 |
+
use_cache=use_cache,
|
1108 |
+
output_attentions=output_attentions,
|
1109 |
+
output_hidden_states=output_hidden_states,
|
1110 |
+
return_dict=return_dict,
|
1111 |
+
)
|
1112 |
+
hidden_states = transformer_outputs[0]
|
1113 |
+
logits = self.score(hidden_states)
|
1114 |
+
|
1115 |
+
if input_ids is not None:
|
1116 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1117 |
+
else:
|
1118 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1119 |
+
|
1120 |
+
assert (
|
1121 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1122 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1123 |
+
if self.config.pad_token_id is None:
|
1124 |
+
sequence_lengths = -1
|
1125 |
+
else:
|
1126 |
+
if input_ids is not None:
|
1127 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
1128 |
+
else:
|
1129 |
+
sequence_lengths = -1
|
1130 |
+
logger.warning(
|
1131 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1132 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1136 |
+
|
1137 |
+
loss = None
|
1138 |
+
if labels is not None:
|
1139 |
+
if self.config.problem_type is None:
|
1140 |
+
if self.num_labels == 1:
|
1141 |
+
self.config.problem_type = "regression"
|
1142 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1143 |
+
self.config.problem_type = "single_label_classification"
|
1144 |
+
else:
|
1145 |
+
self.config.problem_type = "multi_label_classification"
|
1146 |
+
|
1147 |
+
if self.config.problem_type == "regression":
|
1148 |
+
loss_fct = MSELoss()
|
1149 |
+
if self.num_labels == 1:
|
1150 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1151 |
+
else:
|
1152 |
+
loss = loss_fct(pooled_logits, labels)
|
1153 |
+
elif self.config.problem_type == "single_label_classification":
|
1154 |
+
loss_fct = CrossEntropyLoss()
|
1155 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1156 |
+
elif self.config.problem_type == "multi_label_classification":
|
1157 |
+
loss_fct = BCEWithLogitsLoss()
|
1158 |
+
loss = loss_fct(pooled_logits, labels)
|
1159 |
+
if not return_dict:
|
1160 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1161 |
+
return ((loss,) + output) if loss is not None else output
|
1162 |
+
|
1163 |
+
return SequenceClassifierOutputWithPast(
|
1164 |
+
loss=loss,
|
1165 |
+
logits=pooled_logits,
|
1166 |
+
past_key_values=transformer_outputs.past_key_values,
|
1167 |
+
hidden_states=transformer_outputs.hidden_states,
|
1168 |
+
attentions=transformer_outputs.attentions,
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
|
1172 |
+
|
1173 |
+
|
1174 |
+
# Bart for classification
|
1175 |
+
class BartForSequenceClassification(BartPretrainedModel):
|
1176 |
+
def __init__(self, config: BartConfig, **kwargs):
|
1177 |
+
super().__init__(config, **kwargs)
|
1178 |
+
self.model = BartModel(config)
|
1179 |
+
self.classification_head = BartClassificationHead(
|
1180 |
+
config.d_model,
|
1181 |
+
config.d_model,
|
1182 |
+
config.num_labels,
|
1183 |
+
config.classifier_dropout,
|
1184 |
+
)
|
1185 |
+
self.model._init_weights(self.classification_head.dense)
|
1186 |
+
self.model._init_weights(self.classification_head.out_proj)
|
1187 |
+
|
1188 |
+
def forward(
|
1189 |
+
self,
|
1190 |
+
input_ids: torch.LongTensor = None,
|
1191 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1192 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1193 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1194 |
+
head_mask: Optional[torch.Tensor] = None,
|
1195 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1196 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1197 |
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
1198 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1199 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1200 |
+
labels: Optional[torch.LongTensor] = None,
|
1201 |
+
use_cache: Optional[bool] = None,
|
1202 |
+
output_attentions: Optional[bool] = None,
|
1203 |
+
output_hidden_states: Optional[bool] = None,
|
1204 |
+
return_dict: Optional[bool] = None,
|
1205 |
+
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
|
1206 |
+
r"""
|
1207 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1208 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1209 |
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1210 |
+
"""
|
1211 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1212 |
+
if labels is not None:
|
1213 |
+
use_cache = False
|
1214 |
+
|
1215 |
+
if input_ids is None and inputs_embeds is not None:
|
1216 |
+
raise NotImplementedError(
|
1217 |
+
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
outputs = self.model(
|
1221 |
+
input_ids,
|
1222 |
+
attention_mask=attention_mask,
|
1223 |
+
decoder_input_ids=decoder_input_ids,
|
1224 |
+
decoder_attention_mask=decoder_attention_mask,
|
1225 |
+
head_mask=head_mask,
|
1226 |
+
decoder_head_mask=decoder_head_mask,
|
1227 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1228 |
+
encoder_outputs=encoder_outputs,
|
1229 |
+
inputs_embeds=inputs_embeds,
|
1230 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1231 |
+
use_cache=use_cache,
|
1232 |
+
output_attentions=output_attentions,
|
1233 |
+
output_hidden_states=output_hidden_states,
|
1234 |
+
return_dict=return_dict,
|
1235 |
+
)
|
1236 |
+
hidden_states = outputs[0] # last hidden state
|
1237 |
+
# print("hidden_states.shape=", hidden_states.shape) # [bz, seq_len, dim]
|
1238 |
+
|
1239 |
+
eos_mask = input_ids.eq(self.config.eos_token_id)
|
1240 |
+
|
1241 |
+
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
|
1242 |
+
raise ValueError("All examples must have the same number of <eos> tokens.")
|
1243 |
+
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
|
1244 |
+
:, -1, :
|
1245 |
+
]
|
1246 |
+
logits = self.classification_head(sentence_representation)
|
1247 |
+
|
1248 |
+
loss = None
|
1249 |
+
if labels is not None:
|
1250 |
+
if self.config.problem_type is None:
|
1251 |
+
if self.config.num_labels == 1:
|
1252 |
+
self.config.problem_type = "regression"
|
1253 |
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1254 |
+
self.config.problem_type = "single_label_classification"
|
1255 |
+
else:
|
1256 |
+
self.config.problem_type = "multi_label_classification"
|
1257 |
+
|
1258 |
+
if self.config.problem_type == "regression":
|
1259 |
+
loss_fct = MSELoss()
|
1260 |
+
if self.config.num_labels == 1:
|
1261 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1262 |
+
else:
|
1263 |
+
loss = loss_fct(logits, labels)
|
1264 |
+
elif self.config.problem_type == "single_label_classification":
|
1265 |
+
loss_fct = CrossEntropyLoss()
|
1266 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
1267 |
+
elif self.config.problem_type == "multi_label_classification":
|
1268 |
+
loss_fct = BCEWithLogitsLoss()
|
1269 |
+
loss = loss_fct(logits, labels)
|
1270 |
+
if not return_dict:
|
1271 |
+
output = (logits,) + outputs[1:]
|
1272 |
+
return ((loss,) + output) if loss is not None else output
|
1273 |
+
|
1274 |
+
return Seq2SeqSequenceClassifierOutput(
|
1275 |
+
loss=loss,
|
1276 |
+
logits=logits,
|
1277 |
+
past_key_values=outputs.past_key_values,
|
1278 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1279 |
+
decoder_attentions=outputs.decoder_attentions,
|
1280 |
+
cross_attentions=outputs.cross_attentions,
|
1281 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1282 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1283 |
+
encoder_attentions=outputs.encoder_attentions,
|
1284 |
+
)
|
models/sequence_classification/masked_prompt_cls.py
ADDED
@@ -0,0 +1,2016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Custom models for few-shot learning specific operations."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import transformers
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction
|
8 |
+
from transformers.models.t5.modeling_t5 import T5ForConditionalGeneration
|
9 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertForSequenceClassification, BertModel, BertOnlyMLMHead
|
10 |
+
from transformers.models.roberta.modeling_roberta import RobertaForSequenceClassification, RobertaModel, RobertaLMHead, RobertaClassificationHead, RobertaPreTrainedModel
|
11 |
+
from transformers.models.deberta_v2.modeling_deberta_v2 import DebertaV2PreTrainedModel, DebertaV2Model, StableDropout, ContextPooler, DebertaV2OnlyMLMHead
|
12 |
+
from transformers.models.deberta.modeling_deberta import DebertaPreTrainedModel, DebertaModel, StableDropout, ContextPooler, DebertaOnlyMLMHead
|
13 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
16 |
+
import logging
|
17 |
+
from models.basic_modules.adapter import RobertaAdaModel, BertAdaModel
|
18 |
+
import os
|
19 |
+
from models.basic_modules.prefix_encoder import PrefixEncoder
|
20 |
+
from tools.model_utils.parameter_freeze import ParameterFreeze
|
21 |
+
|
22 |
+
freezer = ParameterFreeze()
|
23 |
+
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
# Note: 如果mask_pos为None,请检查输入的模板是否有<mask>标记,是否修改data_collator文件
|
27 |
+
|
28 |
+
"""
|
29 |
+
Vanilla Prompt-tuning BERT
|
30 |
+
"""
|
31 |
+
class PromptBertForSequenceClassification(BertPreTrainedModel):
|
32 |
+
|
33 |
+
def __init__(self, config):
|
34 |
+
super().__init__(config)
|
35 |
+
self.num_labels = config.num_labels
|
36 |
+
self.pre_seq_len = self.config.pre_seq_len
|
37 |
+
self.hidden_size = self.config.hidden_size
|
38 |
+
# backbone
|
39 |
+
self.bert = BertModel(config)
|
40 |
+
if self.config.use_freezing:
|
41 |
+
self.bert = freezer.freeze_lm(self.bert)
|
42 |
+
# mlm head
|
43 |
+
self.cls = BertOnlyMLMHead(config)
|
44 |
+
|
45 |
+
self.init_weights()
|
46 |
+
|
47 |
+
# These attributes should be assigned once the model is initialized
|
48 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
49 |
+
|
50 |
+
# For regression
|
51 |
+
self.lb = None
|
52 |
+
self.ub = None
|
53 |
+
|
54 |
+
# For label search.
|
55 |
+
self.return_full_softmax = None
|
56 |
+
|
57 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
58 |
+
if use_freezing:
|
59 |
+
self.bert = freezer.freeze_lm(self.bert)
|
60 |
+
else:
|
61 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
62 |
+
|
63 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
64 |
+
"""
|
65 |
+
Encoding and obtain logits at masked position
|
66 |
+
"""
|
67 |
+
if mask_pos is not None:
|
68 |
+
mask_pos = mask_pos.squeeze()
|
69 |
+
# Encode everything
|
70 |
+
if inputs_embeds is None:
|
71 |
+
outputs = self.bert(
|
72 |
+
input_ids,
|
73 |
+
attention_mask=attention_mask,
|
74 |
+
token_type_ids=token_type_ids
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
outputs = self.bert(
|
78 |
+
None,
|
79 |
+
attention_mask=attention_mask,
|
80 |
+
token_type_ids=token_type_ids,
|
81 |
+
inputs_embeds=inputs_embeds
|
82 |
+
)
|
83 |
+
# Get <mask> token representation
|
84 |
+
sequence_output, pooled_output = outputs[:2]
|
85 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
86 |
+
# Logits over vocabulary tokens
|
87 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
88 |
+
|
89 |
+
# Exit early and only return mask logits.
|
90 |
+
if return_full_softmax:
|
91 |
+
return prediction_mask_scores
|
92 |
+
|
93 |
+
# Return logits for each label
|
94 |
+
logits = []
|
95 |
+
for label_id in range(len(self.label_word_list)):
|
96 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
97 |
+
logits = torch.cat(logits, -1)
|
98 |
+
|
99 |
+
# Regression task
|
100 |
+
if self.config.num_labels == 1:
|
101 |
+
logsoftmax = nn.LogSoftmax(-1)
|
102 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
103 |
+
|
104 |
+
return logits, sequence_mask_output
|
105 |
+
|
106 |
+
def forward(
|
107 |
+
self,
|
108 |
+
input_ids=None,
|
109 |
+
attention_mask=None,
|
110 |
+
token_type_ids=None,
|
111 |
+
mask_pos=None,
|
112 |
+
labels=None,
|
113 |
+
inputs_embeds=None,
|
114 |
+
block_flag=None,
|
115 |
+
return_dict=None,
|
116 |
+
):
|
117 |
+
|
118 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
119 |
+
loss = None
|
120 |
+
if labels is not None:
|
121 |
+
if self.num_labels == 1:
|
122 |
+
# Regression task
|
123 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
124 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
125 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
126 |
+
else:
|
127 |
+
|
128 |
+
if labels.shape == logits.shape:
|
129 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
130 |
+
labels, reduction="batchmean")
|
131 |
+
else:
|
132 |
+
loss_fct = nn.CrossEntropyLoss()
|
133 |
+
|
134 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
135 |
+
|
136 |
+
output = (logits,)
|
137 |
+
if self.num_labels == 1:
|
138 |
+
# Regression output
|
139 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
140 |
+
|
141 |
+
if not return_dict:
|
142 |
+
return ((loss,) + output) if loss is not None else output
|
143 |
+
|
144 |
+
return SequenceClassifierOutput(
|
145 |
+
loss=loss,
|
146 |
+
logits=logits,
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
"""
|
152 |
+
P-tuning BERT
|
153 |
+
"""
|
154 |
+
class PromptBertPtuningForSequenceClassification(BertPreTrainedModel):
|
155 |
+
|
156 |
+
def __init__(self, config):
|
157 |
+
super().__init__(config)
|
158 |
+
self.num_labels = config.num_labels
|
159 |
+
self.pre_seq_len = self.config.pre_seq_len
|
160 |
+
self.hidden_size = self.config.hidden_size
|
161 |
+
# backbone
|
162 |
+
self.bert = BertModel(config)
|
163 |
+
if self.config.use_freezing:
|
164 |
+
self.bert = freezer.freeze_lm(self.bert)
|
165 |
+
# mlm head
|
166 |
+
self.cls = BertOnlyMLMHead(config)
|
167 |
+
# prompt encoder
|
168 |
+
self.prompt_encoder = None
|
169 |
+
# plm embedding layer
|
170 |
+
self.backbone_embeddings = self.bert.embeddings.word_embeddings
|
171 |
+
# prompt embedding layer
|
172 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
173 |
+
|
174 |
+
self.init_weights()
|
175 |
+
|
176 |
+
# These attributes should be assigned once the model is initialized
|
177 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
178 |
+
|
179 |
+
# For regression
|
180 |
+
self.lb = None
|
181 |
+
self.ub = None
|
182 |
+
|
183 |
+
# For label search.
|
184 |
+
self.return_full_softmax = None
|
185 |
+
|
186 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
187 |
+
if use_freezing:
|
188 |
+
self.bert = freezer.freeze_lm(self.bert)
|
189 |
+
else:
|
190 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
191 |
+
|
192 |
+
|
193 |
+
def generate_continuous_prompt_inputs(self, input_ids, block_flag=None, reparameterization=False):
|
194 |
+
"""
|
195 |
+
Generate continuous prompt embedding
|
196 |
+
"""
|
197 |
+
inputs_embeds = self.backbone_embeddings(input_ids)
|
198 |
+
|
199 |
+
batch_size = inputs_embeds.shape[0]
|
200 |
+
if block_flag is None:
|
201 |
+
# the first token is set 1, others are set 0
|
202 |
+
block_flag = torch.zeros_like(input_ids).long().to(inputs_embeds.device)
|
203 |
+
block_flag[:, 0] = 1
|
204 |
+
try:
|
205 |
+
replace_embeds = self.prompt_embeddings(
|
206 |
+
torch.LongTensor(list(range(self.pre_seq_len))).to(inputs_embeds.device))
|
207 |
+
except:
|
208 |
+
import pdb
|
209 |
+
pdb.set_trace()
|
210 |
+
replace_embeds = self.prompt_embeddings(
|
211 |
+
torch.LongTensor(list(range(self.pre_seq_len))))
|
212 |
+
replace_embeds = replace_embeds.unsqueeze(0) # [batch_size, prompt_length, embed_size]
|
213 |
+
|
214 |
+
if self.prompt_encoder is not None:
|
215 |
+
replace_embeds = self.prompt_encoder(replace_embeds)
|
216 |
+
|
217 |
+
# edit by wjn
|
218 |
+
if reparameterization:
|
219 |
+
# blocked_indices = (block_flag == 1).nonzero(as_tuple=False).reshape((batch_size, self.pre_seq_len, 2))[:, :, 1]
|
220 |
+
blocked_indices = (block_flag == 1).nonzero()
|
221 |
+
# reparameterization
|
222 |
+
for bidx in range(batch_size):
|
223 |
+
for i in range(blocked_indices.shape[1]):
|
224 |
+
inputs_embeds[bidx, blocked_indices[bidx, i], :] = replace_embeds[:, i, :].squeeze()
|
225 |
+
else:
|
226 |
+
replace_embeds = replace_embeds.expand(batch_size, self.pre_seq_len, -1).to(inputs_embeds.device)
|
227 |
+
inputs_embeds = torch.cat((replace_embeds, inputs_embeds), dim=1)
|
228 |
+
return inputs_embeds
|
229 |
+
|
230 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
231 |
+
"""
|
232 |
+
Encoding and obtain logits at masked position
|
233 |
+
"""
|
234 |
+
batch_size = inputs_embeds.shape[0]
|
235 |
+
if mask_pos is not None:
|
236 |
+
mask_pos = mask_pos.squeeze()
|
237 |
+
# Encode everything
|
238 |
+
if inputs_embeds is None:
|
239 |
+
outputs = self.bert(
|
240 |
+
input_ids,
|
241 |
+
attention_mask=attention_mask,
|
242 |
+
token_type_ids=token_type_ids
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
|
246 |
+
if inputs_embeds.shape[1] == attention_mask.shape[1]:
|
247 |
+
outputs = self.bert(
|
248 |
+
None,
|
249 |
+
attention_mask=attention_mask,
|
250 |
+
token_type_ids=token_type_ids,
|
251 |
+
inputs_embeds=inputs_embeds
|
252 |
+
)
|
253 |
+
# Get <mask> token representation
|
254 |
+
sequence_output, pooled_output = outputs[:2]
|
255 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
256 |
+
else:
|
257 |
+
if attention_mask is not None:
|
258 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).long().to(self.bert.device)
|
259 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
260 |
+
if token_type_ids is not None:
|
261 |
+
prefix_token_type_ids = torch.zeros(batch_size, self.pre_seq_len).long().to(self.bert.device)
|
262 |
+
token_type_ids = torch.cat((prefix_token_type_ids, token_type_ids), dim=1)
|
263 |
+
outputs = self.bert(
|
264 |
+
None,
|
265 |
+
attention_mask=attention_mask,
|
266 |
+
token_type_ids=token_type_ids,
|
267 |
+
inputs_embeds=inputs_embeds
|
268 |
+
)
|
269 |
+
# Get <mask> token representation
|
270 |
+
sequence_output, pooled_output = outputs[:2]
|
271 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
272 |
+
|
273 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
274 |
+
# Logits over vocabulary tokens
|
275 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
276 |
+
|
277 |
+
# Exit early and only return mask logits.
|
278 |
+
if return_full_softmax:
|
279 |
+
return prediction_mask_scores
|
280 |
+
|
281 |
+
# Return logits for each label
|
282 |
+
logits = []
|
283 |
+
for label_id in range(len(self.label_word_list)):
|
284 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
285 |
+
logits = torch.cat(logits, -1)
|
286 |
+
|
287 |
+
# Regression task
|
288 |
+
if self.config.num_labels == 1:
|
289 |
+
logsoftmax = nn.LogSoftmax(-1)
|
290 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
291 |
+
|
292 |
+
return logits, sequence_mask_output
|
293 |
+
|
294 |
+
def forward(
|
295 |
+
self,
|
296 |
+
input_ids=None,
|
297 |
+
attention_mask=None,
|
298 |
+
token_type_ids=None,
|
299 |
+
mask_pos=None,
|
300 |
+
labels=None,
|
301 |
+
inputs_embeds=None,
|
302 |
+
block_flag=None,
|
303 |
+
return_dict=None,
|
304 |
+
):
|
305 |
+
|
306 |
+
inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
307 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
308 |
+
loss = None
|
309 |
+
if labels is not None:
|
310 |
+
if self.num_labels == 1:
|
311 |
+
# Regression task
|
312 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
313 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
314 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
315 |
+
else:
|
316 |
+
|
317 |
+
if labels.shape == logits.shape:
|
318 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
319 |
+
labels, reduction="batchmean")
|
320 |
+
else:
|
321 |
+
loss_fct = nn.CrossEntropyLoss()
|
322 |
+
|
323 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
324 |
+
|
325 |
+
output = (logits,)
|
326 |
+
if self.num_labels == 1:
|
327 |
+
# Regression output
|
328 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
329 |
+
|
330 |
+
if not return_dict:
|
331 |
+
return ((loss,) + output) if loss is not None else output
|
332 |
+
|
333 |
+
return SequenceClassifierOutput(
|
334 |
+
loss=loss,
|
335 |
+
logits=logits,
|
336 |
+
)
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
"""
|
341 |
+
Prefix-tuning BERT
|
342 |
+
"""
|
343 |
+
class PromptBertPrefixForSequenceClassification(BertPreTrainedModel):
|
344 |
+
|
345 |
+
def __init__(self, config):
|
346 |
+
super().__init__(config)
|
347 |
+
|
348 |
+
|
349 |
+
self.num_labels = config.num_labels
|
350 |
+
self.pre_seq_len = self.config.pre_seq_len
|
351 |
+
self.hidden_size = self.config.hidden_size
|
352 |
+
|
353 |
+
self.n_layer = config.num_hidden_layers
|
354 |
+
self.n_head = config.num_attention_heads
|
355 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
356 |
+
|
357 |
+
# backbone
|
358 |
+
self.bert = BertModel(config)
|
359 |
+
if self.config.use_freezing:
|
360 |
+
self.bert = freezer.freeze_lm(self.bert)
|
361 |
+
# mlm head
|
362 |
+
self.cls = BertOnlyMLMHead(config)
|
363 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
364 |
+
# plm embedding layer
|
365 |
+
self.backbone_embeddings = self.bert.embeddings.word_embeddings
|
366 |
+
# prompt embedding layer
|
367 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
368 |
+
# prefix encoder
|
369 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
370 |
+
self.prefix_encoder = PrefixEncoder(config)
|
371 |
+
|
372 |
+
self.init_weights()
|
373 |
+
|
374 |
+
# These attributes should be assigned once the model is initialized
|
375 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
376 |
+
|
377 |
+
# For regression
|
378 |
+
self.lb = None
|
379 |
+
self.ub = None
|
380 |
+
|
381 |
+
# For label search.
|
382 |
+
self.return_full_softmax = None
|
383 |
+
|
384 |
+
# For regression
|
385 |
+
self.lb = None
|
386 |
+
self.ub = None
|
387 |
+
|
388 |
+
# For label search.
|
389 |
+
self.return_full_softmax = None
|
390 |
+
|
391 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
392 |
+
if use_freezing:
|
393 |
+
self.bert = freezer.freeze_lm(self.bert)
|
394 |
+
else:
|
395 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
396 |
+
|
397 |
+
def get_prompt(self, batch_size):
|
398 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.bert.device)
|
399 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
400 |
+
# bsz, seqlen, _ = past_key_values.shape
|
401 |
+
past_key_values = past_key_values.view(
|
402 |
+
batch_size,
|
403 |
+
self.pre_seq_len,
|
404 |
+
self.n_layer * 2,
|
405 |
+
self.n_head,
|
406 |
+
self.n_embd
|
407 |
+
)
|
408 |
+
past_key_values = self.dropout(past_key_values)
|
409 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
410 |
+
return past_key_values
|
411 |
+
|
412 |
+
def embed_encode(self, input_ids):
|
413 |
+
embedding_output = self.bert.embeddings.word_embeddings(input_ids)
|
414 |
+
return embedding_output
|
415 |
+
|
416 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
417 |
+
batch_size = input_ids.size(0)
|
418 |
+
|
419 |
+
# add prefix for prompt-tuning
|
420 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
421 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
|
422 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
423 |
+
|
424 |
+
if mask_pos is not None:
|
425 |
+
mask_pos = mask_pos.squeeze()
|
426 |
+
|
427 |
+
# Encode everything
|
428 |
+
outputs = self.bert(
|
429 |
+
input_ids,
|
430 |
+
attention_mask=attention_mask,
|
431 |
+
token_type_ids=token_type_ids,
|
432 |
+
past_key_values=past_key_values,
|
433 |
+
)
|
434 |
+
# Get <mask> token representation
|
435 |
+
sequence_output, pooled_output = outputs[:2]
|
436 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
437 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
438 |
+
|
439 |
+
# Logits over vocabulary tokens
|
440 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
441 |
+
|
442 |
+
# Exit early and only return mask logits.
|
443 |
+
if return_full_softmax:
|
444 |
+
return prediction_mask_scores
|
445 |
+
|
446 |
+
# print("prediction_mask_scores.shape=", prediction_mask_scores.shape) # [batch_size, seq_len, vocab_size]
|
447 |
+
|
448 |
+
# Return logits for each label
|
449 |
+
logits = []
|
450 |
+
for label_id in range(len(self.label_word_list)):
|
451 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
452 |
+
logits = torch.cat(logits, -1)
|
453 |
+
|
454 |
+
# Regression task
|
455 |
+
if self.config.num_labels == 1:
|
456 |
+
logsoftmax = nn.LogSoftmax(-1)
|
457 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
458 |
+
|
459 |
+
return logits, sequence_mask_output
|
460 |
+
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self,
|
464 |
+
input_ids=None,
|
465 |
+
attention_mask=None,
|
466 |
+
token_type_ids=None,
|
467 |
+
mask_pos=None,
|
468 |
+
labels=None,
|
469 |
+
inputs_embeds=None,
|
470 |
+
block_flag=None,
|
471 |
+
return_dict=None,
|
472 |
+
):
|
473 |
+
|
474 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
475 |
+
|
476 |
+
loss = None
|
477 |
+
if labels is not None:
|
478 |
+
if self.num_labels == 1:
|
479 |
+
# Regression task
|
480 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
481 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
482 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
483 |
+
else:
|
484 |
+
|
485 |
+
if labels.shape == logits.shape:
|
486 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
487 |
+
labels, reduction="batchmean")
|
488 |
+
else:
|
489 |
+
loss_fct = nn.CrossEntropyLoss()
|
490 |
+
|
491 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
492 |
+
|
493 |
+
output = (logits,)
|
494 |
+
if self.num_labels == 1:
|
495 |
+
# Regression output
|
496 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
497 |
+
|
498 |
+
if not return_dict:
|
499 |
+
return ((loss,) + output) if loss is not None else output
|
500 |
+
|
501 |
+
return SequenceClassifierOutput(
|
502 |
+
loss=loss,
|
503 |
+
logits=logits,
|
504 |
+
)
|
505 |
+
|
506 |
+
|
507 |
+
"""
|
508 |
+
Adapter-tuning BERT
|
509 |
+
"""
|
510 |
+
class PromptBertAdapterForSequenceClassification(BertPreTrainedModel):
|
511 |
+
|
512 |
+
def __init__(self, config):
|
513 |
+
super().__init__(config)
|
514 |
+
self.num_labels = config.num_labels
|
515 |
+
self.bert = BertAdaModel(config)
|
516 |
+
self.cls = BertOnlyMLMHead(config)
|
517 |
+
self.init_weights()
|
518 |
+
|
519 |
+
if self.config.use_freezing:
|
520 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
521 |
+
|
522 |
+
# These attributes should be assigned once the model is initialized
|
523 |
+
self.model_args = None
|
524 |
+
self.data_args = None
|
525 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
526 |
+
|
527 |
+
# For regression
|
528 |
+
self.lb = None
|
529 |
+
self.ub = None
|
530 |
+
|
531 |
+
# For label search.
|
532 |
+
self.return_full_softmax = None
|
533 |
+
|
534 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
535 |
+
if use_freezing:
|
536 |
+
self.bert = freezer.freeze_lm_component(self.bert, "adapter")
|
537 |
+
else:
|
538 |
+
self.bert = freezer.unfreeze_lm(self.bert)
|
539 |
+
|
540 |
+
def embed_encode(self, input_ids):
|
541 |
+
embedding_output = self.bert.embeddings.word_embeddings(input_ids)
|
542 |
+
return embedding_output
|
543 |
+
|
544 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
545 |
+
batch_size = input_ids.size(0)
|
546 |
+
|
547 |
+
if mask_pos is not None:
|
548 |
+
mask_pos = mask_pos.squeeze()
|
549 |
+
|
550 |
+
# Encode everything
|
551 |
+
if inputs_embeds is None:
|
552 |
+
outputs = self.bert(
|
553 |
+
input_ids,
|
554 |
+
attention_mask=attention_mask,
|
555 |
+
token_type_ids=token_type_ids
|
556 |
+
)
|
557 |
+
else:
|
558 |
+
outputs = self.bert(
|
559 |
+
None,
|
560 |
+
attention_mask=attention_mask,
|
561 |
+
token_type_ids=token_type_ids,
|
562 |
+
inputs_embeds=inputs_embeds
|
563 |
+
)
|
564 |
+
|
565 |
+
# Get <mask> token representation
|
566 |
+
sequence_output, pooled_output = outputs[:2]
|
567 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
568 |
+
|
569 |
+
# Logits over vocabulary tokens
|
570 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
571 |
+
|
572 |
+
# Exit early and only return mask logits.
|
573 |
+
if return_full_softmax:
|
574 |
+
return prediction_mask_scores
|
575 |
+
|
576 |
+
# Return logits for each label
|
577 |
+
logits = []
|
578 |
+
for label_id in range(len(self.label_word_list)):
|
579 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
580 |
+
logits = torch.cat(logits, -1)
|
581 |
+
|
582 |
+
# Regression task
|
583 |
+
if self.config.num_labels == 1:
|
584 |
+
logsoftmax = nn.LogSoftmax(-1)
|
585 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
586 |
+
|
587 |
+
return logits, sequence_mask_output
|
588 |
+
|
589 |
+
|
590 |
+
def forward(
|
591 |
+
self,
|
592 |
+
input_ids=None,
|
593 |
+
attention_mask=None,
|
594 |
+
token_type_ids=None,
|
595 |
+
mask_pos=None,
|
596 |
+
labels=None,
|
597 |
+
inputs_embeds=None,
|
598 |
+
block_flag=None,
|
599 |
+
return_dict=None,
|
600 |
+
):
|
601 |
+
|
602 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
603 |
+
|
604 |
+
loss = None
|
605 |
+
if labels is not None:
|
606 |
+
if self.num_labels == 1:
|
607 |
+
# Regression task
|
608 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
609 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
610 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
611 |
+
else:
|
612 |
+
|
613 |
+
if labels.shape == logits.shape:
|
614 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
615 |
+
labels, reduction="batchmean")
|
616 |
+
else:
|
617 |
+
loss_fct = nn.CrossEntropyLoss()
|
618 |
+
|
619 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
620 |
+
|
621 |
+
output = (logits,)
|
622 |
+
if self.num_labels == 1:
|
623 |
+
# Regression output
|
624 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
625 |
+
|
626 |
+
if not return_dict:
|
627 |
+
return ((loss,) + output) if loss is not None else output
|
628 |
+
|
629 |
+
return SequenceClassifierOutput(
|
630 |
+
loss=loss,
|
631 |
+
logits=logits,
|
632 |
+
)
|
633 |
+
|
634 |
+
|
635 |
+
|
636 |
+
"""
|
637 |
+
Vanilla Prompt-tuning RoBERTa
|
638 |
+
"""
|
639 |
+
class PromptRobertaForSequenceClassification(RobertaPreTrainedModel):
|
640 |
+
|
641 |
+
def __init__(self, config):
|
642 |
+
super().__init__(config)
|
643 |
+
self.num_labels = config.num_labels
|
644 |
+
self.pre_seq_len = self.config.pre_seq_len
|
645 |
+
self.hidden_size = self.config.hidden_size
|
646 |
+
# backbone
|
647 |
+
self.roberta = RobertaModel(config)
|
648 |
+
if self.config.use_freezing:
|
649 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
650 |
+
# mlm head
|
651 |
+
self.cls = RobertaLMHead(config)
|
652 |
+
|
653 |
+
self.init_weights()
|
654 |
+
|
655 |
+
# These attributes should be assigned once the model is initialized
|
656 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.roberta.device)
|
657 |
+
|
658 |
+
# For regression
|
659 |
+
self.lb = None
|
660 |
+
self.ub = None
|
661 |
+
|
662 |
+
# For label search.
|
663 |
+
self.return_full_softmax = None
|
664 |
+
|
665 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
666 |
+
if use_freezing:
|
667 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
668 |
+
else:
|
669 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
670 |
+
|
671 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
672 |
+
"""
|
673 |
+
Encoding and obtain logits at masked position
|
674 |
+
"""
|
675 |
+
if mask_pos is not None:
|
676 |
+
mask_pos = mask_pos.squeeze()
|
677 |
+
# Encode everything
|
678 |
+
if inputs_embeds is None:
|
679 |
+
outputs = self.roberta(
|
680 |
+
input_ids,
|
681 |
+
attention_mask=attention_mask,
|
682 |
+
token_type_ids=token_type_ids
|
683 |
+
)
|
684 |
+
else:
|
685 |
+
outputs = self.roberta(
|
686 |
+
None,
|
687 |
+
attention_mask=attention_mask,
|
688 |
+
token_type_ids=token_type_ids,
|
689 |
+
inputs_embeds=inputs_embeds
|
690 |
+
)
|
691 |
+
# Get <mask> token representation
|
692 |
+
sequence_output, pooled_output = outputs[:2]
|
693 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
694 |
+
# Logits over vocabulary tokens
|
695 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
696 |
+
|
697 |
+
# Exit early and only return mask logits.
|
698 |
+
if return_full_softmax:
|
699 |
+
return prediction_mask_scores
|
700 |
+
|
701 |
+
# Return logits for each label
|
702 |
+
logits = []
|
703 |
+
for label_id in range(len(self.label_word_list)):
|
704 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
705 |
+
logits = torch.cat(logits, -1)
|
706 |
+
|
707 |
+
# Regression task
|
708 |
+
if self.config.num_labels == 1:
|
709 |
+
logsoftmax = nn.LogSoftmax(-1)
|
710 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
711 |
+
|
712 |
+
return logits, sequence_mask_output
|
713 |
+
|
714 |
+
def forward(
|
715 |
+
self,
|
716 |
+
input_ids=None,
|
717 |
+
attention_mask=None,
|
718 |
+
token_type_ids=None,
|
719 |
+
mask_pos=None,
|
720 |
+
labels=None,
|
721 |
+
inputs_embeds=None,
|
722 |
+
block_flag=None,
|
723 |
+
return_dict=None,
|
724 |
+
):
|
725 |
+
|
726 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
727 |
+
loss = None
|
728 |
+
if labels is not None:
|
729 |
+
if self.num_labels == 1:
|
730 |
+
# Regression task
|
731 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
732 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
733 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
734 |
+
else:
|
735 |
+
|
736 |
+
if labels.shape == logits.shape:
|
737 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
738 |
+
labels, reduction="batchmean")
|
739 |
+
else:
|
740 |
+
loss_fct = nn.CrossEntropyLoss()
|
741 |
+
|
742 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
743 |
+
|
744 |
+
output = (logits,)
|
745 |
+
if self.num_labels == 1:
|
746 |
+
# Regression output
|
747 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
748 |
+
|
749 |
+
if not return_dict:
|
750 |
+
return ((loss,) + output) if loss is not None else output
|
751 |
+
|
752 |
+
return SequenceClassifierOutput(
|
753 |
+
loss=loss,
|
754 |
+
logits=logits,
|
755 |
+
)
|
756 |
+
|
757 |
+
|
758 |
+
"""
|
759 |
+
P-tuning RoBERTa
|
760 |
+
"""
|
761 |
+
class PromptRobertaPtuningForSequenceClassification(RobertaPreTrainedModel):
|
762 |
+
|
763 |
+
def __init__(self, config):
|
764 |
+
super().__init__(config)
|
765 |
+
self.num_labels = config.num_labels
|
766 |
+
self.pre_seq_len = self.config.pre_seq_len
|
767 |
+
self.hidden_size = self.config.hidden_size
|
768 |
+
# backbone
|
769 |
+
self.roberta = RobertaModel(config)
|
770 |
+
if self.config.use_freezing:
|
771 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
772 |
+
# mlm head
|
773 |
+
self.cls = RobertaLMHead(config)
|
774 |
+
# prompt encoder
|
775 |
+
self.prompt_encoder = None
|
776 |
+
# plm embedding layer
|
777 |
+
self.backbone_embeddings = self.roberta.embeddings.word_embeddings
|
778 |
+
# prompt embedding layer
|
779 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
780 |
+
|
781 |
+
self.init_weights()
|
782 |
+
|
783 |
+
# These attributes should be assigned once the model is initialized
|
784 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.roberta.device)
|
785 |
+
|
786 |
+
# For regression
|
787 |
+
self.lb = None
|
788 |
+
self.ub = None
|
789 |
+
|
790 |
+
# For label search.
|
791 |
+
self.return_full_softmax = None
|
792 |
+
|
793 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
794 |
+
if use_freezing:
|
795 |
+
self.roberta = freezer.freeze_lm(self.roberta)
|
796 |
+
else:
|
797 |
+
self.roberta = freezer.unfreeze_lm(self.roberta)
|
798 |
+
|
799 |
+
|
800 |
+
def generate_continuous_prompt_inputs(self, input_ids, block_flag=None, reparameterization=False):
|
801 |
+
"""
|
802 |
+
Generate continuous prompt embedding
|
803 |
+
"""
|
804 |
+
inputs_embeds = self.backbone_embeddings(input_ids)
|
805 |
+
|
806 |
+
batch_size = inputs_embeds.shape[0]
|
807 |
+
if block_flag is None:
|
808 |
+
# the first token is set 1, others are set 0
|
809 |
+
block_flag = torch.zeros_like(input_ids).long().to(inputs_embeds.device)
|
810 |
+
block_flag[:, 0] = 1
|
811 |
+
try:
|
812 |
+
replace_embeds = self.prompt_embeddings(
|
813 |
+
torch.LongTensor(list(range(self.pre_seq_len))).to(inputs_embeds.device))
|
814 |
+
except:
|
815 |
+
import pdb
|
816 |
+
pdb.set_trace()
|
817 |
+
replace_embeds = self.prompt_embeddings(torch.LongTensor(list(range(self.pre_seq_len))))
|
818 |
+
replace_embeds = replace_embeds.unsqueeze(0) # [batch_size, prompt_length, embed_size]
|
819 |
+
|
820 |
+
if self.prompt_encoder is not None:
|
821 |
+
replace_embeds = self.prompt_encoder(replace_embeds)
|
822 |
+
|
823 |
+
# edit by wjn
|
824 |
+
if reparameterization:
|
825 |
+
# blocked_indices = (block_flag == 1).nonzero(as_tuple=False).reshape((batch_size, self.pre_seq_len, 2))[:, :, 1]
|
826 |
+
blocked_indices = (block_flag == 1).nonzero()
|
827 |
+
# reparameterization
|
828 |
+
for bidx in range(batch_size):
|
829 |
+
for i in range(blocked_indices.shape[1]):
|
830 |
+
inputs_embeds[bidx, blocked_indices[bidx, i], :] = replace_embeds[:, i, :].squeeze()
|
831 |
+
else:
|
832 |
+
replace_embeds = replace_embeds.expand(batch_size, self.pre_seq_len, -1).to(inputs_embeds.device)
|
833 |
+
inputs_embeds = torch.cat((replace_embeds, inputs_embeds), dim=1)
|
834 |
+
return inputs_embeds
|
835 |
+
|
836 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
837 |
+
"""
|
838 |
+
Encoding and obtain logits at masked position
|
839 |
+
"""
|
840 |
+
batch_size = inputs_embeds.shape[0]
|
841 |
+
if mask_pos is not None:
|
842 |
+
mask_pos = mask_pos.squeeze()
|
843 |
+
# Encode everything
|
844 |
+
if inputs_embeds is None:
|
845 |
+
outputs = self.roberta(
|
846 |
+
input_ids,
|
847 |
+
attention_mask=attention_mask,
|
848 |
+
token_type_ids=token_type_ids
|
849 |
+
)
|
850 |
+
else:
|
851 |
+
|
852 |
+
if inputs_embeds.shape[1] == attention_mask.shape[1]:
|
853 |
+
outputs = self.roberta(
|
854 |
+
None,
|
855 |
+
attention_mask=attention_mask,
|
856 |
+
token_type_ids=token_type_ids,
|
857 |
+
inputs_embeds=inputs_embeds
|
858 |
+
)
|
859 |
+
# Get <mask> token representation
|
860 |
+
sequence_output, pooled_output = outputs[:2]
|
861 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
862 |
+
else:
|
863 |
+
if attention_mask is not None:
|
864 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).long().to(self.roberta.device)
|
865 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
866 |
+
if token_type_ids is not None:
|
867 |
+
prefix_token_type_ids = torch.zeros(batch_size, self.pre_seq_len).long().to(self.roberta.device)
|
868 |
+
token_type_ids = torch.cat((prefix_token_type_ids, token_type_ids), dim=1)
|
869 |
+
outputs = self.roberta(
|
870 |
+
None,
|
871 |
+
attention_mask=attention_mask,
|
872 |
+
token_type_ids=token_type_ids,
|
873 |
+
inputs_embeds=inputs_embeds
|
874 |
+
)
|
875 |
+
# Get <mask> token representation
|
876 |
+
sequence_output, pooled_output = outputs[:2]
|
877 |
+
sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
878 |
+
|
879 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
880 |
+
# Logits over vocabulary tokens
|
881 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
882 |
+
|
883 |
+
# Exit early and only return mask logits.
|
884 |
+
if return_full_softmax:
|
885 |
+
return prediction_mask_scores
|
886 |
+
|
887 |
+
# Return logits for each label
|
888 |
+
logits = []
|
889 |
+
for label_id in range(len(self.label_word_list)):
|
890 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
891 |
+
logits = torch.cat(logits, -1)
|
892 |
+
|
893 |
+
# Regression task
|
894 |
+
if self.config.num_labels == 1:
|
895 |
+
logsoftmax = nn.LogSoftmax(-1)
|
896 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
897 |
+
|
898 |
+
return logits, sequence_mask_output
|
899 |
+
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
input_ids=None,
|
903 |
+
attention_mask=None,
|
904 |
+
token_type_ids=None,
|
905 |
+
mask_pos=None,
|
906 |
+
labels=None,
|
907 |
+
inputs_embeds=None,
|
908 |
+
block_flag=None,
|
909 |
+
return_dict=None,
|
910 |
+
):
|
911 |
+
|
912 |
+
inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
913 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
914 |
+
loss = None
|
915 |
+
if labels is not None:
|
916 |
+
if self.num_labels == 1:
|
917 |
+
# Regression task
|
918 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
919 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
920 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
921 |
+
else:
|
922 |
+
|
923 |
+
if labels.shape == logits.shape:
|
924 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
925 |
+
labels, reduction="batchmean")
|
926 |
+
else:
|
927 |
+
loss_fct = nn.CrossEntropyLoss()
|
928 |
+
|
929 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
930 |
+
|
931 |
+
output = (logits,)
|
932 |
+
if self.num_labels == 1:
|
933 |
+
# Regression output
|
934 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
935 |
+
|
936 |
+
if not return_dict:
|
937 |
+
return ((loss,) + output) if loss is not None else output
|
938 |
+
|
939 |
+
return SequenceClassifierOutput(
|
940 |
+
loss=loss,
|
941 |
+
logits=logits,
|
942 |
+
)
|
943 |
+
|
944 |
+
|
945 |
+
"""
|
946 |
+
Prefix-tuning RoBERTa
|
947 |
+
"""
|
948 |
+
class PromptRobertaPrefixForSequenceClassification(RobertaPreTrainedModel):
|
949 |
+
|
950 |
+
def __init__(self, config):
|
951 |
+
super().__init__(config)
|
952 |
+
|
953 |
+
|
954 |
+
self.num_labels = config.num_labels
|
955 |
+
self.pre_seq_len = self.config.pre_seq_len
|
956 |
+
self.hidden_size = self.config.hidden_size
|
957 |
+
|
958 |
+
self.n_layer = config.num_hidden_layers
|
959 |
+
self.n_head = config.num_attention_heads
|
960 |
+
self.n_embd = config.hidden_size // config.num_attention_heads
|
961 |
+
|
962 |
+
# backbone
|
963 |
+
self.robert = RobertaModel(config)
|
964 |
+
if self.config.use_freezing:
|
965 |
+
self.robert = freezer.freeze_lm(self.robert)
|
966 |
+
# mlm head
|
967 |
+
self.cls = RobertaLMHead(config)
|
968 |
+
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
969 |
+
# plm embedding layer
|
970 |
+
self.backbone_embeddings = self.robert.embeddings.word_embeddings
|
971 |
+
# prompt embedding layer
|
972 |
+
self.prompt_embeddings = torch.nn.Embedding(self.pre_seq_len, self.hidden_size)
|
973 |
+
# prefix encoder
|
974 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
975 |
+
self.prefix_encoder = PrefixEncoder(config)
|
976 |
+
|
977 |
+
self.init_weights()
|
978 |
+
|
979 |
+
# These attributes should be assigned once the model is initialized
|
980 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.robert.device)
|
981 |
+
|
982 |
+
# For regression
|
983 |
+
self.lb = None
|
984 |
+
self.ub = None
|
985 |
+
|
986 |
+
# For label search.
|
987 |
+
self.return_full_softmax = None
|
988 |
+
|
989 |
+
# For regression
|
990 |
+
self.lb = None
|
991 |
+
self.ub = None
|
992 |
+
|
993 |
+
# For label search.
|
994 |
+
self.return_full_softmax = None
|
995 |
+
|
996 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
997 |
+
if use_freezing:
|
998 |
+
self.robert = freezer.freeze_lm(self.robert)
|
999 |
+
else:
|
1000 |
+
self.robert = freezer.unfreeze_lm(self.robert)
|
1001 |
+
|
1002 |
+
def get_prompt(self, batch_size):
|
1003 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.robert.device)
|
1004 |
+
past_key_values = self.prefix_encoder(prefix_tokens)
|
1005 |
+
# bsz, seqlen, _ = past_key_values.shape
|
1006 |
+
past_key_values = past_key_values.view(
|
1007 |
+
batch_size,
|
1008 |
+
self.pre_seq_len,
|
1009 |
+
self.n_layer * 2,
|
1010 |
+
self.n_head,
|
1011 |
+
self.n_embd
|
1012 |
+
)
|
1013 |
+
past_key_values = self.dropout(past_key_values)
|
1014 |
+
past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
1015 |
+
return past_key_values
|
1016 |
+
|
1017 |
+
def embed_encode(self, input_ids):
|
1018 |
+
embedding_output = self.robert.embeddings.word_embeddings(input_ids)
|
1019 |
+
return embedding_output
|
1020 |
+
|
1021 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
1022 |
+
batch_size = input_ids.size(0)
|
1023 |
+
|
1024 |
+
# add prefix for prompt-tuning
|
1025 |
+
past_key_values = self.get_prompt(batch_size=batch_size)
|
1026 |
+
prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.robert.device)
|
1027 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
1028 |
+
|
1029 |
+
if mask_pos is not None:
|
1030 |
+
mask_pos = mask_pos.squeeze()
|
1031 |
+
|
1032 |
+
# Encode everything
|
1033 |
+
outputs = self.robert(
|
1034 |
+
input_ids,
|
1035 |
+
attention_mask=attention_mask,
|
1036 |
+
token_type_ids=token_type_ids,
|
1037 |
+
past_key_values=past_key_values,
|
1038 |
+
)
|
1039 |
+
# Get <mask> token representation
|
1040 |
+
sequence_output, pooled_output = outputs[:2]
|
1041 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
1042 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
1043 |
+
|
1044 |
+
# Logits over vocabulary tokens
|
1045 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
1046 |
+
|
1047 |
+
# Exit early and only return mask logits.
|
1048 |
+
if return_full_softmax:
|
1049 |
+
return prediction_mask_scores
|
1050 |
+
|
1051 |
+
# Return logits for each label
|
1052 |
+
logits = []
|
1053 |
+
for label_id in range(len(self.label_word_list)):
|
1054 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
1055 |
+
logits = torch.cat(logits, -1)
|
1056 |
+
|
1057 |
+
# Regression task
|
1058 |
+
if self.config.num_labels == 1:
|
1059 |
+
logsoftmax = nn.LogSoftmax(-1)
|
1060 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
1061 |
+
|
1062 |
+
return logits, sequence_mask_output
|
1063 |
+
|
1064 |
+
|
1065 |
+
def forward(
|
1066 |
+
self,
|
1067 |
+
input_ids=None,
|
1068 |
+
attention_mask=None,
|
1069 |
+
token_type_ids=None,
|
1070 |
+
mask_pos=None,
|
1071 |
+
labels=None,
|
1072 |
+
inputs_embeds=None,
|
1073 |
+
block_flag=None,
|
1074 |
+
return_dict=None,
|
1075 |
+
):
|
1076 |
+
|
1077 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
1078 |
+
|
1079 |
+
loss = None
|
1080 |
+
if labels is not None:
|
1081 |
+
if self.num_labels == 1:
|
1082 |
+
# Regression task
|
1083 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
1084 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
1085 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
1086 |
+
else:
|
1087 |
+
|
1088 |
+
if labels.shape == logits.shape:
|
1089 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
1090 |
+
labels, reduction="batchmean")
|
1091 |
+
else:
|
1092 |
+
loss_fct = nn.CrossEntropyLoss()
|
1093 |
+
|
1094 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
1095 |
+
|
1096 |
+
output = (logits,)
|
1097 |
+
if self.num_labels == 1:
|
1098 |
+
# Regression output
|
1099 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
1100 |
+
|
1101 |
+
if not return_dict:
|
1102 |
+
return ((loss,) + output) if loss is not None else output
|
1103 |
+
|
1104 |
+
return SequenceClassifierOutput(
|
1105 |
+
loss=loss,
|
1106 |
+
logits=logits,
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
"""
|
1110 |
+
Adapter-tuning RoBERTa
|
1111 |
+
"""
|
1112 |
+
class PromptRobertaAdapterForSequenceClassification(RobertaPreTrainedModel):
|
1113 |
+
|
1114 |
+
def __init__(self, config):
|
1115 |
+
super().__init__(config)
|
1116 |
+
self.num_labels = config.num_labels
|
1117 |
+
self.roberta = RobertaAdaModel(config)
|
1118 |
+
self.cls = RobertaLMHead(config)
|
1119 |
+
self.init_weights()
|
1120 |
+
|
1121 |
+
if self.config.use_freezing:
|
1122 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
1123 |
+
|
1124 |
+
# These attributes should be assigned once the model is initialized
|
1125 |
+
self.model_args = None
|
1126 |
+
self.data_args = None
|
1127 |
+
self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.roberta.device)
|
1128 |
+
|
1129 |
+
# For regression
|
1130 |
+
self.lb = None
|
1131 |
+
self.ub = None
|
1132 |
+
|
1133 |
+
# For label search.
|
1134 |
+
self.return_full_softmax = None
|
1135 |
+
|
1136 |
+
def freeze_backbone(self, use_freezing: bool=True):
|
1137 |
+
if use_freezing:
|
1138 |
+
self.roberta = freezer.freeze_lm_component(self.roberta, "adapter")
|
1139 |
+
else:
|
1140 |
+
self.roberta = freezer.unfreeze_lm(self.berobertart)
|
1141 |
+
|
1142 |
+
def embed_encode(self, input_ids):
|
1143 |
+
embedding_output = self.roberta.embeddings.word_embeddings(input_ids)
|
1144 |
+
return embedding_output
|
1145 |
+
|
1146 |
+
def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
1147 |
+
batch_size = input_ids.size(0)
|
1148 |
+
|
1149 |
+
if mask_pos is not None:
|
1150 |
+
mask_pos = mask_pos.squeeze()
|
1151 |
+
|
1152 |
+
# Encode everything
|
1153 |
+
if inputs_embeds is None:
|
1154 |
+
outputs = self.roberta(
|
1155 |
+
input_ids,
|
1156 |
+
attention_mask=attention_mask,
|
1157 |
+
token_type_ids=token_type_ids
|
1158 |
+
)
|
1159 |
+
else:
|
1160 |
+
outputs = self.roberta(
|
1161 |
+
None,
|
1162 |
+
attention_mask=attention_mask,
|
1163 |
+
token_type_ids=token_type_ids,
|
1164 |
+
inputs_embeds=inputs_embeds
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
# Get <mask> token representation
|
1168 |
+
sequence_output, pooled_output = outputs[:2]
|
1169 |
+
sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
1170 |
+
|
1171 |
+
# Logits over vocabulary tokens
|
1172 |
+
prediction_mask_scores = self.cls(sequence_mask_output)
|
1173 |
+
|
1174 |
+
# Exit early and only return mask logits.
|
1175 |
+
if return_full_softmax:
|
1176 |
+
return prediction_mask_scores
|
1177 |
+
|
1178 |
+
# Return logits for each label
|
1179 |
+
logits = []
|
1180 |
+
for label_id in range(len(self.label_word_list)):
|
1181 |
+
logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
1182 |
+
logits = torch.cat(logits, -1)
|
1183 |
+
|
1184 |
+
# Regression task
|
1185 |
+
if self.config.num_labels == 1:
|
1186 |
+
logsoftmax = nn.LogSoftmax(-1)
|
1187 |
+
logits = logsoftmax(logits) # Log prob of right polarity
|
1188 |
+
|
1189 |
+
return logits, sequence_mask_output
|
1190 |
+
|
1191 |
+
|
1192 |
+
def forward(
|
1193 |
+
self,
|
1194 |
+
input_ids=None,
|
1195 |
+
attention_mask=None,
|
1196 |
+
token_type_ids=None,
|
1197 |
+
mask_pos=None,
|
1198 |
+
labels=None,
|
1199 |
+
inputs_embeds=None,
|
1200 |
+
block_flag=None,
|
1201 |
+
return_dict=None,
|
1202 |
+
):
|
1203 |
+
|
1204 |
+
logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
1205 |
+
|
1206 |
+
loss = None
|
1207 |
+
if labels is not None:
|
1208 |
+
if self.num_labels == 1:
|
1209 |
+
# Regression task
|
1210 |
+
loss_fct = nn.KLDivLoss(log_target=True)
|
1211 |
+
labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
1212 |
+
loss = loss_fct(logits.view(-1, 2), labels)
|
1213 |
+
else:
|
1214 |
+
|
1215 |
+
if labels.shape == logits.shape:
|
1216 |
+
loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
1217 |
+
labels, reduction="batchmean")
|
1218 |
+
else:
|
1219 |
+
loss_fct = nn.CrossEntropyLoss()
|
1220 |
+
|
1221 |
+
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
1222 |
+
|
1223 |
+
output = (logits,)
|
1224 |
+
if self.num_labels == 1:
|
1225 |
+
# Regression output
|
1226 |
+
output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
1227 |
+
|
1228 |
+
if not return_dict:
|
1229 |
+
return ((loss,) + output) if loss is not None else output
|
1230 |
+
|
1231 |
+
return SequenceClassifierOutput(
|
1232 |
+
loss=loss,
|
1233 |
+
logits=logits,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
|
1237 |
+
# class DebertaForPromptFinetuning(DebertaPreTrainedModel):
|
1238 |
+
# _keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1239 |
+
# _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1240 |
+
|
1241 |
+
# def __init__(self, config):
|
1242 |
+
# super().__init__(config)
|
1243 |
+
# self.num_labels = config.num_labels
|
1244 |
+
# #self.deberta = DebertaV2Model(config)
|
1245 |
+
|
1246 |
+
# self.deberta = DebertaModel(config)
|
1247 |
+
# self.cls = DebertaOnlyMLMHead(config)
|
1248 |
+
|
1249 |
+
# if self.config.use_freezing:
|
1250 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1251 |
+
|
1252 |
+
# self.pooler = ContextPooler(config)
|
1253 |
+
# output_dim = self.pooler.output_dim
|
1254 |
+
|
1255 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
1256 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
1257 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1258 |
+
|
1259 |
+
# self.dropout = StableDropout(drop_out)
|
1260 |
+
|
1261 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
1262 |
+
|
1263 |
+
# self.classifier = nn.Sequential(*classification_list)
|
1264 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
1265 |
+
|
1266 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
1267 |
+
# self.init_weights()
|
1268 |
+
|
1269 |
+
# # These attributes should be assigned once the model is initialized
|
1270 |
+
# self.model_args = None
|
1271 |
+
# self.data_args = None
|
1272 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
1273 |
+
# self.K = 1
|
1274 |
+
# self.step_size=1e-5
|
1275 |
+
# # import pdb
|
1276 |
+
# # pdb.set_trace()
|
1277 |
+
# #self.step_size=config.step_size
|
1278 |
+
|
1279 |
+
# # For regression
|
1280 |
+
# self.lb = None
|
1281 |
+
# self.ub = None
|
1282 |
+
|
1283 |
+
# self.pre_seq_len = self.config.pre_seq_len
|
1284 |
+
# # For auto label search.
|
1285 |
+
# self.return_full_softmax = None
|
1286 |
+
|
1287 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
1288 |
+
# if use_freezing:
|
1289 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1290 |
+
# else:
|
1291 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
1292 |
+
|
1293 |
+
|
1294 |
+
|
1295 |
+
# def embed_encode(self, input_ids):
|
1296 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
1297 |
+
# return embedding_output
|
1298 |
+
|
1299 |
+
# def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None,
|
1300 |
+
# return_full_softmax=False):
|
1301 |
+
# batch_size = input_ids.size(0)
|
1302 |
+
|
1303 |
+
# if mask_pos is not None:
|
1304 |
+
# mask_pos = mask_pos.squeeze()
|
1305 |
+
|
1306 |
+
|
1307 |
+
# # Encode everything
|
1308 |
+
# if inputs_embeds is None:
|
1309 |
+
# outputs = self.deberta(
|
1310 |
+
# input_ids,
|
1311 |
+
# attention_mask=attention_mask,
|
1312 |
+
# token_type_ids=token_type_ids
|
1313 |
+
# )
|
1314 |
+
# else:
|
1315 |
+
# outputs = self.deberta(
|
1316 |
+
# None,
|
1317 |
+
# attention_mask=attention_mask,
|
1318 |
+
# token_type_ids=token_type_ids,
|
1319 |
+
# inputs_embeds=inputs_embeds
|
1320 |
+
# )
|
1321 |
+
|
1322 |
+
# # Get <mask> token representation
|
1323 |
+
# sequence_output = outputs[0]
|
1324 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
1325 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
1326 |
+
|
1327 |
+
# # Logits over vocabulary tokens
|
1328 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
1329 |
+
|
1330 |
+
# # sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
1331 |
+
|
1332 |
+
# # Exit early and only return mask logits.
|
1333 |
+
# if return_full_softmax:
|
1334 |
+
# return prediction_mask_scores
|
1335 |
+
|
1336 |
+
# # Return logits for each label
|
1337 |
+
# logits = []
|
1338 |
+
# for label_id in range(len(self.label_word_list)):
|
1339 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
1340 |
+
# logits = torch.cat(logits, -1)
|
1341 |
+
|
1342 |
+
# # Regression task
|
1343 |
+
# if self.config.num_labels == 1:
|
1344 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
1345 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
1346 |
+
|
1347 |
+
# if self.model_args.hybrid == 1:
|
1348 |
+
# cls_logits = self.classifier(sequence_output)
|
1349 |
+
# return (logits, cls_logits), sequence_mask_output
|
1350 |
+
|
1351 |
+
# return logits, sequence_mask_output
|
1352 |
+
|
1353 |
+
# def forward(
|
1354 |
+
# self,
|
1355 |
+
# input_ids=None,
|
1356 |
+
# attention_mask=None,
|
1357 |
+
# token_type_ids=None,
|
1358 |
+
# mask_pos=None,
|
1359 |
+
# labels=None,
|
1360 |
+
# inputs_embeds=None,
|
1361 |
+
# fwd_type=0,
|
1362 |
+
# block_flag=None
|
1363 |
+
# ):
|
1364 |
+
|
1365 |
+
# if fwd_type == 2:
|
1366 |
+
# assert inputs_embeds is not None
|
1367 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
|
1368 |
+
# mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
1369 |
+
|
1370 |
+
# elif fwd_type == 1:
|
1371 |
+
# return self.embed_encode(input_ids)
|
1372 |
+
|
1373 |
+
|
1374 |
+
|
1375 |
+
# if (self.model_args.prompt_ptuning or self.model_args.prompt_prefix) and block_flag is not None:
|
1376 |
+
# inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
1377 |
+
|
1378 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
1379 |
+
|
1380 |
+
# if self.model_args.hybrid == 1:
|
1381 |
+
# logits = logits[0]
|
1382 |
+
# cls_logits = logits[1]
|
1383 |
+
|
1384 |
+
# loss = None
|
1385 |
+
# if labels is not None:
|
1386 |
+
# if self.num_labels == 1:
|
1387 |
+
# # Regression task
|
1388 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
1389 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb),
|
1390 |
+
# (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
1391 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
1392 |
+
# else:
|
1393 |
+
|
1394 |
+
# if labels.shape == logits.shape:
|
1395 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
1396 |
+
# labels, reduction="batchmean")
|
1397 |
+
# else:
|
1398 |
+
# loss_fct = nn.CrossEntropyLoss()
|
1399 |
+
|
1400 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
1401 |
+
|
1402 |
+
# output = (logits,)
|
1403 |
+
# if self.num_labels == 1:
|
1404 |
+
# # Regression output
|
1405 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
1406 |
+
|
1407 |
+
# return ((loss,) + output) if loss is not None else output
|
1408 |
+
|
1409 |
+
|
1410 |
+
|
1411 |
+
# # add by wjn
|
1412 |
+
# # Prefix-tuning for Deberta
|
1413 |
+
# class DebertaPrefixForPromptFinetuning(DebertaPreTrainedModel):
|
1414 |
+
|
1415 |
+
# def __init__(self, config):
|
1416 |
+
# super().__init__(config)
|
1417 |
+
# self.num_labels = config.num_labels
|
1418 |
+
# #self.deberta = DebertaV2Model(config)
|
1419 |
+
|
1420 |
+
# self.deberta = DebertaModel(config)
|
1421 |
+
# self.cls = DebertaOnlyMLMHead(config)
|
1422 |
+
|
1423 |
+
# self.pooler = ContextPooler(config)
|
1424 |
+
# output_dim = self.pooler.output_dim
|
1425 |
+
|
1426 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
1427 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
1428 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1429 |
+
|
1430 |
+
# self.dropout = StableDropout(drop_out)
|
1431 |
+
|
1432 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
1433 |
+
|
1434 |
+
# self.classifier = nn.Sequential(*classification_list)
|
1435 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
1436 |
+
|
1437 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
1438 |
+
# self.init_weights()
|
1439 |
+
|
1440 |
+
# if self.config.use_freezing:
|
1441 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1442 |
+
|
1443 |
+
# self.pre_seq_len = config.pre_seq_len
|
1444 |
+
# self.n_layer = config.num_hidden_layers
|
1445 |
+
# self.n_head = config.num_attention_heads
|
1446 |
+
# self.n_embd = config.hidden_size // config.num_attention_heads
|
1447 |
+
|
1448 |
+
# self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
1449 |
+
# self.prefix_encoder = PrefixEncoder(config)
|
1450 |
+
|
1451 |
+
# # These attributes should be assigned once the model is initialized
|
1452 |
+
# self.model_args = None
|
1453 |
+
# self.data_args = None
|
1454 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
1455 |
+
# self.K = 1
|
1456 |
+
# self.step_size=1e-5
|
1457 |
+
# # import pdb
|
1458 |
+
# # pdb.set_trace()
|
1459 |
+
# #self.step_size=config.step_size
|
1460 |
+
|
1461 |
+
# # For regression
|
1462 |
+
# self.lb = None
|
1463 |
+
# self.ub = None
|
1464 |
+
|
1465 |
+
|
1466 |
+
# # For auto label search.
|
1467 |
+
# self.return_full_softmax = None
|
1468 |
+
|
1469 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
1470 |
+
# if use_freezing:
|
1471 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1472 |
+
# else:
|
1473 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
1474 |
+
|
1475 |
+
# def get_prompt(self, batch_size):
|
1476 |
+
# prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
1477 |
+
# past_key_values = self.prefix_encoder(prefix_tokens)
|
1478 |
+
# # bsz, seqlen, _ = past_key_values.shape
|
1479 |
+
# past_key_values = past_key_values.view(
|
1480 |
+
# batch_size,
|
1481 |
+
# self.pre_seq_len,
|
1482 |
+
# self.n_layer * 2,
|
1483 |
+
# self.n_head,
|
1484 |
+
# self.n_embd
|
1485 |
+
# )
|
1486 |
+
# past_key_values = self.dropout(past_key_values)
|
1487 |
+
# past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
1488 |
+
# return past_key_values
|
1489 |
+
|
1490 |
+
|
1491 |
+
# def get_constrast_loss(self,
|
1492 |
+
# input_ids=None,
|
1493 |
+
# attention_mask=None,
|
1494 |
+
# mask_pos=None,
|
1495 |
+
# labels=None,
|
1496 |
+
# inputs_embeds=None):
|
1497 |
+
|
1498 |
+
# self.cos = nn.CosineSimilarity(dim=-1)
|
1499 |
+
|
1500 |
+
|
1501 |
+
# _, sequence_mask_output_1 = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
1502 |
+
# _, sequence_mask_output_2 = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
1503 |
+
|
1504 |
+
# sequence_mask_output_1= self.lm_head.dense(sequence_mask_output_1)
|
1505 |
+
# sequence_mask_output_2 = self.lm_head.dense(sequence_mask_output_2)
|
1506 |
+
# # input_args = [input_ids, attention_mask, mask_pos, labels, None, 1]
|
1507 |
+
# # embed = self.forward(*input_args)
|
1508 |
+
# #
|
1509 |
+
# # vat_args = [input_ids, attention_mask, mask_pos, labels, embed, 2]
|
1510 |
+
# #
|
1511 |
+
# # adv_logits, outputs = self.forward(*vat_args)
|
1512 |
+
# #
|
1513 |
+
# # logit_mask = F.softmax(logits, dim=-1)[torch.arange(adv_logits.size(0)), labels] > 0.7
|
1514 |
+
# #
|
1515 |
+
# # outputs = outputs[logit_mask]
|
1516 |
+
# # seq_outputs = sequence_mask_output[logit_mask]
|
1517 |
+
# # new_label = labels[logit_mask]
|
1518 |
+
# # #
|
1519 |
+
# # #
|
1520 |
+
# # rand_perm = torch.randperm(outputs.size(0))
|
1521 |
+
# # rand_outputs = outputs[rand_perm, :]
|
1522 |
+
# # rand_label = new_label[rand_perm]
|
1523 |
+
# # pair_label = (new_label == rand_label).long()
|
1524 |
+
# #
|
1525 |
+
# # seq_outputs = self.map(seq_outputs)
|
1526 |
+
# # rand_outputs = self.map(rand_outputs)
|
1527 |
+
|
1528 |
+
# pair_labels = (labels.unsqueeze(1) == labels.unsqueeze(0)).float()
|
1529 |
+
|
1530 |
+
# # import pdb
|
1531 |
+
# # pdb.set_trace()
|
1532 |
+
|
1533 |
+
# contra_loss = self.contra_lc(sequence_mask_output_1.unsqueeze(1), sequence_mask_output_2.unsqueeze(0), pair_labels)
|
1534 |
+
|
1535 |
+
# if torch.isnan(contra_loss):
|
1536 |
+
# return 0
|
1537 |
+
|
1538 |
+
# return contra_loss
|
1539 |
+
|
1540 |
+
# def embed_encode(self, input_ids):
|
1541 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
1542 |
+
# return embedding_output
|
1543 |
+
|
1544 |
+
# def encode(self, input_ids=None, attention_mask=None, token_type_ids=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
1545 |
+
# batch_size = input_ids.size(0)
|
1546 |
+
|
1547 |
+
# # add prefix for prompt-tuning
|
1548 |
+
# past_key_values = self.get_prompt(batch_size=batch_size)
|
1549 |
+
# prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
1550 |
+
# attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
1551 |
+
|
1552 |
+
# if mask_pos is not None:
|
1553 |
+
# mask_pos = mask_pos.squeeze()
|
1554 |
+
|
1555 |
+
# # Encode everything
|
1556 |
+
|
1557 |
+
# outputs = self.deberta(
|
1558 |
+
# input_ids,
|
1559 |
+
# attention_mask=attention_mask,
|
1560 |
+
# token_type_ids=token_type_ids,
|
1561 |
+
# past_key_values=past_key_values,
|
1562 |
+
# )
|
1563 |
+
|
1564 |
+
|
1565 |
+
# # Get <mask> token representation
|
1566 |
+
# sequence_output, pooled_output = outputs[:2]
|
1567 |
+
# # sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
1568 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
1569 |
+
|
1570 |
+
# # Logits over vocabulary tokens
|
1571 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
1572 |
+
|
1573 |
+
# #sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
1574 |
+
|
1575 |
+
# # Exit early and only return mask logits.
|
1576 |
+
# if return_full_softmax:
|
1577 |
+
# return prediction_mask_scores
|
1578 |
+
|
1579 |
+
# # Return logits for each label
|
1580 |
+
# logits = []
|
1581 |
+
# for label_id in range(len(self.label_word_list)):
|
1582 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
1583 |
+
# logits = torch.cat(logits, -1)
|
1584 |
+
|
1585 |
+
# # Regression task
|
1586 |
+
# if self.config.num_labels == 1:
|
1587 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
1588 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
1589 |
+
|
1590 |
+
# if self.model_args.hybrid == 1:
|
1591 |
+
# cls_logits = self.classifier(sequence_output)
|
1592 |
+
# return (logits, cls_logits), sequence_mask_output
|
1593 |
+
|
1594 |
+
# return logits, sequence_mask_output
|
1595 |
+
|
1596 |
+
|
1597 |
+
# def forward(
|
1598 |
+
# self,
|
1599 |
+
# input_ids=None,
|
1600 |
+
# attention_mask=None,
|
1601 |
+
# token_type_ids=None,
|
1602 |
+
# mask_pos=None,
|
1603 |
+
# labels=None,
|
1604 |
+
# inputs_embeds=None,
|
1605 |
+
# fwd_type=0,
|
1606 |
+
# block_flag=None,
|
1607 |
+
# return_dict=None,
|
1608 |
+
# ):
|
1609 |
+
|
1610 |
+
# if fwd_type == 2:
|
1611 |
+
# assert inputs_embeds is not None
|
1612 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
|
1613 |
+
# mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
1614 |
+
|
1615 |
+
# elif fwd_type == 1:
|
1616 |
+
# return self.embed_encode(input_ids)
|
1617 |
+
|
1618 |
+
|
1619 |
+
|
1620 |
+
# if (self.model_args.prompt_ptuning or self.model_args.prompt_prefix) and block_flag is not None:
|
1621 |
+
# inputs_embeds = self.generate_continuous_prompt_inputs(input_ids, block_flag)
|
1622 |
+
|
1623 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, token_type_ids, mask_pos, inputs_embeds)
|
1624 |
+
|
1625 |
+
# if self.model_args.hybrid == 1:
|
1626 |
+
# logits = logits[0]
|
1627 |
+
# cls_logits = logits[1]
|
1628 |
+
|
1629 |
+
# loss = None
|
1630 |
+
# if labels is not None:
|
1631 |
+
# if self.num_labels == 1:
|
1632 |
+
# # Regression task
|
1633 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
1634 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb),
|
1635 |
+
# (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
1636 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
1637 |
+
# else:
|
1638 |
+
|
1639 |
+
# if labels.shape == logits.shape:
|
1640 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
1641 |
+
# labels, reduction="batchmean")
|
1642 |
+
# else:
|
1643 |
+
# loss_fct = nn.CrossEntropyLoss()
|
1644 |
+
|
1645 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
1646 |
+
|
1647 |
+
# output = (logits,)
|
1648 |
+
# if self.num_labels == 1:
|
1649 |
+
# # Regression output
|
1650 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
1651 |
+
|
1652 |
+
# if not return_dict:
|
1653 |
+
# return ((loss,) + output) if loss is not None else output
|
1654 |
+
|
1655 |
+
# return SequenceClassifierOutput(
|
1656 |
+
# loss=loss,
|
1657 |
+
# logits=logits,
|
1658 |
+
# )
|
1659 |
+
|
1660 |
+
|
1661 |
+
|
1662 |
+
|
1663 |
+
# class Debertav2ForPromptFinetuning(DebertaV2PreTrainedModel):
|
1664 |
+
# _keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1665 |
+
# _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1666 |
+
|
1667 |
+
# def __init__(self, config):
|
1668 |
+
# super().__init__(config)
|
1669 |
+
# self.num_labels = config.num_labels
|
1670 |
+
# self.deberta = DebertaV2Model(config)
|
1671 |
+
|
1672 |
+
# if self.config.use_freezing:
|
1673 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1674 |
+
# self.cls = DebertaV2OnlyMLMHead(config)
|
1675 |
+
|
1676 |
+
# #self.deberta = DebertaModel(config)
|
1677 |
+
# #self.cls = DebertaOnlyMLMHead(config)
|
1678 |
+
|
1679 |
+
# self.pooler = ContextPooler(config)
|
1680 |
+
# output_dim = self.pooler.output_dim
|
1681 |
+
|
1682 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
1683 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
1684 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1685 |
+
|
1686 |
+
# self.dropout = StableDropout(drop_out)
|
1687 |
+
|
1688 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
1689 |
+
|
1690 |
+
# self.classifier = nn.Sequential(*classification_list)
|
1691 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
1692 |
+
|
1693 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
1694 |
+
# self.init_weights()
|
1695 |
+
|
1696 |
+
# # These attributes should be assigned once the model is initialized
|
1697 |
+
# self.model_args = None
|
1698 |
+
# self.data_args = None
|
1699 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
1700 |
+
# self.K = 1
|
1701 |
+
# self.step_size=1e-5
|
1702 |
+
# # import pdb
|
1703 |
+
# # pdb.set_trace()
|
1704 |
+
# #self.step_size=config.step_size
|
1705 |
+
|
1706 |
+
# # For regression
|
1707 |
+
# self.lb = None
|
1708 |
+
# self.ub = None
|
1709 |
+
|
1710 |
+
# self.pre_seq_len = self.config.pre_seq_len
|
1711 |
+
# # For auto label search.
|
1712 |
+
# self.return_full_softmax = None
|
1713 |
+
|
1714 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
1715 |
+
# if use_freezing:
|
1716 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1717 |
+
# else:
|
1718 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
1719 |
+
|
1720 |
+
# def embed_encode(self, input_ids):
|
1721 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
1722 |
+
# return embedding_output
|
1723 |
+
|
1724 |
+
# def encode(self, input_ids=None, attention_mask=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
1725 |
+
# batch_size = input_ids.size(0)
|
1726 |
+
|
1727 |
+
# if mask_pos is not None:
|
1728 |
+
# mask_pos = mask_pos.squeeze()
|
1729 |
+
|
1730 |
+
# # Encode everything
|
1731 |
+
# if inputs_embeds is None:
|
1732 |
+
# outputs = self.deberta(
|
1733 |
+
# input_ids,
|
1734 |
+
# attention_mask=attention_mask
|
1735 |
+
# )
|
1736 |
+
# else:
|
1737 |
+
# outputs = self.deberta(
|
1738 |
+
# None,
|
1739 |
+
# attention_mask=attention_mask,
|
1740 |
+
# inputs_embeds=inputs_embeds
|
1741 |
+
# )
|
1742 |
+
|
1743 |
+
|
1744 |
+
# # Get <mask> token representation
|
1745 |
+
# sequence_output = outputs[0]
|
1746 |
+
# sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
1747 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
1748 |
+
|
1749 |
+
|
1750 |
+
# # Logits over vocabulary tokens
|
1751 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
1752 |
+
|
1753 |
+
# #sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
1754 |
+
|
1755 |
+
# # Exit early and only return mask logits.
|
1756 |
+
# if return_full_softmax:
|
1757 |
+
# return prediction_mask_scores
|
1758 |
+
|
1759 |
+
# # Return logits for each label
|
1760 |
+
# logits = []
|
1761 |
+
# for label_id in range(len(self.label_word_list)):
|
1762 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
1763 |
+
# logits = torch.cat(logits, -1)
|
1764 |
+
|
1765 |
+
# # Regression task
|
1766 |
+
# if self.config.num_labels == 1:
|
1767 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
1768 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
1769 |
+
|
1770 |
+
# return logits, sequence_mask_output
|
1771 |
+
|
1772 |
+
|
1773 |
+
# def forward(
|
1774 |
+
# self,
|
1775 |
+
# input_ids=None,
|
1776 |
+
# attention_mask=None,
|
1777 |
+
# mask_pos=None,
|
1778 |
+
# labels=None,
|
1779 |
+
# inputs_embeds=None,
|
1780 |
+
# fwd_type=0,
|
1781 |
+
# block_flag=None,
|
1782 |
+
# return_dict=None
|
1783 |
+
# ):
|
1784 |
+
# if fwd_type == 2:
|
1785 |
+
# assert inputs_embeds is not None
|
1786 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
1787 |
+
|
1788 |
+
# elif fwd_type == 1:
|
1789 |
+
# return self.embed_encode(input_ids)
|
1790 |
+
|
1791 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
1792 |
+
|
1793 |
+
# loss = None
|
1794 |
+
|
1795 |
+
|
1796 |
+
# if labels is not None:
|
1797 |
+
# if self.num_labels == 1:
|
1798 |
+
# # Regression task
|
1799 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
1800 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
1801 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
1802 |
+
# else:
|
1803 |
+
|
1804 |
+
# if labels.shape == logits.shape:
|
1805 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
1806 |
+
# labels, reduction="batchmean")
|
1807 |
+
# else:
|
1808 |
+
# loss_fct = nn.CrossEntropyLoss()
|
1809 |
+
|
1810 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
1811 |
+
# if self.model_args.hybrid == 1:
|
1812 |
+
# cls_loss = loss_fct(cls_logits.view(-1, cls_logits.size(-1)), labels.view(-1))
|
1813 |
+
# loss = loss + cls_loss
|
1814 |
+
|
1815 |
+
# output = (logits,)
|
1816 |
+
# if self.num_labels == 1:
|
1817 |
+
# # Regression output
|
1818 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
1819 |
+
|
1820 |
+
# if not return_dict:
|
1821 |
+
# return ((loss,) + output) if loss is not None else output
|
1822 |
+
|
1823 |
+
# return SequenceClassifierOutput(
|
1824 |
+
# loss=loss,
|
1825 |
+
# logits=logits,
|
1826 |
+
# )
|
1827 |
+
|
1828 |
+
|
1829 |
+
# class Debertav2PrefixForPromptFinetuning(DebertaV2PreTrainedModel):
|
1830 |
+
# _keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1831 |
+
# _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1832 |
+
|
1833 |
+
# def __init__(self, config):
|
1834 |
+
# super().__init__(config)
|
1835 |
+
# self.num_labels = config.num_labels
|
1836 |
+
# self.deberta = DebertaV2Model(config)
|
1837 |
+
# self.cls = DebertaV2OnlyMLMHead(config)
|
1838 |
+
|
1839 |
+
# #self.deberta = DebertaModel(config)
|
1840 |
+
# #self.cls = DebertaOnlyMLMHead(config)
|
1841 |
+
|
1842 |
+
# self.pooler = ContextPooler(config)
|
1843 |
+
# output_dim = self.pooler.output_dim
|
1844 |
+
|
1845 |
+
# self.classifier = torch.nn.Linear(output_dim, self.num_labels)
|
1846 |
+
# drop_out = getattr(config, "cls_dropout", None)
|
1847 |
+
# drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1848 |
+
|
1849 |
+
# self.dropout = StableDropout(drop_out)
|
1850 |
+
|
1851 |
+
# classification_list = [self.pooler, self.dropout,self.classifier]
|
1852 |
+
|
1853 |
+
# self.classifier = nn.Sequential(*classification_list)
|
1854 |
+
# # self.cls = DebertaV2OnlyMLMHead(config)
|
1855 |
+
|
1856 |
+
# self.map = nn.Linear(config.hidden_size, config.hidden_size)
|
1857 |
+
# self.init_weights()
|
1858 |
+
|
1859 |
+
# if self.config.use_freezing:
|
1860 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1861 |
+
|
1862 |
+
# self.pre_seq_len = config.pre_seq_len
|
1863 |
+
# self.n_layer = config.num_hidden_layers
|
1864 |
+
# self.n_head = config.num_attention_heads
|
1865 |
+
# self.n_embd = config.hidden_size // config.num_attention_heads
|
1866 |
+
|
1867 |
+
# self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
1868 |
+
# self.prefix_encoder = PrefixEncoder(config)
|
1869 |
+
|
1870 |
+
# # These attributes should be assigned once the model is initialized
|
1871 |
+
# self.model_args = None
|
1872 |
+
# self.data_args = None
|
1873 |
+
# self.label_word_list = torch.Tensor(self.config.label_word_list).long().to(self.bert.device)
|
1874 |
+
# self.K = 1
|
1875 |
+
# self.step_size=1e-5
|
1876 |
+
# # import pdb
|
1877 |
+
# # pdb.set_trace()
|
1878 |
+
# #self.step_size=config.step_size
|
1879 |
+
|
1880 |
+
# # For regression
|
1881 |
+
# self.lb = None
|
1882 |
+
# self.ub = None
|
1883 |
+
|
1884 |
+
|
1885 |
+
# # For auto label search.
|
1886 |
+
# self.return_full_softmax = None
|
1887 |
+
|
1888 |
+
# def freeze_backbone(self, use_freezing: bool=True):
|
1889 |
+
# if use_freezing:
|
1890 |
+
# self.deberta = freezer.freeze_lm(self.deberta)
|
1891 |
+
# else:
|
1892 |
+
# self.deberta = freezer.unfreeze_lm(self.deberta)
|
1893 |
+
|
1894 |
+
# def get_prompt(self, batch_size):
|
1895 |
+
# prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(self.deberta.device)
|
1896 |
+
# past_key_values = self.prefix_encoder(prefix_tokens)
|
1897 |
+
# # bsz, seqlen, _ = past_key_values.shape
|
1898 |
+
# past_key_values = past_key_values.view(
|
1899 |
+
# batch_size,
|
1900 |
+
# self.pre_seq_len,
|
1901 |
+
# self.n_layer * 2,
|
1902 |
+
# self.n_head,
|
1903 |
+
# self.n_embd
|
1904 |
+
# )
|
1905 |
+
# past_key_values = self.dropout(past_key_values)
|
1906 |
+
# past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(2)
|
1907 |
+
# return past_key_values
|
1908 |
+
|
1909 |
+
|
1910 |
+
# def embed_encode(self, input_ids):
|
1911 |
+
# embedding_output = self.deberta.embeddings.word_embeddings(input_ids)
|
1912 |
+
# return embedding_output
|
1913 |
+
|
1914 |
+
# def encode(self, input_ids=None, attention_mask=None, mask_pos=None, inputs_embeds=None, return_full_softmax=False):
|
1915 |
+
# batch_size = input_ids.size(0)
|
1916 |
+
|
1917 |
+
# # add prefix for prompt-tuning
|
1918 |
+
# past_key_values = self.get_prompt(batch_size=batch_size)
|
1919 |
+
# prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.deberta.device)
|
1920 |
+
# attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
1921 |
+
|
1922 |
+
|
1923 |
+
# if mask_pos is not None:
|
1924 |
+
# mask_pos = mask_pos.squeeze()
|
1925 |
+
|
1926 |
+
# # Encode everything
|
1927 |
+
# outputs = self.deberta(
|
1928 |
+
# input_ids,
|
1929 |
+
# attention_mask=attention_mask,
|
1930 |
+
# past_key_values=past_key_values,
|
1931 |
+
# )
|
1932 |
+
|
1933 |
+
|
1934 |
+
# # Get <mask> token representation
|
1935 |
+
# sequence_output = outputs[0]
|
1936 |
+
# # sequence_output = sequence_output[:, self.pre_seq_len:, :].contiguous()
|
1937 |
+
# sequence_mask_output = sequence_output[torch.arange(sequence_output.size(0)), mask_pos]
|
1938 |
+
|
1939 |
+
|
1940 |
+
# # Logits over vocabulary tokens
|
1941 |
+
# prediction_mask_scores = self.cls(sequence_mask_output)
|
1942 |
+
|
1943 |
+
# #sequence_mask_output = self.lm_head.dense(sequence_mask_output)
|
1944 |
+
|
1945 |
+
# # Exit early and only return mask logits.
|
1946 |
+
# if return_full_softmax:
|
1947 |
+
# return prediction_mask_scores
|
1948 |
+
|
1949 |
+
# # Return logits for each label
|
1950 |
+
# logits = []
|
1951 |
+
# for label_id in range(len(self.label_word_list)):
|
1952 |
+
# logits.append(prediction_mask_scores[:, self.label_word_list[label_id]].unsqueeze(-1))
|
1953 |
+
# logits = torch.cat(logits, -1)
|
1954 |
+
|
1955 |
+
# # Regression task
|
1956 |
+
# if self.config.num_labels == 1:
|
1957 |
+
# logsoftmax = nn.LogSoftmax(-1)
|
1958 |
+
# logits = logsoftmax(logits) # Log prob of right polarity
|
1959 |
+
|
1960 |
+
# return logits, sequence_mask_output
|
1961 |
+
|
1962 |
+
|
1963 |
+
# def forward(
|
1964 |
+
# self,
|
1965 |
+
# input_ids=None,
|
1966 |
+
# attention_mask=None,
|
1967 |
+
# mask_pos=None,
|
1968 |
+
# labels=None,
|
1969 |
+
# inputs_embeds=None,
|
1970 |
+
# fwd_type=0,
|
1971 |
+
# block_flag=None,
|
1972 |
+
# return_dict=None,
|
1973 |
+
# ):
|
1974 |
+
# if fwd_type == 2:
|
1975 |
+
# assert inputs_embeds is not None
|
1976 |
+
# return self.encode(input_ids=input_ids, attention_mask=attention_mask, mask_pos=mask_pos, inputs_embeds=inputs_embeds)
|
1977 |
+
|
1978 |
+
# elif fwd_type == 1:
|
1979 |
+
# return self.embed_encode(input_ids)
|
1980 |
+
|
1981 |
+
# logits, sequence_mask_output = self.encode(input_ids, attention_mask, mask_pos, inputs_embeds)
|
1982 |
+
|
1983 |
+
# loss = None
|
1984 |
+
|
1985 |
+
|
1986 |
+
# if labels is not None:
|
1987 |
+
# if self.num_labels == 1:
|
1988 |
+
# # Regression task
|
1989 |
+
# loss_fct = nn.KLDivLoss(log_target=True)
|
1990 |
+
# labels = torch.stack([1 - (labels.view(-1) - self.lb) / (self.ub - self.lb), (labels.view(-1) - self.lb) / (self.ub - self.lb)], -1)
|
1991 |
+
# loss = loss_fct(logits.view(-1, 2), labels)
|
1992 |
+
# else:
|
1993 |
+
|
1994 |
+
# if labels.shape == logits.shape:
|
1995 |
+
# loss = F.kl_div(F.log_softmax(logits, dim=-1, dtype=torch.float32),
|
1996 |
+
# labels, reduction="batchmean")
|
1997 |
+
# else:
|
1998 |
+
# loss_fct = nn.CrossEntropyLoss()
|
1999 |
+
|
2000 |
+
# loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
2001 |
+
# if self.model_args.hybrid == 1:
|
2002 |
+
# cls_loss = loss_fct(cls_logits.view(-1, cls_logits.size(-1)), labels.view(-1))
|
2003 |
+
# loss = loss + cls_loss
|
2004 |
+
|
2005 |
+
# output = (logits,)
|
2006 |
+
# if self.num_labels == 1:
|
2007 |
+
# # Regression output
|
2008 |
+
# output = (torch.exp(logits[..., 1].unsqueeze(-1)) * (self.ub - self.lb) + self.lb,)
|
2009 |
+
|
2010 |
+
# if not return_dict:
|
2011 |
+
# return ((loss,) + output) if loss is not None else output
|
2012 |
+
|
2013 |
+
# return SequenceClassifierOutput(
|
2014 |
+
# loss=loss,
|
2015 |
+
# logits=logits,
|
2016 |
+
# )
|