Spaces:
Runtime error
Runtime error
DeepLearning101
commited on
Commit
•
a2fef5f
1
Parent(s):
5894ace
Upload 2 files
Browse files- models/adversarial.py +29 -0
- models/semeval7.py +93 -0
models/adversarial.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2022/1/7 11:02 上午
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : adversarial.py
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class FGM:
|
9 |
+
def __init__(self, model):
|
10 |
+
self.model = model
|
11 |
+
self.backup = {}
|
12 |
+
|
13 |
+
def attack(self, epsilon=1., emb_name="word_embeddings"):
|
14 |
+
# emb_name这个参数要换成你模型中embedding的参数名
|
15 |
+
for name, param in self.model.named_parameters():
|
16 |
+
if param.requires_grad and emb_name in name:
|
17 |
+
self.backup[name] = param.data.clone()
|
18 |
+
norm = torch.norm(param.grad)
|
19 |
+
if norm != 0:
|
20 |
+
r_at = epsilon * param.grad / norm
|
21 |
+
param.data.add_(r_at)
|
22 |
+
|
23 |
+
def restore(self, emb_name="word_embeddings"):
|
24 |
+
# emb_name这个参数要换成你模型中embedding的参数名
|
25 |
+
for name, param in self.model.named_parameters():
|
26 |
+
if param.requires_grad and emb_name in name:
|
27 |
+
assert name in self.backup
|
28 |
+
param.data = self.backup[name]
|
29 |
+
self.backup = {}
|
models/semeval7.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2022/1/28 5:38 下午
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : semeval7.py
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
8 |
+
from transformers.activations import ACT2FN
|
9 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
10 |
+
from transformers.models.deberta_v2.modeling_deberta_v2 import ContextPooler, DebertaV2Model, DebertaV2PreTrainedModel, StableDropout
|
11 |
+
|
12 |
+
|
13 |
+
class DebertaV2ForSemEval7MultiTask(DebertaV2PreTrainedModel):
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__(config)
|
16 |
+
self.deberta = DebertaV2Model(config)
|
17 |
+
self.pooler = ContextPooler(config)
|
18 |
+
output_dim = self.pooler.output_dim
|
19 |
+
self.num_labels = 3
|
20 |
+
self.dense = nn.Linear(config.pooler_hidden_size*2, config.pooler_hidden_size)
|
21 |
+
self.classifier = nn.Linear(output_dim, self.num_labels)
|
22 |
+
self.regression = nn.Linear(output_dim, 1)
|
23 |
+
drop_out = getattr(config, "cls_dropout", None)
|
24 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
25 |
+
|
26 |
+
self.dropout = StableDropout(drop_out)
|
27 |
+
self.post_init()
|
28 |
+
|
29 |
+
def get_input_embeddings(self):
|
30 |
+
return self.deberta.get_input_embeddings()
|
31 |
+
|
32 |
+
def set_input_embeddings(self, new_embeddings):
|
33 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
34 |
+
|
35 |
+
def forward(
|
36 |
+
self,
|
37 |
+
input_ids=None,
|
38 |
+
attention_mask=None,
|
39 |
+
token_type_ids=None,
|
40 |
+
position_ids=None,
|
41 |
+
inputs_embeds=None,
|
42 |
+
labels=None,
|
43 |
+
output_attentions=None,
|
44 |
+
output_hidden_states=None,
|
45 |
+
return_dict=None,
|
46 |
+
score=None
|
47 |
+
):
|
48 |
+
r"""
|
49 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
50 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
51 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
52 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
53 |
+
"""
|
54 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
55 |
+
|
56 |
+
outputs = self.deberta(
|
57 |
+
input_ids,
|
58 |
+
token_type_ids=token_type_ids,
|
59 |
+
attention_mask=attention_mask,
|
60 |
+
position_ids=position_ids,
|
61 |
+
inputs_embeds=inputs_embeds,
|
62 |
+
output_attentions=output_attentions,
|
63 |
+
output_hidden_states=output_hidden_states,
|
64 |
+
return_dict=return_dict,
|
65 |
+
)
|
66 |
+
w = torch.logical_and(input_ids >= min(self.config.start_token_ids), input_ids <= max(self.config.start_token_ids))
|
67 |
+
start_index = w.nonzero()[:, 1].view(-1, 2)
|
68 |
+
# <start_entity> + <end_entity> 进分类
|
69 |
+
pooler_output = torch.cat([torch.cat([x[y[0], :], x[y[1], :]]).unsqueeze(0) for x, y in zip(outputs.last_hidden_state, start_index)])
|
70 |
+
# [CLS] + <start_entity> + <end_entity> 进分类
|
71 |
+
# pooler_output = torch.cat([torch.cat([z, x[y[0], :], x[y[1], :]]).unsqueeze(0)
|
72 |
+
# for x, y, z in zip(outputs.last_hidden_state, start_index, outputs.last_hidden_state[:, 0])])
|
73 |
+
|
74 |
+
context_token = self.dropout(pooler_output)
|
75 |
+
pooled_output = self.dense(context_token)
|
76 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
77 |
+
pooled_output = self.dropout(pooled_output)
|
78 |
+
re_logits = self.regression(pooled_output)
|
79 |
+
cls_logits = self.classifier(pooled_output)
|
80 |
+
|
81 |
+
loss = None
|
82 |
+
if labels is not None:
|
83 |
+
re_loss_func = MSELoss()
|
84 |
+
re_loss = re_loss_func(re_logits.squeeze(), score.squeeze())
|
85 |
+
|
86 |
+
cls_loss_func = CrossEntropyLoss()
|
87 |
+
cls_loss = cls_loss_func(cls_logits.view(-1, self.num_labels), labels.view(-1))
|
88 |
+
|
89 |
+
loss = re_loss + cls_loss
|
90 |
+
|
91 |
+
return SequenceClassifierOutput(
|
92 |
+
loss=loss, logits=torch.cat((cls_logits, re_logits), 1), hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
93 |
+
)
|