Spaces:
Sleeping
Sleeping
DeepLearning101
commited on
Commit
•
437e42f
1
Parent(s):
f4b6e70
Upload 6 files
Browse files- models/basic_modules/adapter.py +1060 -0
- models/basic_modules/crf.py +411 -0
- models/basic_modules/generation.py +146 -0
- models/basic_modules/linears.py +42 -0
- models/basic_modules/lora.py +141 -0
- models/basic_modules/prefix_encoder.py +38 -0
models/basic_modules/adapter.py
ADDED
@@ -0,0 +1,1060 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Custom models for few-shot learning specific operations."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import transformers
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction
|
8 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertForSequenceClassification, BertModel, \
|
9 |
+
BertOnlyMLMHead
|
10 |
+
from transformers.models.roberta.modeling_roberta import *
|
11 |
+
from transformers.models.bert.modeling_bert import *
|
12 |
+
from transformers.models.deberta_v2.modeling_deberta_v2 import DebertaV2PreTrainedModel, DebertaV2Model, StableDropout, \
|
13 |
+
ContextPooler, DebertaV2OnlyMLMHead
|
14 |
+
from transformers.models.deberta.modeling_deberta import DebertaPreTrainedModel, DebertaModel, StableDropout, \
|
15 |
+
ContextPooler, DebertaOnlyMLMHead
|
16 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
# adapter_choice: LiST, houlsby, lora
|
24 |
+
|
25 |
+
# add by wjn
|
26 |
+
def init_adapter(model, std=0.0002):
|
27 |
+
with torch.no_grad():
|
28 |
+
for name, param in model.named_parameters():
|
29 |
+
init_value = 0
|
30 |
+
if "adapter_proj" in name:
|
31 |
+
if std > 0:
|
32 |
+
init_value += torch.normal(0, std, size=param.size())
|
33 |
+
param.copy_(init_value)
|
34 |
+
return model
|
35 |
+
|
36 |
+
|
37 |
+
# Adapter Layer
|
38 |
+
class AdapeterLayer(nn.Module):
|
39 |
+
def __init__(self, n_in, n_out=None, adapter_dim=128, adapter_choice="LiST"):
|
40 |
+
super(AdapeterLayer, self).__init__()
|
41 |
+
if not n_out:
|
42 |
+
n_out = n_in
|
43 |
+
|
44 |
+
self.adapter_choice = adapter_choice
|
45 |
+
self.act_fun = None
|
46 |
+
|
47 |
+
if self.adapter_choice == "LiST":
|
48 |
+
self.adapter_dim = adapter_dim
|
49 |
+
self.adapter_proj_1 = nn.Linear(n_out, adapter_dim, bias=False)
|
50 |
+
nn.init.normal_(self.adapter_proj_1.weight, std=0.02)
|
51 |
+
self.adapter_proj_2 = nn.Linear(adapter_dim, n_out, bias=False)
|
52 |
+
nn.init.normal_(self.adapter_proj_2.weight, std=0.02)
|
53 |
+
|
54 |
+
elif self.adapter_choice == "houlsby":
|
55 |
+
self.adapter_dim = adapter_dim
|
56 |
+
self.adapter_proj_1 = nn.Linear(n_out, adapter_dim, bias=False)
|
57 |
+
nn.init.normal_(self.adapter_proj_1.weight, std=0.02)
|
58 |
+
self.act_fun = torch.nn.ReLU()
|
59 |
+
self.adapter_proj_2 = nn.Linear(adapter_dim, n_out, bias=False)
|
60 |
+
nn.init.normal_(self.adapter_proj_2.weight, std=0.02)
|
61 |
+
|
62 |
+
else:
|
63 |
+
self.adapter_dim = adapter_dim
|
64 |
+
self.adapter_proj_1 = nn.Linear(n_out, n_out, bias=False)
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.adapter_choice == "LiST":
|
69 |
+
result = torch.matmul(x, self.adapter_proj_1.weight.type_as(x).T)
|
70 |
+
result = torch.matmul(result, self.adapter_proj_2.weight.type_as(x).T)
|
71 |
+
return result + x
|
72 |
+
elif self.adapter_choice == "houlsby":
|
73 |
+
result = torch.matmul(x, self.adapter_proj_1.weight.type_as(x).T)
|
74 |
+
if self.act_fun is not None:
|
75 |
+
result = self.act_fun(result)
|
76 |
+
result = torch.matmul(result, self.adapter_proj_2.weight.type_as(x).T)
|
77 |
+
return result + x
|
78 |
+
|
79 |
+
else:
|
80 |
+
result = torch.matmul(x, self.adapter_proj_1.weight.type_as(x).T)
|
81 |
+
return result
|
82 |
+
|
83 |
+
|
84 |
+
## ======== Adapter For RoBERTa ========
|
85 |
+
class RobertaAdaOutput(nn.Module):
|
86 |
+
def __init__(self, config):
|
87 |
+
super().__init__()
|
88 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
89 |
+
self.config = config
|
90 |
+
self.adaptation_layer = AdapeterLayer(n_in=config.intermediate_size, n_out=config.hidden_size,
|
91 |
+
adapter_dim=config.adapter_dim, adapter_choice=config.adapter_choice)
|
92 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
93 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
94 |
+
|
95 |
+
def forward(self, hidden_states, input_tensor):
|
96 |
+
hidden_states = self.dense(hidden_states)
|
97 |
+
hidden_states = self.adaptation_layer(hidden_states)
|
98 |
+
hidden_states = self.dropout(hidden_states)
|
99 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
100 |
+
return hidden_states
|
101 |
+
|
102 |
+
|
103 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
104 |
+
class RobertaAdaSelfOutput(nn.Module):
|
105 |
+
def __init__(self, config):
|
106 |
+
super().__init__()
|
107 |
+
self.config = config
|
108 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
109 |
+
self.adaptation_layer = AdapeterLayer(n_in=config.intermediate_size, n_out=config.hidden_size,
|
110 |
+
adapter_dim=config.adapter_dim, adapter_choice=config.adapter_choice)
|
111 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
112 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
113 |
+
|
114 |
+
|
115 |
+
def forward(self, hidden_states, input_tensor):
|
116 |
+
hidden_states = self.dense(hidden_states)
|
117 |
+
hidden_states = self.adaptation_layer(hidden_states)
|
118 |
+
hidden_states = self.dropout(hidden_states)
|
119 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
120 |
+
return hidden_states
|
121 |
+
|
122 |
+
|
123 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
124 |
+
class RobertaAdaAttention(nn.Module):
|
125 |
+
def __init__(self, config):
|
126 |
+
super().__init__()
|
127 |
+
self.self = RobertaSelfAttention(config)
|
128 |
+
self.output = RobertaAdaSelfOutput(config)
|
129 |
+
self.pruned_heads = set()
|
130 |
+
|
131 |
+
|
132 |
+
def prune_heads(self, heads):
|
133 |
+
if len(heads) == 0:
|
134 |
+
return
|
135 |
+
heads, index = find_pruneable_heads_and_indices(
|
136 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
137 |
+
)
|
138 |
+
|
139 |
+
# Prune linear layers
|
140 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
141 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
142 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
143 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
144 |
+
|
145 |
+
# Update hyper params and store pruned heads
|
146 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
147 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
148 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
149 |
+
|
150 |
+
|
151 |
+
def forward(
|
152 |
+
self,
|
153 |
+
hidden_states,
|
154 |
+
attention_mask=None,
|
155 |
+
head_mask=None,
|
156 |
+
encoder_hidden_states=None,
|
157 |
+
encoder_attention_mask=None,
|
158 |
+
past_key_value=None,
|
159 |
+
output_attentions=False,
|
160 |
+
):
|
161 |
+
self_outputs = self.self(
|
162 |
+
hidden_states,
|
163 |
+
attention_mask,
|
164 |
+
head_mask,
|
165 |
+
encoder_hidden_states,
|
166 |
+
encoder_attention_mask,
|
167 |
+
past_key_value,
|
168 |
+
output_attentions,
|
169 |
+
)
|
170 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
171 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
172 |
+
return outputs
|
173 |
+
|
174 |
+
|
175 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
176 |
+
class RobertaAdaLayer(nn.Module):
|
177 |
+
def __init__(self, config):
|
178 |
+
super().__init__()
|
179 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
180 |
+
self.seq_len_dim = 1
|
181 |
+
self.attention = RobertaAdaAttention(config)
|
182 |
+
self.is_decoder = config.is_decoder
|
183 |
+
self.add_cross_attention = config.add_cross_attention
|
184 |
+
if self.add_cross_attention:
|
185 |
+
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
186 |
+
self.crossattention = RobertaAttention(config)
|
187 |
+
self.intermediate = RobertaIntermediate(config)
|
188 |
+
self.output = RobertaAdaOutput(config)
|
189 |
+
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
hidden_states,
|
194 |
+
attention_mask=None,
|
195 |
+
head_mask=None,
|
196 |
+
encoder_hidden_states=None,
|
197 |
+
encoder_attention_mask=None,
|
198 |
+
past_key_value=None,
|
199 |
+
output_attentions=False,
|
200 |
+
):
|
201 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
202 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
203 |
+
self_attention_outputs = self.attention(
|
204 |
+
hidden_states,
|
205 |
+
attention_mask,
|
206 |
+
head_mask,
|
207 |
+
output_attentions=output_attentions,
|
208 |
+
past_key_value=self_attn_past_key_value,
|
209 |
+
)
|
210 |
+
attention_output = self_attention_outputs[0]
|
211 |
+
|
212 |
+
# if decoder, the last output is tuple of self-attn cache
|
213 |
+
if self.is_decoder:
|
214 |
+
outputs = self_attention_outputs[1:-1]
|
215 |
+
present_key_value = self_attention_outputs[-1]
|
216 |
+
else:
|
217 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
218 |
+
|
219 |
+
cross_attn_present_key_value = None
|
220 |
+
|
221 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
222 |
+
assert hasattr(
|
223 |
+
self, "crossattention"
|
224 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
225 |
+
|
226 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
227 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
228 |
+
cross_attention_outputs = self.crossattention(
|
229 |
+
attention_output,
|
230 |
+
attention_mask,
|
231 |
+
head_mask,
|
232 |
+
encoder_hidden_states,
|
233 |
+
encoder_attention_mask,
|
234 |
+
cross_attn_past_key_value,
|
235 |
+
output_attentions,
|
236 |
+
)
|
237 |
+
attention_output = cross_attention_outputs[0]
|
238 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
239 |
+
|
240 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
241 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
242 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
243 |
+
|
244 |
+
layer_output = apply_chunking_to_forward(
|
245 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
246 |
+
)
|
247 |
+
outputs = (layer_output,) + outputs
|
248 |
+
|
249 |
+
# if decoder, return the attn key/values as the last output
|
250 |
+
if self.is_decoder:
|
251 |
+
outputs = outputs + (present_key_value,)
|
252 |
+
|
253 |
+
return outputs
|
254 |
+
|
255 |
+
|
256 |
+
def feed_forward_chunk(self, attention_output):
|
257 |
+
intermediate_output = self.intermediate(attention_output)
|
258 |
+
layer_output = self.output(intermediate_output, attention_output)
|
259 |
+
return layer_output
|
260 |
+
|
261 |
+
|
262 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
263 |
+
class RobertaAdaEncoder(nn.Module):
|
264 |
+
def __init__(self, config):
|
265 |
+
super().__init__()
|
266 |
+
self.config = config
|
267 |
+
self.layer = nn.ModuleList([RobertaAdaLayer(config) for _ in range(config.num_hidden_layers)])
|
268 |
+
self.skip = 2
|
269 |
+
|
270 |
+
|
271 |
+
def learn_init(
|
272 |
+
self,
|
273 |
+
hidden_states,
|
274 |
+
attention_mask=None,
|
275 |
+
head_mask=None,
|
276 |
+
encoder_hidden_states=None,
|
277 |
+
encoder_attention_mask=None,
|
278 |
+
past_key_values=None,
|
279 |
+
use_cache=None,
|
280 |
+
output_attentions=False,
|
281 |
+
output_hidden_states=False,
|
282 |
+
return_dict=True):
|
283 |
+
|
284 |
+
all_hidden_states = () if output_hidden_states else None
|
285 |
+
all_self_attentions = () if output_attentions else None
|
286 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
287 |
+
|
288 |
+
next_decoder_cache = () if use_cache else None
|
289 |
+
self.skip_list = []
|
290 |
+
for i, layer_module in enumerate(self.layer):
|
291 |
+
# if i+1 % self.skip
|
292 |
+
if output_hidden_states:
|
293 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
294 |
+
|
295 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
296 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
297 |
+
|
298 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
299 |
+
|
300 |
+
if use_cache:
|
301 |
+
logger.warning(
|
302 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
303 |
+
"`use_cache=False`..."
|
304 |
+
)
|
305 |
+
use_cache = False
|
306 |
+
|
307 |
+
def create_custom_forward(module):
|
308 |
+
def custom_forward(*inputs):
|
309 |
+
return module(*inputs, past_key_value, output_attentions)
|
310 |
+
|
311 |
+
return custom_forward
|
312 |
+
|
313 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
314 |
+
create_custom_forward(layer_module),
|
315 |
+
hidden_states,
|
316 |
+
attention_mask,
|
317 |
+
layer_head_mask,
|
318 |
+
encoder_hidden_states,
|
319 |
+
encoder_attention_mask,
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
layer_outputs = layer_module(
|
323 |
+
hidden_states,
|
324 |
+
attention_mask,
|
325 |
+
layer_head_mask,
|
326 |
+
encoder_hidden_states,
|
327 |
+
encoder_attention_mask,
|
328 |
+
past_key_value,
|
329 |
+
output_attentions,
|
330 |
+
)
|
331 |
+
|
332 |
+
hidden_states = layer_outputs[0]
|
333 |
+
if use_cache:
|
334 |
+
next_decoder_cache += (layer_outputs[-1],)
|
335 |
+
if output_attentions:
|
336 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
337 |
+
if self.config.add_cross_attention:
|
338 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
339 |
+
|
340 |
+
if output_hidden_states:
|
341 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
342 |
+
|
343 |
+
if not return_dict:
|
344 |
+
return tuple(
|
345 |
+
v
|
346 |
+
for v in [
|
347 |
+
hidden_states,
|
348 |
+
next_decoder_cache,
|
349 |
+
all_hidden_states,
|
350 |
+
all_self_attentions,
|
351 |
+
all_cross_attentions,
|
352 |
+
]
|
353 |
+
if v is not None
|
354 |
+
)
|
355 |
+
|
356 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
357 |
+
last_hidden_state=hidden_states,
|
358 |
+
past_key_values=next_decoder_cache,
|
359 |
+
hidden_states=all_hidden_states,
|
360 |
+
attentions=all_self_attentions,
|
361 |
+
cross_attentions=all_cross_attentions,
|
362 |
+
)
|
363 |
+
|
364 |
+
def forward(
|
365 |
+
self,
|
366 |
+
hidden_states,
|
367 |
+
attention_mask=None,
|
368 |
+
head_mask=None,
|
369 |
+
encoder_hidden_states=None,
|
370 |
+
encoder_attention_mask=None,
|
371 |
+
past_key_values=None,
|
372 |
+
use_cache=None,
|
373 |
+
output_attentions=False,
|
374 |
+
output_hidden_states=False,
|
375 |
+
return_dict=True,
|
376 |
+
):
|
377 |
+
all_hidden_states = () if output_hidden_states else None
|
378 |
+
all_self_attentions = () if output_attentions else None
|
379 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
380 |
+
|
381 |
+
next_decoder_cache = () if use_cache else None
|
382 |
+
for i, layer_module in enumerate(self.layer):
|
383 |
+
# if (i+1) % 3 == 0:
|
384 |
+
# continue
|
385 |
+
if output_hidden_states:
|
386 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
387 |
+
|
388 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
389 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
390 |
+
|
391 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
392 |
+
|
393 |
+
if use_cache:
|
394 |
+
logger.warning(
|
395 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
396 |
+
"`use_cache=False`..."
|
397 |
+
)
|
398 |
+
use_cache = False
|
399 |
+
|
400 |
+
def create_custom_forward(module):
|
401 |
+
def custom_forward(*inputs):
|
402 |
+
return module(*inputs, past_key_value, output_attentions)
|
403 |
+
|
404 |
+
return custom_forward
|
405 |
+
|
406 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
407 |
+
create_custom_forward(layer_module),
|
408 |
+
hidden_states,
|
409 |
+
attention_mask,
|
410 |
+
layer_head_mask,
|
411 |
+
encoder_hidden_states,
|
412 |
+
encoder_attention_mask,
|
413 |
+
)
|
414 |
+
else:
|
415 |
+
layer_outputs = layer_module(
|
416 |
+
hidden_states,
|
417 |
+
attention_mask,
|
418 |
+
layer_head_mask,
|
419 |
+
encoder_hidden_states,
|
420 |
+
encoder_attention_mask,
|
421 |
+
past_key_value,
|
422 |
+
output_attentions,
|
423 |
+
)
|
424 |
+
|
425 |
+
hidden_states = layer_outputs[0]
|
426 |
+
if use_cache:
|
427 |
+
next_decoder_cache += (layer_outputs[-1],)
|
428 |
+
if output_attentions:
|
429 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
430 |
+
if self.config.add_cross_attention:
|
431 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
432 |
+
|
433 |
+
if output_hidden_states:
|
434 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
435 |
+
|
436 |
+
if not return_dict:
|
437 |
+
return tuple(
|
438 |
+
v
|
439 |
+
for v in [
|
440 |
+
hidden_states,
|
441 |
+
next_decoder_cache,
|
442 |
+
all_hidden_states,
|
443 |
+
all_self_attentions,
|
444 |
+
all_cross_attentions,
|
445 |
+
]
|
446 |
+
if v is not None
|
447 |
+
)
|
448 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
449 |
+
last_hidden_state=hidden_states,
|
450 |
+
past_key_values=next_decoder_cache,
|
451 |
+
hidden_states=all_hidden_states,
|
452 |
+
attentions=all_self_attentions,
|
453 |
+
cross_attentions=all_cross_attentions,
|
454 |
+
)
|
455 |
+
|
456 |
+
"""RoBERTa for Adapter"""
|
457 |
+
class RobertaAdaModel(RobertaPreTrainedModel):
|
458 |
+
"""
|
459 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
460 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
461 |
+
all you need`_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
462 |
+
Kaiser and Illia Polosukhin.
|
463 |
+
To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration
|
464 |
+
set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
|
465 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
466 |
+
input to the forward pass.
|
467 |
+
.. _`Attention is all you need`: https://arxiv.org/abs/1706.03762
|
468 |
+
"""
|
469 |
+
|
470 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
471 |
+
|
472 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
473 |
+
def __init__(self, config, add_pooling_layer=True):
|
474 |
+
super().__init__(config)
|
475 |
+
self.config = config
|
476 |
+
self.embeddings = RobertaEmbeddings(config)
|
477 |
+
self.encoder = RobertaAdaEncoder(config)
|
478 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
479 |
+
|
480 |
+
def get_input_embeddings(self):
|
481 |
+
return self.embeddings.word_embeddings
|
482 |
+
|
483 |
+
def set_input_embeddings(self, value):
|
484 |
+
self.embeddings.word_embeddings = value
|
485 |
+
|
486 |
+
def _prune_heads(self, heads_to_prune):
|
487 |
+
"""
|
488 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
489 |
+
class PreTrainedModel
|
490 |
+
"""
|
491 |
+
for layer, heads in heads_to_prune.items():
|
492 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
493 |
+
|
494 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
495 |
+
def forward(
|
496 |
+
self,
|
497 |
+
input_ids=None,
|
498 |
+
attention_mask=None,
|
499 |
+
token_type_ids=None,
|
500 |
+
position_ids=None,
|
501 |
+
head_mask=None,
|
502 |
+
inputs_embeds=None,
|
503 |
+
encoder_hidden_states=None,
|
504 |
+
encoder_attention_mask=None,
|
505 |
+
past_key_values=None,
|
506 |
+
use_cache=None,
|
507 |
+
output_attentions=None,
|
508 |
+
output_hidden_states=None,
|
509 |
+
return_dict=None,
|
510 |
+
):
|
511 |
+
r"""
|
512 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
513 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
514 |
+
the model is configured as a decoder.
|
515 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
516 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
517 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
518 |
+
- 1 for tokens that are **not masked**,
|
519 |
+
- 0 for tokens that are **masked**.
|
520 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
521 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
522 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
523 |
+
(those that don"t have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
524 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
525 |
+
use_cache (:obj:`bool`, `optional`):
|
526 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
527 |
+
decoding (see :obj:`past_key_values`).
|
528 |
+
"""
|
529 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
530 |
+
output_hidden_states = (
|
531 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
532 |
+
)
|
533 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
534 |
+
|
535 |
+
if self.config.is_decoder:
|
536 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
537 |
+
else:
|
538 |
+
use_cache = False
|
539 |
+
|
540 |
+
if input_ids is not None and inputs_embeds is not None:
|
541 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
542 |
+
elif input_ids is not None:
|
543 |
+
input_shape = input_ids.size()
|
544 |
+
batch_size, seq_length = input_shape
|
545 |
+
elif inputs_embeds is not None:
|
546 |
+
input_shape = inputs_embeds.size()[:-1]
|
547 |
+
batch_size, seq_length = input_shape
|
548 |
+
else:
|
549 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
550 |
+
|
551 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
552 |
+
|
553 |
+
# past_key_values_length
|
554 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
555 |
+
|
556 |
+
if attention_mask is None:
|
557 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
558 |
+
|
559 |
+
if token_type_ids is None:
|
560 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
561 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
562 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
563 |
+
token_type_ids = buffered_token_type_ids_expanded
|
564 |
+
else:
|
565 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
566 |
+
|
567 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
568 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
569 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
570 |
+
|
571 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
572 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
573 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
574 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
575 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
576 |
+
if encoder_attention_mask is None:
|
577 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
578 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
579 |
+
else:
|
580 |
+
encoder_extended_attention_mask = None
|
581 |
+
|
582 |
+
# Prepare head mask if needed
|
583 |
+
# 1.0 in head_mask indicate we keep the head
|
584 |
+
# attention_probs has shape bsz x n_heads x N x N
|
585 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
586 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
587 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
588 |
+
|
589 |
+
embedding_output = self.embeddings(
|
590 |
+
input_ids=input_ids,
|
591 |
+
position_ids=position_ids,
|
592 |
+
token_type_ids=token_type_ids,
|
593 |
+
inputs_embeds=inputs_embeds,
|
594 |
+
past_key_values_length=past_key_values_length,
|
595 |
+
)
|
596 |
+
encoder_outputs = self.encoder(
|
597 |
+
embedding_output,
|
598 |
+
attention_mask=extended_attention_mask,
|
599 |
+
head_mask=head_mask,
|
600 |
+
encoder_hidden_states=encoder_hidden_states,
|
601 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
602 |
+
past_key_values=past_key_values,
|
603 |
+
use_cache=use_cache,
|
604 |
+
output_attentions=output_attentions,
|
605 |
+
output_hidden_states=output_hidden_states,
|
606 |
+
return_dict=return_dict,
|
607 |
+
)
|
608 |
+
sequence_output = encoder_outputs[0]
|
609 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
610 |
+
|
611 |
+
if not return_dict:
|
612 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
613 |
+
|
614 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
615 |
+
last_hidden_state=sequence_output,
|
616 |
+
pooler_output=pooled_output,
|
617 |
+
past_key_values=encoder_outputs.past_key_values,
|
618 |
+
hidden_states=encoder_outputs.hidden_states,
|
619 |
+
attentions=encoder_outputs.attentions,
|
620 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
621 |
+
)
|
622 |
+
|
623 |
+
|
624 |
+
## ======== Adapter For BERT ========
|
625 |
+
class BertAdaOutput(nn.Module):
|
626 |
+
def __init__(self, config):
|
627 |
+
super().__init__()
|
628 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
629 |
+
self.config = config
|
630 |
+
|
631 |
+
self.adaptation_layer = AdapeterLayer(n_in=config.intermediate_size, n_out=config.hidden_size,
|
632 |
+
adapter_dim=config.adapter_dim, adapter_choice=config.adapter_choice)
|
633 |
+
|
634 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
635 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
636 |
+
|
637 |
+
def forward(self, hidden_states, input_tensor):
|
638 |
+
if self.config.adapter_choice == "lora":
|
639 |
+
hidden_states = self.dense(hidden_states) + self.adaptation_layer(hidden_states)
|
640 |
+
else:
|
641 |
+
hidden_states = self.dense(hidden_states)
|
642 |
+
hidden_states = self.adaptation_layer(hidden_states)
|
643 |
+
hidden_states = self.dropout(hidden_states)
|
644 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
645 |
+
return hidden_states
|
646 |
+
|
647 |
+
class BertAdaSelfOutput(nn.Module):
|
648 |
+
def __init__(self, config):
|
649 |
+
super().__init__()
|
650 |
+
self.config = config
|
651 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
652 |
+
self.adaptation_layer = AdapeterLayer(n_in=config.intermediate_size, n_out=config.hidden_size,
|
653 |
+
adapter_dim=config.adapter_dim, adapter_choice=config.adapter_choice)
|
654 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
655 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
656 |
+
|
657 |
+
def forward(self, hidden_states, input_tensor):
|
658 |
+
if self.config.adapter_choice == "lora":
|
659 |
+
hidden_states = self.dense(hidden_states) + self.adaptation_layer(hidden_states)
|
660 |
+
else:
|
661 |
+
hidden_states = self.dense(hidden_states)
|
662 |
+
hidden_states = self.adaptation_layer(hidden_states)
|
663 |
+
hidden_states = self.dropout(hidden_states)
|
664 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
665 |
+
return hidden_states
|
666 |
+
|
667 |
+
|
668 |
+
class BertAdaAttention(nn.Module):
|
669 |
+
def __init__(self, config):
|
670 |
+
super().__init__()
|
671 |
+
self.self = BertSelfAttention(config)
|
672 |
+
self.output = BertAdaSelfOutput(config)
|
673 |
+
self.pruned_heads = set()
|
674 |
+
|
675 |
+
def prune_heads(self, heads):
|
676 |
+
if len(heads) == 0:
|
677 |
+
return
|
678 |
+
heads, index = find_pruneable_heads_and_indices(
|
679 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
680 |
+
)
|
681 |
+
|
682 |
+
# Prune linear layers
|
683 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
684 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
685 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
686 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
687 |
+
|
688 |
+
# Update hyper params and store pruned heads
|
689 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
690 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
691 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
692 |
+
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
hidden_states,
|
696 |
+
attention_mask=None,
|
697 |
+
head_mask=None,
|
698 |
+
encoder_hidden_states=None,
|
699 |
+
encoder_attention_mask=None,
|
700 |
+
past_key_value=None,
|
701 |
+
output_attentions=False,
|
702 |
+
):
|
703 |
+
self_outputs = self.self(
|
704 |
+
hidden_states,
|
705 |
+
attention_mask,
|
706 |
+
head_mask,
|
707 |
+
encoder_hidden_states,
|
708 |
+
encoder_attention_mask,
|
709 |
+
past_key_value,
|
710 |
+
output_attentions,
|
711 |
+
)
|
712 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
713 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
714 |
+
return outputs
|
715 |
+
|
716 |
+
|
717 |
+
class BertAdaLayer(nn.Module):
|
718 |
+
def __init__(self, config):
|
719 |
+
super().__init__()
|
720 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
721 |
+
self.seq_len_dim = 1
|
722 |
+
self.attention = BertAdaAttention(config)
|
723 |
+
self.is_decoder = config.is_decoder
|
724 |
+
self.add_cross_attention = config.add_cross_attention
|
725 |
+
if self.add_cross_attention:
|
726 |
+
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
|
727 |
+
self.crossattention = BertAttention(config)
|
728 |
+
self.intermediate = BertIntermediate(config)
|
729 |
+
self.output = BertAdaOutput(config)
|
730 |
+
|
731 |
+
def forward(
|
732 |
+
self,
|
733 |
+
hidden_states,
|
734 |
+
attention_mask=None,
|
735 |
+
head_mask=None,
|
736 |
+
encoder_hidden_states=None,
|
737 |
+
encoder_attention_mask=None,
|
738 |
+
past_key_value=None,
|
739 |
+
output_attentions=False,
|
740 |
+
):
|
741 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
742 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
743 |
+
self_attention_outputs = self.attention(
|
744 |
+
hidden_states,
|
745 |
+
attention_mask,
|
746 |
+
head_mask,
|
747 |
+
output_attentions=output_attentions,
|
748 |
+
past_key_value=self_attn_past_key_value,
|
749 |
+
)
|
750 |
+
attention_output = self_attention_outputs[0]
|
751 |
+
|
752 |
+
# if decoder, the last output is tuple of self-attn cache
|
753 |
+
if self.is_decoder:
|
754 |
+
outputs = self_attention_outputs[1:-1]
|
755 |
+
present_key_value = self_attention_outputs[-1]
|
756 |
+
else:
|
757 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
758 |
+
|
759 |
+
cross_attn_present_key_value = None
|
760 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
761 |
+
assert hasattr(
|
762 |
+
self, "crossattention"
|
763 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
764 |
+
|
765 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
766 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
767 |
+
cross_attention_outputs = self.crossattention(
|
768 |
+
attention_output,
|
769 |
+
attention_mask,
|
770 |
+
head_mask,
|
771 |
+
encoder_hidden_states,
|
772 |
+
encoder_attention_mask,
|
773 |
+
cross_attn_past_key_value,
|
774 |
+
output_attentions,
|
775 |
+
)
|
776 |
+
attention_output = cross_attention_outputs[0]
|
777 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
778 |
+
|
779 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
780 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
781 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
782 |
+
|
783 |
+
layer_output = apply_chunking_to_forward(
|
784 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
785 |
+
)
|
786 |
+
outputs = (layer_output,) + outputs
|
787 |
+
|
788 |
+
# if decoder, return the attn key/values as the last output
|
789 |
+
if self.is_decoder:
|
790 |
+
outputs = outputs + (present_key_value,)
|
791 |
+
|
792 |
+
return outputs
|
793 |
+
|
794 |
+
def feed_forward_chunk(self, attention_output):
|
795 |
+
intermediate_output = self.intermediate(attention_output)
|
796 |
+
layer_output = self.output(intermediate_output, attention_output)
|
797 |
+
return layer_output
|
798 |
+
|
799 |
+
|
800 |
+
class BertAdaEncoder(nn.Module):
|
801 |
+
def __init__(self, config):
|
802 |
+
super().__init__()
|
803 |
+
self.config = config
|
804 |
+
self.layer = nn.ModuleList([BertAdaLayer(config) for _ in range(config.num_hidden_layers)])
|
805 |
+
|
806 |
+
def forward(
|
807 |
+
self,
|
808 |
+
hidden_states,
|
809 |
+
attention_mask=None,
|
810 |
+
head_mask=None,
|
811 |
+
encoder_hidden_states=None,
|
812 |
+
encoder_attention_mask=None,
|
813 |
+
past_key_values=None,
|
814 |
+
use_cache=None,
|
815 |
+
output_attentions=False,
|
816 |
+
output_hidden_states=False,
|
817 |
+
return_dict=True,
|
818 |
+
):
|
819 |
+
all_hidden_states = () if output_hidden_states else None
|
820 |
+
all_self_attentions = () if output_attentions else None
|
821 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
822 |
+
|
823 |
+
next_decoder_cache = () if use_cache else None
|
824 |
+
for i, layer_module in enumerate(self.layer):
|
825 |
+
if output_hidden_states:
|
826 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
827 |
+
|
828 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
829 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
830 |
+
|
831 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
832 |
+
|
833 |
+
if use_cache:
|
834 |
+
logger.warning(
|
835 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
836 |
+
"`use_cache=False`..."
|
837 |
+
)
|
838 |
+
use_cache = False
|
839 |
+
|
840 |
+
def create_custom_forward(module):
|
841 |
+
def custom_forward(*inputs):
|
842 |
+
return module(*inputs, past_key_value, output_attentions)
|
843 |
+
|
844 |
+
return custom_forward
|
845 |
+
|
846 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
847 |
+
create_custom_forward(layer_module),
|
848 |
+
hidden_states,
|
849 |
+
attention_mask,
|
850 |
+
layer_head_mask,
|
851 |
+
encoder_hidden_states,
|
852 |
+
encoder_attention_mask,
|
853 |
+
)
|
854 |
+
else:
|
855 |
+
layer_outputs = layer_module(
|
856 |
+
hidden_states,
|
857 |
+
attention_mask,
|
858 |
+
layer_head_mask,
|
859 |
+
encoder_hidden_states,
|
860 |
+
encoder_attention_mask,
|
861 |
+
past_key_value,
|
862 |
+
output_attentions,
|
863 |
+
)
|
864 |
+
|
865 |
+
hidden_states = layer_outputs[0]
|
866 |
+
if use_cache:
|
867 |
+
next_decoder_cache += (layer_outputs[-1],)
|
868 |
+
if output_attentions:
|
869 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
870 |
+
if self.config.add_cross_attention:
|
871 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
872 |
+
|
873 |
+
if output_hidden_states:
|
874 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
875 |
+
|
876 |
+
if not return_dict:
|
877 |
+
return tuple(
|
878 |
+
v
|
879 |
+
for v in [
|
880 |
+
hidden_states,
|
881 |
+
next_decoder_cache,
|
882 |
+
all_hidden_states,
|
883 |
+
all_self_attentions,
|
884 |
+
all_cross_attentions,
|
885 |
+
]
|
886 |
+
if v is not None
|
887 |
+
)
|
888 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
889 |
+
last_hidden_state=hidden_states,
|
890 |
+
past_key_values=next_decoder_cache,
|
891 |
+
hidden_states=all_hidden_states,
|
892 |
+
attentions=all_self_attentions,
|
893 |
+
cross_attentions=all_cross_attentions,
|
894 |
+
)
|
895 |
+
|
896 |
+
|
897 |
+
class BertAdaModel(BertPreTrainedModel):
|
898 |
+
"""
|
899 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
900 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
901 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
902 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
903 |
+
To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration
|
904 |
+
set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
|
905 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
906 |
+
input to the forward pass.
|
907 |
+
"""
|
908 |
+
|
909 |
+
def __init__(self, config, add_pooling_layer=True):
|
910 |
+
super().__init__(config)
|
911 |
+
self.config = config
|
912 |
+
|
913 |
+
self.embeddings = BertEmbeddings(config)
|
914 |
+
self.encoder = BertAdaEncoder(config)
|
915 |
+
|
916 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
917 |
+
|
918 |
+
self.init_weights()
|
919 |
+
|
920 |
+
def get_input_embeddings(self):
|
921 |
+
return self.embeddings.word_embeddings
|
922 |
+
|
923 |
+
def set_input_embeddings(self, value):
|
924 |
+
self.embeddings.word_embeddings = value
|
925 |
+
|
926 |
+
def _prune_heads(self, heads_to_prune):
|
927 |
+
"""
|
928 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
929 |
+
class PreTrainedModel
|
930 |
+
"""
|
931 |
+
for layer, heads in heads_to_prune.items():
|
932 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
933 |
+
|
934 |
+
|
935 |
+
def forward(
|
936 |
+
self,
|
937 |
+
input_ids=None,
|
938 |
+
attention_mask=None,
|
939 |
+
token_type_ids=None,
|
940 |
+
position_ids=None,
|
941 |
+
head_mask=None,
|
942 |
+
inputs_embeds=None,
|
943 |
+
encoder_hidden_states=None,
|
944 |
+
encoder_attention_mask=None,
|
945 |
+
past_key_values=None,
|
946 |
+
use_cache=None,
|
947 |
+
output_attentions=None,
|
948 |
+
output_hidden_states=None,
|
949 |
+
return_dict=None,
|
950 |
+
):
|
951 |
+
r"""
|
952 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
953 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
954 |
+
the model is configured as a decoder.
|
955 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
956 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
957 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
958 |
+
- 1 for tokens that are **not masked**,
|
959 |
+
- 0 for tokens that are **masked**.
|
960 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
961 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
962 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
963 |
+
(those that don"t have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
964 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
965 |
+
use_cache (:obj:`bool`, `optional`):
|
966 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
967 |
+
decoding (see :obj:`past_key_values`).
|
968 |
+
"""
|
969 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
970 |
+
output_hidden_states = (
|
971 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
972 |
+
)
|
973 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
974 |
+
|
975 |
+
if self.config.is_decoder:
|
976 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
977 |
+
else:
|
978 |
+
use_cache = False
|
979 |
+
|
980 |
+
if input_ids is not None and inputs_embeds is not None:
|
981 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
982 |
+
elif input_ids is not None:
|
983 |
+
input_shape = input_ids.size()
|
984 |
+
elif inputs_embeds is not None:
|
985 |
+
input_shape = inputs_embeds.size()[:-1]
|
986 |
+
else:
|
987 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
988 |
+
|
989 |
+
batch_size, seq_length = input_shape
|
990 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
991 |
+
|
992 |
+
# past_key_values_length
|
993 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
994 |
+
|
995 |
+
if attention_mask is None:
|
996 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
997 |
+
|
998 |
+
if token_type_ids is None:
|
999 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
1000 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
1001 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
1002 |
+
token_type_ids = buffered_token_type_ids_expanded
|
1003 |
+
else:
|
1004 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1005 |
+
|
1006 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1007 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1008 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
1009 |
+
|
1010 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1011 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1012 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
1013 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1014 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1015 |
+
if encoder_attention_mask is None:
|
1016 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1017 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1018 |
+
else:
|
1019 |
+
encoder_extended_attention_mask = None
|
1020 |
+
|
1021 |
+
# Prepare head mask if needed
|
1022 |
+
# 1.0 in head_mask indicate we keep the head
|
1023 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1024 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1025 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1026 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1027 |
+
|
1028 |
+
embedding_output = self.embeddings(
|
1029 |
+
input_ids=input_ids,
|
1030 |
+
position_ids=position_ids,
|
1031 |
+
token_type_ids=token_type_ids,
|
1032 |
+
inputs_embeds=inputs_embeds,
|
1033 |
+
past_key_values_length=past_key_values_length,
|
1034 |
+
)
|
1035 |
+
encoder_outputs = self.encoder(
|
1036 |
+
embedding_output,
|
1037 |
+
attention_mask=extended_attention_mask,
|
1038 |
+
head_mask=head_mask,
|
1039 |
+
encoder_hidden_states=encoder_hidden_states,
|
1040 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1041 |
+
past_key_values=past_key_values,
|
1042 |
+
use_cache=use_cache,
|
1043 |
+
output_attentions=output_attentions,
|
1044 |
+
output_hidden_states=output_hidden_states,
|
1045 |
+
return_dict=return_dict,
|
1046 |
+
)
|
1047 |
+
sequence_output = encoder_outputs[0]
|
1048 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1049 |
+
|
1050 |
+
if not return_dict:
|
1051 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1052 |
+
|
1053 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1054 |
+
last_hidden_state=sequence_output,
|
1055 |
+
pooler_output=pooled_output,
|
1056 |
+
past_key_values=encoder_outputs.past_key_values,
|
1057 |
+
hidden_states=encoder_outputs.hidden_states,
|
1058 |
+
attentions=encoder_outputs.attentions,
|
1059 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1060 |
+
)
|
models/basic_modules/crf.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from typing import List, Optional
|
4 |
+
|
5 |
+
class CRF(nn.Module):
|
6 |
+
"""Conditional random field.
|
7 |
+
This module implements a conditional random field [LMP01]_. The forward computation
|
8 |
+
of this class computes the log likelihood of the given sequence of tags and
|
9 |
+
emission score tensor. This class also has `~CRF.decode` method which finds
|
10 |
+
the best tag sequence given an emission score tensor using `Viterbi algorithm`_.
|
11 |
+
Args:
|
12 |
+
num_tags: Number of tags.
|
13 |
+
batch_first: Whether the first dimension corresponds to the size of a minibatch.
|
14 |
+
Attributes:
|
15 |
+
start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size
|
16 |
+
``(num_tags,)``.
|
17 |
+
end_transitions (`~torch.nn.Parameter`): End transition score tensor of size
|
18 |
+
``(num_tags,)``.
|
19 |
+
transitions (`~torch.nn.Parameter`): Transition score tensor of size
|
20 |
+
``(num_tags, num_tags)``.
|
21 |
+
.. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001).
|
22 |
+
"Conditional random fields: Probabilistic models for segmenting and
|
23 |
+
labeling sequence data". *Proc. 18th International Conf. on Machine
|
24 |
+
Learning*. Morgan Kaufmann. pp. 282–289.
|
25 |
+
.. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, num_tags: int, batch_first: bool = False) -> None:
|
29 |
+
if num_tags <= 0:
|
30 |
+
raise ValueError(f"invalid number of tags: {num_tags}")
|
31 |
+
super().__init__()
|
32 |
+
self.num_tags = num_tags
|
33 |
+
self.batch_first = batch_first
|
34 |
+
self.start_transitions = nn.Parameter(torch.empty(num_tags))
|
35 |
+
self.end_transitions = nn.Parameter(torch.empty(num_tags))
|
36 |
+
self.transitions = nn.Parameter(torch.empty(num_tags, num_tags))
|
37 |
+
|
38 |
+
self.reset_parameters()
|
39 |
+
|
40 |
+
def reset_parameters(self) -> None:
|
41 |
+
"""Initialize the transition parameters.
|
42 |
+
The parameters will be initialized randomly from a uniform distribution
|
43 |
+
between -0.1 and 0.1.
|
44 |
+
"""
|
45 |
+
nn.init.uniform_(self.start_transitions, -0.1, 0.1)
|
46 |
+
nn.init.uniform_(self.end_transitions, -0.1, 0.1)
|
47 |
+
nn.init.uniform_(self.transitions, -0.1, 0.1)
|
48 |
+
|
49 |
+
def __repr__(self) -> str:
|
50 |
+
return f"{self.__class__.__name__}(num_tags={self.num_tags})"
|
51 |
+
|
52 |
+
def forward(self, emissions: torch.Tensor,
|
53 |
+
tags: torch.LongTensor,
|
54 |
+
mask: Optional[torch.ByteTensor] = None,
|
55 |
+
reduction: str = "mean") -> torch.Tensor:
|
56 |
+
"""Compute the conditional log likelihood of a sequence of tags given emission scores.
|
57 |
+
Args:
|
58 |
+
emissions (`~torch.Tensor`): Emission score tensor of size
|
59 |
+
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
|
60 |
+
``(batch_size, seq_length, num_tags)`` otherwise.
|
61 |
+
tags (`~torch.LongTensor`): Sequence of tags tensor of size
|
62 |
+
``(seq_length, batch_size)`` if ``batch_first`` is ``False``,
|
63 |
+
``(batch_size, seq_length)`` otherwise.
|
64 |
+
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
|
65 |
+
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
|
66 |
+
reduction: Specifies the reduction to apply to the output:
|
67 |
+
``none|sum|mean|token_mean``. ``none``: no reduction will be applied.
|
68 |
+
``sum``: the output will be summed over batches. ``mean``: the output will be
|
69 |
+
averaged over batches. ``token_mean``: the output will be averaged over tokens.
|
70 |
+
Returns:
|
71 |
+
`~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if
|
72 |
+
reduction is ``none``, ``()`` otherwise.
|
73 |
+
"""
|
74 |
+
if reduction not in ("none", "sum", "mean", "token_mean"):
|
75 |
+
raise ValueError(f"invalid reduction: {reduction}")
|
76 |
+
if mask is None:
|
77 |
+
mask = torch.ones_like(tags, dtype=torch.uint8, device=tags.device)
|
78 |
+
if mask.dtype != torch.uint8:
|
79 |
+
mask = mask.byte()
|
80 |
+
self._validate(emissions, tags=tags, mask=mask)
|
81 |
+
|
82 |
+
if self.batch_first:
|
83 |
+
emissions = emissions.transpose(0, 1)
|
84 |
+
tags = tags.transpose(0, 1)
|
85 |
+
mask = mask.transpose(0, 1)
|
86 |
+
|
87 |
+
# shape: (batch_size,)
|
88 |
+
numerator = self._compute_score(emissions, tags, mask)
|
89 |
+
# shape: (batch_size,)
|
90 |
+
denominator = self._compute_normalizer(emissions, mask)
|
91 |
+
# shape: (batch_size,)
|
92 |
+
llh = numerator - denominator
|
93 |
+
|
94 |
+
if reduction == "none":
|
95 |
+
return llh
|
96 |
+
if reduction == "sum":
|
97 |
+
return llh.sum()
|
98 |
+
if reduction == "mean":
|
99 |
+
return llh.mean()
|
100 |
+
return llh.sum() / mask.float().sum()
|
101 |
+
|
102 |
+
def decode(self, emissions: torch.Tensor,
|
103 |
+
mask: Optional[torch.ByteTensor] = None,
|
104 |
+
nbest: Optional[int] = None,
|
105 |
+
pad_tag: Optional[int] = None) -> List[List[List[int]]]:
|
106 |
+
"""Find the most likely tag sequence using Viterbi algorithm.
|
107 |
+
Args:
|
108 |
+
emissions (`~torch.Tensor`): Emission score tensor of size
|
109 |
+
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
|
110 |
+
``(batch_size, seq_length, num_tags)`` otherwise.
|
111 |
+
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
|
112 |
+
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
|
113 |
+
nbest (`int`): Number of most probable paths for each sequence
|
114 |
+
pad_tag (`int`): Tag at padded positions. Often input varies in length and
|
115 |
+
the length will be padded to the maximum length in the batch. Tags at
|
116 |
+
the padded positions will be assigned with a padding tag, i.e. `pad_tag`
|
117 |
+
Returns:
|
118 |
+
A PyTorch tensor of the best tag sequence for each batch of shape
|
119 |
+
(nbest, batch_size, seq_length)
|
120 |
+
"""
|
121 |
+
if nbest is None:
|
122 |
+
nbest = 1
|
123 |
+
if mask is None:
|
124 |
+
mask = torch.ones(emissions.shape[:2], dtype=torch.uint8,
|
125 |
+
device=emissions.device)
|
126 |
+
if mask.dtype != torch.uint8:
|
127 |
+
mask = mask.byte()
|
128 |
+
self._validate(emissions, mask=mask)
|
129 |
+
|
130 |
+
if self.batch_first:
|
131 |
+
emissions = emissions.transpose(0, 1)
|
132 |
+
mask = mask.transpose(0, 1)
|
133 |
+
|
134 |
+
if nbest == 1:
|
135 |
+
return self._viterbi_decode(emissions, mask, pad_tag).unsqueeze(0)
|
136 |
+
return self._viterbi_decode_nbest(emissions, mask, nbest, pad_tag)
|
137 |
+
|
138 |
+
def _validate(self, emissions: torch.Tensor,
|
139 |
+
tags: Optional[torch.LongTensor] = None,
|
140 |
+
mask: Optional[torch.ByteTensor] = None) -> None:
|
141 |
+
if emissions.dim() != 3:
|
142 |
+
raise ValueError(f"emissions must have dimension of 3, got {emissions.dim()}")
|
143 |
+
if emissions.size(2) != self.num_tags:
|
144 |
+
raise ValueError(
|
145 |
+
f"expected last dimension of emissions is {self.num_tags}, "
|
146 |
+
f"got {emissions.size(2)}")
|
147 |
+
|
148 |
+
if tags is not None:
|
149 |
+
if emissions.shape[:2] != tags.shape:
|
150 |
+
raise ValueError(
|
151 |
+
"the first two dimensions of emissions and tags must match, "
|
152 |
+
f"got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}")
|
153 |
+
|
154 |
+
if mask is not None:
|
155 |
+
if emissions.shape[:2] != mask.shape:
|
156 |
+
raise ValueError(
|
157 |
+
"the first two dimensions of emissions and mask must match, "
|
158 |
+
f"got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}")
|
159 |
+
no_empty_seq = not self.batch_first and mask[0].all()
|
160 |
+
no_empty_seq_bf = self.batch_first and mask[:, 0].all()
|
161 |
+
if not no_empty_seq and not no_empty_seq_bf:
|
162 |
+
raise ValueError("mask of the first timestep must all be on")
|
163 |
+
|
164 |
+
def _compute_score(self, emissions: torch.Tensor,
|
165 |
+
tags: torch.LongTensor,
|
166 |
+
mask: torch.ByteTensor) -> torch.Tensor:
|
167 |
+
# emissions: (seq_length, batch_size, num_tags)
|
168 |
+
# tags: (seq_length, batch_size)
|
169 |
+
# mask: (seq_length, batch_size)
|
170 |
+
seq_length, batch_size = tags.shape
|
171 |
+
mask = mask.float()
|
172 |
+
|
173 |
+
# Start transition score and first emission
|
174 |
+
# shape: (batch_size,)
|
175 |
+
score = self.start_transitions[tags[0]]
|
176 |
+
score += emissions[0, torch.arange(batch_size), tags[0]]
|
177 |
+
|
178 |
+
for i in range(1, seq_length):
|
179 |
+
# Transition score to next tag, only added if next timestep is valid (mask == 1)
|
180 |
+
# shape: (batch_size,)
|
181 |
+
score += self.transitions[tags[i - 1], tags[i]] * mask[i]
|
182 |
+
|
183 |
+
# Emission score for next tag, only added if next timestep is valid (mask == 1)
|
184 |
+
# shape: (batch_size,)
|
185 |
+
score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]
|
186 |
+
|
187 |
+
# End transition score
|
188 |
+
# shape: (batch_size,)
|
189 |
+
seq_ends = mask.long().sum(dim=0) - 1
|
190 |
+
# shape: (batch_size,)
|
191 |
+
last_tags = tags[seq_ends, torch.arange(batch_size)]
|
192 |
+
# shape: (batch_size,)
|
193 |
+
score += self.end_transitions[last_tags]
|
194 |
+
|
195 |
+
return score
|
196 |
+
|
197 |
+
def _compute_normalizer(self, emissions: torch.Tensor,
|
198 |
+
mask: torch.ByteTensor) -> torch.Tensor:
|
199 |
+
# emissions: (seq_length, batch_size, num_tags)
|
200 |
+
# mask: (seq_length, batch_size)
|
201 |
+
seq_length = emissions.size(0)
|
202 |
+
|
203 |
+
# Start transition score and first emission; score has size of
|
204 |
+
# (batch_size, num_tags) where for each batch, the j-th column stores
|
205 |
+
# the score that the first timestep has tag j
|
206 |
+
# shape: (batch_size, num_tags)
|
207 |
+
score = self.start_transitions + emissions[0]
|
208 |
+
|
209 |
+
for i in range(1, seq_length):
|
210 |
+
# Broadcast score for every possible next tag
|
211 |
+
# shape: (batch_size, num_tags, 1)
|
212 |
+
broadcast_score = score.unsqueeze(2)
|
213 |
+
|
214 |
+
# Broadcast emission score for every possible current tag
|
215 |
+
# shape: (batch_size, 1, num_tags)
|
216 |
+
broadcast_emissions = emissions[i].unsqueeze(1)
|
217 |
+
|
218 |
+
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
|
219 |
+
# for each sample, entry at row i and column j stores the sum of scores of all
|
220 |
+
# possible tag sequences so far that end with transitioning from tag i to tag j
|
221 |
+
# and emitting
|
222 |
+
# shape: (batch_size, num_tags, num_tags)
|
223 |
+
next_score = broadcast_score + self.transitions + broadcast_emissions
|
224 |
+
|
225 |
+
# Sum over all possible current tags, but we"re in score space, so a sum
|
226 |
+
# becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
|
227 |
+
# all possible tag sequences so far, that end in tag i
|
228 |
+
# shape: (batch_size, num_tags)
|
229 |
+
next_score = torch.logsumexp(next_score, dim=1)
|
230 |
+
|
231 |
+
# Set score to the next score if this timestep is valid (mask == 1)
|
232 |
+
# shape: (batch_size, num_tags)
|
233 |
+
score = torch.where(mask[i].unsqueeze(1), next_score, score)
|
234 |
+
|
235 |
+
# End transition score
|
236 |
+
# shape: (batch_size, num_tags)
|
237 |
+
score += self.end_transitions
|
238 |
+
|
239 |
+
# Sum (log-sum-exp) over all possible tags
|
240 |
+
# shape: (batch_size,)
|
241 |
+
return torch.logsumexp(score, dim=1)
|
242 |
+
|
243 |
+
def _viterbi_decode(self, emissions: torch.FloatTensor,
|
244 |
+
mask: torch.ByteTensor,
|
245 |
+
pad_tag: Optional[int] = None) -> List[List[int]]:
|
246 |
+
# emissions: (seq_length, batch_size, num_tags)
|
247 |
+
# mask: (seq_length, batch_size)
|
248 |
+
# return: (batch_size, seq_length)
|
249 |
+
if pad_tag is None:
|
250 |
+
pad_tag = 0
|
251 |
+
|
252 |
+
device = emissions.device
|
253 |
+
seq_length, batch_size = mask.shape
|
254 |
+
|
255 |
+
# Start transition and first emission
|
256 |
+
# shape: (batch_size, num_tags)
|
257 |
+
score = self.start_transitions + emissions[0]
|
258 |
+
history_idx = torch.zeros((seq_length, batch_size, self.num_tags),
|
259 |
+
dtype=torch.long, device=device)
|
260 |
+
oor_idx = torch.zeros((batch_size, self.num_tags),
|
261 |
+
dtype=torch.long, device=device)
|
262 |
+
oor_tag = torch.full((seq_length, batch_size), pad_tag,
|
263 |
+
dtype=torch.long, device=device)
|
264 |
+
|
265 |
+
# - score is a tensor of size (batch_size, num_tags) where for every batch,
|
266 |
+
# value at column j stores the score of the best tag sequence so far that ends
|
267 |
+
# with tag j
|
268 |
+
# - history_idx saves where the best tags candidate transitioned from; this is used
|
269 |
+
# when we trace back the best tag sequence
|
270 |
+
# - oor_idx saves the best tags candidate transitioned from at the positions
|
271 |
+
# where mask is 0, i.e. out of range (oor)
|
272 |
+
|
273 |
+
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
|
274 |
+
# for every possible next tag
|
275 |
+
for i in range(1, seq_length):
|
276 |
+
# Broadcast viterbi score for every possible next tag
|
277 |
+
# shape: (batch_size, num_tags, 1)
|
278 |
+
broadcast_score = score.unsqueeze(2)
|
279 |
+
|
280 |
+
# Broadcast emission score for every possible current tag
|
281 |
+
# shape: (batch_size, 1, num_tags)
|
282 |
+
broadcast_emission = emissions[i].unsqueeze(1)
|
283 |
+
|
284 |
+
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
|
285 |
+
# for each sample, entry at row i and column j stores the score of the best
|
286 |
+
# tag sequence so far that ends with transitioning from tag i to tag j and emitting
|
287 |
+
# shape: (batch_size, num_tags, num_tags)
|
288 |
+
next_score = broadcast_score + self.transitions + broadcast_emission
|
289 |
+
|
290 |
+
# Find the maximum score over all possible current tag
|
291 |
+
# shape: (batch_size, num_tags)
|
292 |
+
next_score, indices = next_score.max(dim=1)
|
293 |
+
|
294 |
+
# Set score to the next score if this timestep is valid (mask == 1)
|
295 |
+
# and save the index that produces the next score
|
296 |
+
# shape: (batch_size, num_tags)
|
297 |
+
score = torch.where(mask[i].unsqueeze(-1), next_score, score)
|
298 |
+
indices = torch.where(mask[i].unsqueeze(-1), indices, oor_idx)
|
299 |
+
history_idx[i - 1] = indices
|
300 |
+
|
301 |
+
# End transition score
|
302 |
+
# shape: (batch_size, num_tags)
|
303 |
+
end_score = score + self.end_transitions
|
304 |
+
_, end_tag = end_score.max(dim=1)
|
305 |
+
|
306 |
+
# shape: (batch_size,)
|
307 |
+
seq_ends = mask.long().sum(dim=0) - 1
|
308 |
+
|
309 |
+
# insert the best tag at each sequence end (last position with mask == 1)
|
310 |
+
history_idx = history_idx.transpose(1, 0).contiguous()
|
311 |
+
history_idx.scatter_(1, seq_ends.view(-1, 1, 1).expand(-1, 1, self.num_tags),
|
312 |
+
end_tag.view(-1, 1, 1).expand(-1, 1, self.num_tags))
|
313 |
+
history_idx = history_idx.transpose(1, 0).contiguous()
|
314 |
+
|
315 |
+
# The most probable path for each sequence
|
316 |
+
best_tags_arr = torch.zeros((seq_length, batch_size),
|
317 |
+
dtype=torch.long, device=device)
|
318 |
+
best_tags = torch.zeros(batch_size, 1, dtype=torch.long, device=device)
|
319 |
+
for idx in range(seq_length - 1, -1, -1):
|
320 |
+
best_tags = torch.gather(history_idx[idx], 1, best_tags)
|
321 |
+
best_tags_arr[idx] = best_tags.data.view(batch_size)
|
322 |
+
|
323 |
+
return torch.where(mask, best_tags_arr, oor_tag).transpose(0, 1)
|
324 |
+
|
325 |
+
def _viterbi_decode_nbest(self, emissions: torch.FloatTensor,
|
326 |
+
mask: torch.ByteTensor,
|
327 |
+
nbest: int,
|
328 |
+
pad_tag: Optional[int] = None) -> List[List[List[int]]]:
|
329 |
+
# emissions: (seq_length, batch_size, num_tags)
|
330 |
+
# mask: (seq_length, batch_size)
|
331 |
+
# return: (nbest, batch_size, seq_length)
|
332 |
+
if pad_tag is None:
|
333 |
+
pad_tag = 0
|
334 |
+
|
335 |
+
device = emissions.device
|
336 |
+
seq_length, batch_size = mask.shape
|
337 |
+
|
338 |
+
# Start transition and first emission
|
339 |
+
# shape: (batch_size, num_tags)
|
340 |
+
score = self.start_transitions + emissions[0]
|
341 |
+
history_idx = torch.zeros((seq_length, batch_size, self.num_tags, nbest),
|
342 |
+
dtype=torch.long, device=device)
|
343 |
+
oor_idx = torch.zeros((batch_size, self.num_tags, nbest),
|
344 |
+
dtype=torch.long, device=device)
|
345 |
+
oor_tag = torch.full((seq_length, batch_size, nbest), pad_tag,
|
346 |
+
dtype=torch.long, device=device)
|
347 |
+
|
348 |
+
# + score is a tensor of size (batch_size, num_tags) where for every batch,
|
349 |
+
# value at column j stores the score of the best tag sequence so far that ends
|
350 |
+
# with tag j
|
351 |
+
# + history_idx saves where the best tags candidate transitioned from; this is used
|
352 |
+
# when we trace back the best tag sequence
|
353 |
+
# - oor_idx saves the best tags candidate transitioned from at the positions
|
354 |
+
# where mask is 0, i.e. out of range (oor)
|
355 |
+
|
356 |
+
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
|
357 |
+
# for every possible next tag
|
358 |
+
for i in range(1, seq_length):
|
359 |
+
if i == 1:
|
360 |
+
broadcast_score = score.unsqueeze(-1)
|
361 |
+
broadcast_emission = emissions[i].unsqueeze(1)
|
362 |
+
# shape: (batch_size, num_tags, num_tags)
|
363 |
+
next_score = broadcast_score + self.transitions + broadcast_emission
|
364 |
+
else:
|
365 |
+
broadcast_score = score.unsqueeze(-1)
|
366 |
+
broadcast_emission = emissions[i].unsqueeze(1).unsqueeze(2)
|
367 |
+
# shape: (batch_size, num_tags, nbest, num_tags)
|
368 |
+
next_score = broadcast_score + self.transitions.unsqueeze(1) + broadcast_emission
|
369 |
+
|
370 |
+
# Find the top `nbest` maximum score over all possible current tag
|
371 |
+
# shape: (batch_size, nbest, num_tags)
|
372 |
+
next_score, indices = next_score.view(batch_size, -1, self.num_tags).topk(nbest, dim=1)
|
373 |
+
|
374 |
+
if i == 1:
|
375 |
+
score = score.unsqueeze(-1).expand(-1, -1, nbest)
|
376 |
+
indices = indices * nbest
|
377 |
+
|
378 |
+
# convert to shape: (batch_size, num_tags, nbest)
|
379 |
+
next_score = next_score.transpose(2, 1)
|
380 |
+
indices = indices.transpose(2, 1)
|
381 |
+
|
382 |
+
# Set score to the next score if this timestep is valid (mask == 1)
|
383 |
+
# and save the index that produces the next score
|
384 |
+
# shape: (batch_size, num_tags, nbest)
|
385 |
+
score = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), next_score, score)
|
386 |
+
indices = torch.where(mask[i].unsqueeze(-1).unsqueeze(-1), indices, oor_idx)
|
387 |
+
history_idx[i - 1] = indices
|
388 |
+
|
389 |
+
# End transition score shape: (batch_size, num_tags, nbest)
|
390 |
+
end_score = score + self.end_transitions.unsqueeze(-1)
|
391 |
+
_, end_tag = end_score.view(batch_size, -1).topk(nbest, dim=1)
|
392 |
+
|
393 |
+
# shape: (batch_size,)
|
394 |
+
seq_ends = mask.long().sum(dim=0) - 1
|
395 |
+
|
396 |
+
# insert the best tag at each sequence end (last position with mask == 1)
|
397 |
+
history_idx = history_idx.transpose(1, 0).contiguous()
|
398 |
+
history_idx.scatter_(1, seq_ends.view(-1, 1, 1, 1).expand(-1, 1, self.num_tags, nbest),
|
399 |
+
end_tag.view(-1, 1, 1, nbest).expand(-1, 1, self.num_tags, nbest))
|
400 |
+
history_idx = history_idx.transpose(1, 0).contiguous()
|
401 |
+
|
402 |
+
# The most probable path for each sequence
|
403 |
+
best_tags_arr = torch.zeros((seq_length, batch_size, nbest),
|
404 |
+
dtype=torch.long, device=device)
|
405 |
+
best_tags = torch.arange(nbest, dtype=torch.long, device=device) \
|
406 |
+
.view(1, -1).expand(batch_size, -1)
|
407 |
+
for idx in range(seq_length - 1, -1, -1):
|
408 |
+
best_tags = torch.gather(history_idx[idx].view(batch_size, -1), 1, best_tags)
|
409 |
+
best_tags_arr[idx] = best_tags.data.view(batch_size, -1) // nbest
|
410 |
+
|
411 |
+
return torch.where(mask.unsqueeze(-1), best_tags_arr, oor_tag).permute(2, 1, 0)
|
models/basic_modules/generation.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.distributed as dist
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
try:
|
8 |
+
from transformers.generation_logits_process import (
|
9 |
+
LogitsProcessorList,
|
10 |
+
TemperatureLogitsWarper,
|
11 |
+
TopKLogitsWarper,
|
12 |
+
TopPLogitsWarper,
|
13 |
+
)
|
14 |
+
except ImportError:
|
15 |
+
from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_logits_processor(top_k: Optional[int] = None,
|
19 |
+
top_p: Optional[float] = None,
|
20 |
+
temperature: Optional[float] = None) -> LogitsProcessorList:
|
21 |
+
processor_list = LogitsProcessorList()
|
22 |
+
if temperature is not None and temperature != 1.0:
|
23 |
+
processor_list.append(TemperatureLogitsWarper(temperature))
|
24 |
+
if top_k is not None and top_k != 0:
|
25 |
+
processor_list.append(TopKLogitsWarper(top_k))
|
26 |
+
if top_p is not None and top_p < 1.0:
|
27 |
+
processor_list.append(TopPLogitsWarper(top_p))
|
28 |
+
return processor_list
|
29 |
+
|
30 |
+
|
31 |
+
def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool:
|
32 |
+
if dist.is_initialized() and dist.get_world_size() > 1:
|
33 |
+
# consider DP
|
34 |
+
unfinished_sequences = unfinished_sequences.clone()
|
35 |
+
dist.all_reduce(unfinished_sequences)
|
36 |
+
return unfinished_sequences.max() == 0
|
37 |
+
|
38 |
+
|
39 |
+
def sample(model: nn.Module,
|
40 |
+
input_ids: torch.Tensor,
|
41 |
+
max_length: int,
|
42 |
+
early_stopping: bool = False,
|
43 |
+
eos_token_id: Optional[int] = None,
|
44 |
+
pad_token_id: Optional[int] = None,
|
45 |
+
top_k: Optional[int] = None,
|
46 |
+
top_p: Optional[float] = None,
|
47 |
+
temperature: Optional[float] = None,
|
48 |
+
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
|
49 |
+
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
|
50 |
+
**model_kwargs) -> torch.Tensor:
|
51 |
+
if input_ids.size(1) >= max_length:
|
52 |
+
return input_ids
|
53 |
+
|
54 |
+
logits_processor = prepare_logits_processor(top_k, top_p, temperature)
|
55 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
56 |
+
|
57 |
+
for _ in range(input_ids.size(1), max_length):
|
58 |
+
model_inputs = prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {
|
59 |
+
'input_ids': input_ids
|
60 |
+
}
|
61 |
+
outputs = model(**model_inputs)
|
62 |
+
|
63 |
+
next_token_logits = outputs['logits'][:, -1, :]
|
64 |
+
# pre-process distribution
|
65 |
+
next_token_logits = logits_processor(input_ids, next_token_logits)
|
66 |
+
# sample
|
67 |
+
probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float)
|
68 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
69 |
+
|
70 |
+
# finished sentences should have their next token be a padding token
|
71 |
+
if eos_token_id is not None:
|
72 |
+
if pad_token_id is None:
|
73 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
74 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
75 |
+
|
76 |
+
# update generated ids, model inputs for next step
|
77 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
78 |
+
if update_model_kwargs_fn is not None:
|
79 |
+
model_kwargs = update_model_kwargs_fn(outputs, model_kwargs)
|
80 |
+
|
81 |
+
# if eos_token was found in one sentence, set sentence to finished
|
82 |
+
if eos_token_id is not None:
|
83 |
+
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
|
84 |
+
|
85 |
+
# stop when each sentence is finished if early_stopping=True
|
86 |
+
if early_stopping and _is_sequence_finished(unfinished_sequences):
|
87 |
+
break
|
88 |
+
|
89 |
+
return input_ids
|
90 |
+
|
91 |
+
|
92 |
+
def generate(model: nn.Module,
|
93 |
+
input_ids: torch.Tensor,
|
94 |
+
max_length: int,
|
95 |
+
num_beams: int = 1,
|
96 |
+
do_sample: bool = True,
|
97 |
+
early_stopping: bool = False,
|
98 |
+
eos_token_id: Optional[int] = None,
|
99 |
+
pad_token_id: Optional[int] = None,
|
100 |
+
top_k: Optional[int] = None,
|
101 |
+
top_p: Optional[float] = None,
|
102 |
+
temperature: Optional[float] = None,
|
103 |
+
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
|
104 |
+
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
|
105 |
+
**model_kwargs) -> torch.Tensor:
|
106 |
+
"""Generate token sequence. The returned sequence is input_ids + generated_tokens.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
model (nn.Module): model
|
110 |
+
input_ids (torch.Tensor): input sequence
|
111 |
+
max_length (int): max length of the returned sequence
|
112 |
+
num_beams (int, optional): number of beams. Defaults to 1.
|
113 |
+
do_sample (bool, optional): whether to do sample. Defaults to True.
|
114 |
+
early_stopping (bool, optional): if True, the sequence length may be smaller than max_length due to finding eos. Defaults to False.
|
115 |
+
eos_token_id (Optional[int], optional): end of sequence token id. Defaults to None.
|
116 |
+
pad_token_id (Optional[int], optional): pad token id. Defaults to None.
|
117 |
+
top_k (Optional[int], optional): the number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None.
|
118 |
+
top_p (Optional[float], optional): If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. Defaults to None.
|
119 |
+
temperature (Optional[float], optional): The value used to module the next token probabilities. Defaults to None.
|
120 |
+
prepare_inputs_fn (Optional[Callable[[torch.Tensor, Any], dict]], optional): Function to preprocess model inputs. Arguments of this function should be input_ids and model_kwargs. Defaults to None.
|
121 |
+
update_model_kwargs_fn (Optional[Callable[[dict, Any], dict]], optional): Function to update model_kwargs based on outputs. Arguments of this function should be outputs and model_kwargs. Defaults to None.
|
122 |
+
"""
|
123 |
+
is_greedy_gen_mode = ((num_beams == 1) and do_sample is False)
|
124 |
+
is_sample_gen_mode = ((num_beams == 1) and do_sample is True)
|
125 |
+
is_beam_gen_mode = ((num_beams > 1) and do_sample is False)
|
126 |
+
if is_greedy_gen_mode:
|
127 |
+
# run greedy search
|
128 |
+
raise NotImplementedError
|
129 |
+
elif is_sample_gen_mode:
|
130 |
+
# run sample
|
131 |
+
return sample(model,
|
132 |
+
input_ids,
|
133 |
+
max_length,
|
134 |
+
early_stopping=early_stopping,
|
135 |
+
eos_token_id=eos_token_id,
|
136 |
+
pad_token_id=pad_token_id,
|
137 |
+
top_k=top_k,
|
138 |
+
top_p=top_p,
|
139 |
+
temperature=temperature,
|
140 |
+
prepare_inputs_fn=prepare_inputs_fn,
|
141 |
+
update_model_kwargs_fn=update_model_kwargs_fn,
|
142 |
+
**model_kwargs)
|
143 |
+
elif is_beam_gen_mode:
|
144 |
+
raise NotImplementedError
|
145 |
+
else:
|
146 |
+
raise ValueError("Unsupported generation mode")
|
models/basic_modules/linears.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
# A simple MLP layer
|
6 |
+
class FeedForwardNetwork(nn.Module):
|
7 |
+
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0):
|
8 |
+
super(FeedForwardNetwork, self).__init__()
|
9 |
+
self.dropout_rate = dropout_rate
|
10 |
+
self.linear1 = nn.Linear(input_size, hidden_size)
|
11 |
+
self.linear2 = nn.Linear(hidden_size, output_size)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
x_proj = F.dropout(F.relu(self.linear1(x)), p=self.dropout_rate, training=self.training)
|
15 |
+
x_proj = self.linear2(x_proj)
|
16 |
+
return x_proj
|
17 |
+
|
18 |
+
# Span Prediction for Start Position
|
19 |
+
class PoolerStartLogits(nn.Module):
|
20 |
+
def __init__(self, hidden_size, num_classes):
|
21 |
+
super(PoolerStartLogits, self).__init__()
|
22 |
+
self.dense = nn.Linear(hidden_size, num_classes)
|
23 |
+
|
24 |
+
def forward(self, hidden_states, p_mask=None):
|
25 |
+
x = self.dense(hidden_states)
|
26 |
+
return x
|
27 |
+
|
28 |
+
# Span Prediction for End Position
|
29 |
+
class PoolerEndLogits(nn.Module):
|
30 |
+
def __init__(self, hidden_size, num_classes):
|
31 |
+
super(PoolerEndLogits, self).__init__()
|
32 |
+
self.dense_0 = nn.Linear(hidden_size, hidden_size)
|
33 |
+
self.activation = nn.Tanh()
|
34 |
+
self.LayerNorm = nn.LayerNorm(hidden_size)
|
35 |
+
self.dense_1 = nn.Linear(hidden_size, num_classes)
|
36 |
+
|
37 |
+
def forward(self, hidden_states, start_positions=None, p_mask=None):
|
38 |
+
x = self.dense_0(torch.cat([hidden_states, start_positions], dim=-1))
|
39 |
+
x = self.activation(x)
|
40 |
+
x = self.LayerNorm(x)
|
41 |
+
x = self.dense_1(x)
|
42 |
+
return x
|
models/basic_modules/lora.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from deepspeed.compression.helper import recursive_getattr, recursive_setattr
|
10 |
+
import deepspeed
|
11 |
+
|
12 |
+
|
13 |
+
class LinearLayer_LoRA(nn.Module):
|
14 |
+
# an simple implementation of LoRA
|
15 |
+
# for now only support Linear Layer
|
16 |
+
def __init__(self,
|
17 |
+
weight,
|
18 |
+
lora_dim=0,
|
19 |
+
lora_scaling=1,
|
20 |
+
lora_droppout=0,
|
21 |
+
bias=None):
|
22 |
+
super(LinearLayer_LoRA, self).__init__()
|
23 |
+
self.weight = weight
|
24 |
+
self.bias = bias
|
25 |
+
|
26 |
+
if lora_dim <= 0:
|
27 |
+
raise ValueError(
|
28 |
+
"You are training to use LoRA, whose reduced dim should be larger than 1"
|
29 |
+
)
|
30 |
+
|
31 |
+
try:
|
32 |
+
# for zero stage 3
|
33 |
+
rows, columns = weight.ds_shape
|
34 |
+
except:
|
35 |
+
rows, columns = weight.shape
|
36 |
+
self.lora_right_weight = nn.Parameter(torch.zeros(
|
37 |
+
columns,
|
38 |
+
lora_dim)) # apply transpose so in forward we do not need to
|
39 |
+
self.lora_left_weight = nn.Parameter(torch.zeros(lora_dim, rows))
|
40 |
+
self.lora_scaling = lora_scaling / lora_dim
|
41 |
+
|
42 |
+
if lora_droppout > 0:
|
43 |
+
self.lora_dropout = nn.Dropout(lora_droppout)
|
44 |
+
else:
|
45 |
+
self.lora_dropout = nn.Identity()
|
46 |
+
|
47 |
+
self.reset_parameters()
|
48 |
+
# disable the original weight gradient
|
49 |
+
self.weight.requires_grad = False
|
50 |
+
# fuse LoRA to the original weight
|
51 |
+
self.fuse_lora = False
|
52 |
+
|
53 |
+
def eval(self):
|
54 |
+
self.lora_dropout.eval()
|
55 |
+
|
56 |
+
# self.fuse_lora_weight()
|
57 |
+
|
58 |
+
def train(self, mode=True):
|
59 |
+
self.lora_dropout.train(mode)
|
60 |
+
# self.unfuse_lora_weight()
|
61 |
+
|
62 |
+
def reset_parameters(self):
|
63 |
+
nn.init.kaiming_uniform_(self.lora_right_weight, a=math.sqrt(5))
|
64 |
+
nn.init.zeros_(self.lora_left_weight)
|
65 |
+
|
66 |
+
def fuse_lora_weight(self):
|
67 |
+
if not self.fuse_lora:
|
68 |
+
self.weight.data += self.lora_scaling * torch.matmul(
|
69 |
+
self.lora_left_weight.t(), self.lora_right_weight.t())
|
70 |
+
self.fuse_lora = True
|
71 |
+
|
72 |
+
def unfuse_lora_weight(self):
|
73 |
+
if self.fuse_lora:
|
74 |
+
self.weight.data -= self.lora_scaling * torch.matmul(
|
75 |
+
self.lora_left_weight.t(), self.lora_right_weight.t())
|
76 |
+
self.fuse_lora = False
|
77 |
+
|
78 |
+
def forward(self, input):
|
79 |
+
if self.fuse_lora:
|
80 |
+
return F.linear(input, self.weight, self.bias)
|
81 |
+
else:
|
82 |
+
return F.linear(
|
83 |
+
input, self.weight,
|
84 |
+
self.bias) + (self.lora_dropout(input) @ self.lora_right_weight
|
85 |
+
@ self.lora_left_weight) * self.lora_scaling
|
86 |
+
|
87 |
+
|
88 |
+
# convert the linear layer to LoRA
|
89 |
+
def convert_linear_layer_to_lora(model,
|
90 |
+
part_module_name,
|
91 |
+
lora_dim=0,
|
92 |
+
lora_scaling=1,
|
93 |
+
lora_droppout=0):
|
94 |
+
repalce_name = []
|
95 |
+
for name, module in model.named_modules():
|
96 |
+
if isinstance(module, nn.Linear) and part_module_name in name:
|
97 |
+
repalce_name.append(name)
|
98 |
+
for name in repalce_name:
|
99 |
+
module = recursive_getattr(model, name)
|
100 |
+
tmp = LinearLayer_LoRA(
|
101 |
+
module.weight, lora_dim, lora_scaling, lora_droppout,
|
102 |
+
module.bias).to(module.weight.device).to(module.weight.dtype)
|
103 |
+
recursive_setattr(model, name, tmp)
|
104 |
+
return model
|
105 |
+
|
106 |
+
|
107 |
+
def _z3_params_to_fetch(param_list):
|
108 |
+
return [
|
109 |
+
p for p in param_list
|
110 |
+
if hasattr(p, 'ds_id') and p.ds_status == deepspeed.runtime.zero.
|
111 |
+
partition_parameters.ZeroParamStatus.NOT_AVAILABLE
|
112 |
+
]
|
113 |
+
|
114 |
+
|
115 |
+
# convert the LoRA layer to linear layer
|
116 |
+
def convert_lora_to_linear_layer(model):
|
117 |
+
repalce_name = []
|
118 |
+
for name, module in model.named_modules():
|
119 |
+
if isinstance(module, LinearLayer_LoRA):
|
120 |
+
repalce_name.append(name)
|
121 |
+
for name in repalce_name:
|
122 |
+
module = recursive_getattr(model, name)
|
123 |
+
zero_stage_3 = hasattr(module.weight, 'ds_id')
|
124 |
+
with deepspeed.zero.GatheredParameters(_z3_params_to_fetch([
|
125 |
+
module.weight, module.bias, module.lora_left_weight,
|
126 |
+
module.lora_right_weight
|
127 |
+
]),
|
128 |
+
modifier_rank=0,
|
129 |
+
enabled=zero_stage_3):
|
130 |
+
module.fuse_lora_weight()
|
131 |
+
return model
|
132 |
+
|
133 |
+
|
134 |
+
def only_optimize_lora_parameters(model):
|
135 |
+
# turn off the gradient of all the parameters except the LoRA parameters
|
136 |
+
for name, param in model.named_parameters():
|
137 |
+
if "lora_right_weight" in name or "lora_left_weight" in name:
|
138 |
+
param.requires_grad = True
|
139 |
+
else:
|
140 |
+
param.requires_grad = False
|
141 |
+
return model
|
models/basic_modules/prefix_encoder.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
# from transformers.models.bart.modeling_bart import BartForConditionalGeneration
|
4 |
+
# from transformers.models.bert.modeling_bert import BertForSequenceClassification
|
5 |
+
|
6 |
+
# model = BartForConditionalGeneration(None)
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
class PrefixEncoder(torch.nn.Module):
|
11 |
+
r"""
|
12 |
+
The torch.nn model to encode the prefix
|
13 |
+
|
14 |
+
Input shape: (batch-size, prefix-length)
|
15 |
+
|
16 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
17 |
+
"""
|
18 |
+
def __init__(self, config):
|
19 |
+
super().__init__()
|
20 |
+
self.prefix_projection = config.prefix_projection
|
21 |
+
if self.prefix_projection:
|
22 |
+
# Use a two-layer MLP to encode the prefix
|
23 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
24 |
+
self.trans = torch.nn.Sequential(
|
25 |
+
torch.nn.Linear(config.hidden_size, config.prefix_hidden_size),
|
26 |
+
torch.nn.Tanh(),
|
27 |
+
torch.nn.Linear(config.prefix_hidden_size, config.num_hidden_layers * 2 * config.hidden_size)
|
28 |
+
)
|
29 |
+
else:
|
30 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_hidden_layers * 2 * config.hidden_size)
|
31 |
+
|
32 |
+
def forward(self, prefix: torch.Tensor):
|
33 |
+
if self.prefix_projection:
|
34 |
+
prefix_tokens = self.embedding(prefix) # [pre_seq_len, hidden_dim]
|
35 |
+
past_key_values = self.trans(prefix_tokens)
|
36 |
+
else:
|
37 |
+
past_key_values = self.embedding(prefix)
|
38 |
+
return past_key_values
|