Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Time : 2022/03/23 15:25 | |
# @Author : Jianing Wang | |
# @Email : lygwjn@gmail.com | |
# @File : TripletLoss.py | |
# !/usr/bin/env python | |
# coding=utf-8 | |
from enum import Enum | |
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from transformers.models.bert.modeling_bert import BertModel | |
from transformers import BertTokenizer, BertConfig | |
class TripletDistanceMetric(Enum): | |
""" | |
The metric for the triplet loss | |
""" | |
COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) | |
EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) | |
MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) | |
class TripletLoss(nn.Module): | |
""" | |
This class implements triplet loss. Given a triplet of (anchor, positive, negative), | |
the loss minimizes the distance between anchor and positive while it maximizes the distance | |
between anchor and negative. It compute the following loss function: | |
loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0). | |
Margin is an important hyperparameter and needs to be tuned respectively. | |
@:param distance_metric: The distance metric function | |
@:param triplet_margin: (float) The margin distance | |
Input example of forward function: | |
rep_anchor: [[0.2, -0.1, ..., 0.6], [0.2, -0.1, ..., 0.6], ..., [0.2, -0.1, ..., 0.6]] | |
rep_candidate: [[0.3, 0.1, ...m -0.3], [-0.8, 1.2, ..., 0.7], ..., [-0.9, 0.1, ..., 0.4]] | |
label: [0, 1, ..., 1] | |
Return example of forward function: | |
0.015 (averged) | |
2.672 (sum) | |
""" | |
def __init__(self, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 0.5): | |
super(TripletLoss, self).__init__() | |
self.distance_metric = distance_metric | |
self.triplet_margin = triplet_margin | |
def forward(self, rep_anchor, rep_positive, rep_negative): | |
# rep_anchor: [batch_size, hidden_dim] denotes the representations of anchors | |
# rep_positive: [batch_size, hidden_dim] denotes the representations of positive, sometimes, it canbe dropout | |
# rep_negative: [batch_size, hidden_dim] denotes the representations of negative | |
# label: [batch_size, hidden_dim] denotes the label of each anchor - candidate pair | |
distance_pos = self.distance_metric(rep_anchor, rep_positive) | |
distance_neg = self.distance_metric(rep_anchor, rep_negative) | |
losses = F.relu(distance_pos - distance_neg + self.triplet_margin) | |
return losses.mean() | |
if __name__ == "__main__": | |
# configure for huggingface pre-trained language models | |
config = BertConfig.from_pretrained("bert-base-cased") | |
# tokenizer for huggingface pre-trained language models | |
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
# pytorch_model.bin for huggingface pre-trained language models | |
model = BertModel.from_pretrained("bert-base-cased") | |
# obtain two batch of examples, each corresponding example is a pair | |
anchor_example = ["I am an anchor, which is the source example sampled from corpora."] # anchor sentence | |
positive_example = [ | |
"I am an anchor, which is the source example.", | |
"I am the source example sampled from corpora." | |
] # positive, which randomly dropout or noise from anchor | |
negative_example = [ | |
"It is different with the anchor.", | |
"My name is Jianing Wang, please give me some stars, thank you!" | |
] # negative, which randomly sampled from corpora | |
# convert each example for feature | |
# {"input_ids": xxx, "attention_mask": xxx, "token_tuype_ids": xxx} | |
anchor_feature = tokenizer(anchor_example, add_special_tokens=True, padding=True) | |
positive_feature = tokenizer(positive_example, add_special_tokens=True, padding=True) | |
negative_feature = tokenizer(negative_example, add_special_tokens=True, padding=True) | |
# padding and convert to feature batch | |
max_seq_lem = 24 | |
anchor_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in anchor_feature.items()} | |
positive_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in positive_feature.items()} | |
negative_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in negative_feature.items()} | |
# obtain sentence embedding by averaged pooling | |
rep_anchor = model(**anchor_feature)[0] # [1, max_seq_len, hidden_dim] | |
rep_positive = model(**positive_feature)[0] # [batch_size, max_seq_len, hidden_dim] | |
rep_negative = model(**negative_feature)[0] # [batch_size, max_seq_len, hidden_dim] | |
# repeat | |
rep_anchor = torch.mean(rep_anchor, -1) # [1, hidden_dim] | |
rep_positive = torch.mean(rep_positive, -1) # [batch_size, hidden_dim] | |
rep_negative = torch.mean(rep_negative, -1) # [batch_size, hidden_dim] | |
# obtain contrastive loss | |
loss_fn = TripletLoss() | |
loss = loss_fn(rep_anchor=rep_anchor, rep_positive=rep_positive, rep_negative=rep_negative) | |
print(loss) # tensor(0.5001, grad_fn=<MeanBackward0>) | |