IE101TW / loss /triplet_loss.py
DeepLearning101's picture
Upload 6 files
fdc4786
raw
history blame
5.13 kB
# -*- coding: utf-8 -*-
# @Time : 2022/03/23 15:25
# @Author : Jianing Wang
# @Email : lygwjn@gmail.com
# @File : TripletLoss.py
# !/usr/bin/env python
# coding=utf-8
from enum import Enum
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from transformers.models.bert.modeling_bert import BertModel
from transformers import BertTokenizer, BertConfig
class TripletDistanceMetric(Enum):
"""
The metric for the triplet loss
"""
COSINE = lambda x, y: 1 - F.cosine_similarity(x, y)
EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2)
MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1)
class TripletLoss(nn.Module):
"""
This class implements triplet loss. Given a triplet of (anchor, positive, negative),
the loss minimizes the distance between anchor and positive while it maximizes the distance
between anchor and negative. It compute the following loss function:
loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0).
Margin is an important hyperparameter and needs to be tuned respectively.
@:param distance_metric: The distance metric function
@:param triplet_margin: (float) The margin distance
Input example of forward function:
rep_anchor: [[0.2, -0.1, ..., 0.6], [0.2, -0.1, ..., 0.6], ..., [0.2, -0.1, ..., 0.6]]
rep_candidate: [[0.3, 0.1, ...m -0.3], [-0.8, 1.2, ..., 0.7], ..., [-0.9, 0.1, ..., 0.4]]
label: [0, 1, ..., 1]
Return example of forward function:
0.015 (averged)
2.672 (sum)
"""
def __init__(self, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 0.5):
super(TripletLoss, self).__init__()
self.distance_metric = distance_metric
self.triplet_margin = triplet_margin
def forward(self, rep_anchor, rep_positive, rep_negative):
# rep_anchor: [batch_size, hidden_dim] denotes the representations of anchors
# rep_positive: [batch_size, hidden_dim] denotes the representations of positive, sometimes, it canbe dropout
# rep_negative: [batch_size, hidden_dim] denotes the representations of negative
# label: [batch_size, hidden_dim] denotes the label of each anchor - candidate pair
distance_pos = self.distance_metric(rep_anchor, rep_positive)
distance_neg = self.distance_metric(rep_anchor, rep_negative)
losses = F.relu(distance_pos - distance_neg + self.triplet_margin)
return losses.mean()
if __name__ == "__main__":
# configure for huggingface pre-trained language models
config = BertConfig.from_pretrained("bert-base-cased")
# tokenizer for huggingface pre-trained language models
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
# pytorch_model.bin for huggingface pre-trained language models
model = BertModel.from_pretrained("bert-base-cased")
# obtain two batch of examples, each corresponding example is a pair
anchor_example = ["I am an anchor, which is the source example sampled from corpora."] # anchor sentence
positive_example = [
"I am an anchor, which is the source example.",
"I am the source example sampled from corpora."
] # positive, which randomly dropout or noise from anchor
negative_example = [
"It is different with the anchor.",
"My name is Jianing Wang, please give me some stars, thank you!"
] # negative, which randomly sampled from corpora
# convert each example for feature
# {"input_ids": xxx, "attention_mask": xxx, "token_tuype_ids": xxx}
anchor_feature = tokenizer(anchor_example, add_special_tokens=True, padding=True)
positive_feature = tokenizer(positive_example, add_special_tokens=True, padding=True)
negative_feature = tokenizer(negative_example, add_special_tokens=True, padding=True)
# padding and convert to feature batch
max_seq_lem = 24
anchor_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in anchor_feature.items()}
positive_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in positive_feature.items()}
negative_feature = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in negative_feature.items()}
# obtain sentence embedding by averaged pooling
rep_anchor = model(**anchor_feature)[0] # [1, max_seq_len, hidden_dim]
rep_positive = model(**positive_feature)[0] # [batch_size, max_seq_len, hidden_dim]
rep_negative = model(**negative_feature)[0] # [batch_size, max_seq_len, hidden_dim]
# repeat
rep_anchor = torch.mean(rep_anchor, -1) # [1, hidden_dim]
rep_positive = torch.mean(rep_positive, -1) # [batch_size, hidden_dim]
rep_negative = torch.mean(rep_negative, -1) # [batch_size, hidden_dim]
# obtain contrastive loss
loss_fn = TripletLoss()
loss = loss_fn(rep_anchor=rep_anchor, rep_positive=rep_positive, rep_negative=rep_negative)
print(loss) # tensor(0.5001, grad_fn=<MeanBackward0>)