Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -192,6 +192,7 @@ async def predict_single_dog(image):
|
|
192 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
193 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
|
|
195 |
|
196 |
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
|
197 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
@@ -207,8 +208,8 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
|
|
207 |
if not boxes:
|
208 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
209 |
else:
|
210 |
-
#
|
211 |
-
sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
212 |
|
213 |
for box, confidence in sorted_boxes:
|
214 |
x1, y1, x2, y2 = box
|
@@ -223,41 +224,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
|
|
223 |
|
224 |
return dogs
|
225 |
|
226 |
-
def merge_boxes(boxes, iou_threshold=0.5):
|
227 |
-
merged = []
|
228 |
-
while boxes:
|
229 |
-
base_box = boxes.pop(0)
|
230 |
-
i = 0
|
231 |
-
while i < len(boxes):
|
232 |
-
if calculate_iou(base_box[0], boxes[i][0]) > iou_threshold:
|
233 |
-
base_box = merge_two_boxes(base_box, boxes.pop(i))
|
234 |
-
else:
|
235 |
-
i += 1
|
236 |
-
merged.append(base_box)
|
237 |
-
return merged
|
238 |
-
|
239 |
-
def calculate_iou(box1, box2):
|
240 |
-
x1 = max(box1[0], box2[0])
|
241 |
-
y1 = max(box1[1], box2[1])
|
242 |
-
x2 = min(box1[2], box2[2])
|
243 |
-
y2 = min(box1[3], box2[3])
|
244 |
-
|
245 |
-
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
246 |
-
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
247 |
-
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
248 |
-
|
249 |
-
iou = intersection / float(area1 + area2 - intersection)
|
250 |
-
return iou
|
251 |
-
|
252 |
-
def merge_two_boxes(box1, box2):
|
253 |
-
return (
|
254 |
-
[min(box1[0][0], box2[0][0]),
|
255 |
-
min(box1[0][1], box2[0][1]),
|
256 |
-
max(box1[0][2], box2[0][2]),
|
257 |
-
max(box1[0][3], box2[0][3])],
|
258 |
-
max(box1[1], box2[1]) # 取較高的置信度
|
259 |
-
)
|
260 |
-
|
261 |
|
262 |
async def process_single_dog(image):
|
263 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
@@ -456,6 +422,70 @@ async def process_single_dog(image):
|
|
456 |
# iface.launch()
|
457 |
|
458 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
async def predict(image):
|
460 |
if image is None:
|
461 |
return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
@@ -490,7 +520,10 @@ async def predict(image):
|
|
490 |
explanations.append(dog_explanation)
|
491 |
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
492 |
else:
|
493 |
-
|
|
|
|
|
|
|
494 |
|
495 |
final_explanation = "\n\n".join(explanations)
|
496 |
if buttons:
|
|
|
192 |
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
193 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
+
|
196 |
|
197 |
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
|
|
208 |
if not boxes:
|
209 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
210 |
else:
|
211 |
+
# 按置信度排序並選擇所有框
|
212 |
+
sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
213 |
|
214 |
for box, confidence in sorted_boxes:
|
215 |
x1, y1, x2, y2 = box
|
|
|
224 |
|
225 |
return dogs
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
async def process_single_dog(image):
|
229 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
|
|
422 |
# iface.launch()
|
423 |
|
424 |
|
425 |
+
# async def predict(image):
|
426 |
+
# if image is None:
|
427 |
+
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
428 |
+
|
429 |
+
# try:
|
430 |
+
# if isinstance(image, np.ndarray):
|
431 |
+
# image = Image.fromarray(image)
|
432 |
+
|
433 |
+
# dogs = await detect_multiple_dogs(image)
|
434 |
+
|
435 |
+
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
436 |
+
# explanations = []
|
437 |
+
# buttons = []
|
438 |
+
# annotated_image = image.copy()
|
439 |
+
# draw = ImageDraw.Draw(annotated_image)
|
440 |
+
# font = ImageFont.load_default()
|
441 |
+
|
442 |
+
# for i, (cropped_image, _, box) in enumerate(dogs):
|
443 |
+
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
444 |
+
# color = color_list[i % len(color_list)]
|
445 |
+
# draw.rectangle(box, outline=color, width=3)
|
446 |
+
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
447 |
+
|
448 |
+
# if top1_prob >= 0.5:
|
449 |
+
# breed = topk_breeds[0]
|
450 |
+
# description = get_dog_description(breed)
|
451 |
+
# formatted_description = format_description(description, breed)
|
452 |
+
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
453 |
+
# elif top1_prob >= 0.2:
|
454 |
+
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
455 |
+
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
456 |
+
# explanations.append(dog_explanation)
|
457 |
+
# buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
458 |
+
# else:
|
459 |
+
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
460 |
+
|
461 |
+
# final_explanation = "\n\n".join(explanations)
|
462 |
+
# if buttons:
|
463 |
+
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
464 |
+
# initial_state = {
|
465 |
+
# "explanation": final_explanation,
|
466 |
+
# "buttons": buttons,
|
467 |
+
# "show_back": True,
|
468 |
+
# "image": annotated_image,
|
469 |
+
# "is_multi_dog": len(dogs) > 1,
|
470 |
+
# "dogs_info": explanations
|
471 |
+
# }
|
472 |
+
# return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
473 |
+
# else:
|
474 |
+
# initial_state = {
|
475 |
+
# "explanation": final_explanation,
|
476 |
+
# "buttons": [],
|
477 |
+
# "show_back": False,
|
478 |
+
# "image": annotated_image,
|
479 |
+
# "is_multi_dog": len(dogs) > 1,
|
480 |
+
# "dogs_info": explanations
|
481 |
+
# }
|
482 |
+
# return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
483 |
+
|
484 |
+
# except Exception as e:
|
485 |
+
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
486 |
+
# print(error_msg)
|
487 |
+
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
488 |
+
|
489 |
async def predict(image):
|
490 |
if image is None:
|
491 |
return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
|
|
520 |
explanations.append(dog_explanation)
|
521 |
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
522 |
else:
|
523 |
+
if len(dogs) == 1:
|
524 |
+
explanations.append("The image is unclear or does not contain a recognized dog breed.")
|
525 |
+
else:
|
526 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
527 |
|
528 |
final_explanation = "\n\n".join(explanations)
|
529 |
if buttons:
|