Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -193,7 +193,7 @@ async def predict_single_dog(image):
|
|
193 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
197 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
198 |
dogs = []
|
199 |
boxes = []
|
@@ -201,17 +201,25 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.5):
|
|
201 |
if box.cls == 16: # COCO dataset class for dog is 16
|
202 |
xyxy = box.xyxy[0].tolist()
|
203 |
confidence = box.conf.item()
|
204 |
-
boxes.append(xyxy)
|
205 |
|
206 |
# 如果沒有檢測到狗,使用整張圖片
|
207 |
if not boxes:
|
208 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
209 |
else:
|
210 |
-
#
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
return dogs
|
217 |
|
@@ -221,7 +229,7 @@ def merge_boxes(boxes, iou_threshold=0.5):
|
|
221 |
base_box = boxes.pop(0)
|
222 |
i = 0
|
223 |
while i < len(boxes):
|
224 |
-
if calculate_iou(base_box, boxes[i]) > iou_threshold:
|
225 |
base_box = merge_two_boxes(base_box, boxes.pop(i))
|
226 |
else:
|
227 |
i += 1
|
@@ -242,12 +250,13 @@ def calculate_iou(box1, box2):
|
|
242 |
return iou
|
243 |
|
244 |
def merge_two_boxes(box1, box2):
|
245 |
-
return
|
246 |
-
min(box1[0], box2[0]),
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
251 |
|
252 |
|
253 |
async def process_single_dog(image):
|
@@ -494,7 +503,7 @@ async def predict(image):
|
|
494 |
"is_multi_dog": len(dogs) > 1,
|
495 |
"dogs_info": explanations
|
496 |
}
|
497 |
-
return final_explanation, annotated_image, gr.update(visible=
|
498 |
else:
|
499 |
initial_state = {
|
500 |
"explanation": final_explanation,
|
|
|
193 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
+
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
|
197 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
198 |
dogs = []
|
199 |
boxes = []
|
|
|
201 |
if box.cls == 16: # COCO dataset class for dog is 16
|
202 |
xyxy = box.xyxy[0].tolist()
|
203 |
confidence = box.conf.item()
|
204 |
+
boxes.append((xyxy, confidence))
|
205 |
|
206 |
# 如果沒有檢測到狗,使用整張圖片
|
207 |
if not boxes:
|
208 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
209 |
else:
|
210 |
+
# 按置信度排序並選擇前4個框(如果有的話)
|
211 |
+
sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)[:4]
|
212 |
+
|
213 |
+
for box, confidence in sorted_boxes:
|
214 |
+
x1, y1, x2, y2 = box
|
215 |
+
# 擴大框的大小
|
216 |
+
w, h = x2 - x1, y2 - y1
|
217 |
+
x1 = max(0, x1 - w * 0.1)
|
218 |
+
y1 = max(0, y1 - h * 0.1)
|
219 |
+
x2 = min(image.width, x2 + w * 0.1)
|
220 |
+
y2 = min(image.height, y2 + h * 0.1)
|
221 |
+
cropped_image = image.crop((x1, y1, x2, y2))
|
222 |
+
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
223 |
|
224 |
return dogs
|
225 |
|
|
|
229 |
base_box = boxes.pop(0)
|
230 |
i = 0
|
231 |
while i < len(boxes):
|
232 |
+
if calculate_iou(base_box[0], boxes[i][0]) > iou_threshold:
|
233 |
base_box = merge_two_boxes(base_box, boxes.pop(i))
|
234 |
else:
|
235 |
i += 1
|
|
|
250 |
return iou
|
251 |
|
252 |
def merge_two_boxes(box1, box2):
|
253 |
+
return (
|
254 |
+
[min(box1[0][0], box2[0][0]),
|
255 |
+
min(box1[0][1], box2[0][1]),
|
256 |
+
max(box1[0][2], box2[0][2]),
|
257 |
+
max(box1[0][3], box2[0][3])],
|
258 |
+
max(box1[1], box2[1]) # 取較高的置信度
|
259 |
+
)
|
260 |
|
261 |
|
262 |
async def process_single_dog(image):
|
|
|
503 |
"is_multi_dog": len(dogs) > 1,
|
504 |
"dogs_info": explanations
|
505 |
}
|
506 |
+
return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
507 |
else:
|
508 |
initial_state = {
|
509 |
"explanation": final_explanation,
|