Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from breed_health_info import breed_health_info | |
from breed_noise_info import breed_noise_info | |
import traceback | |
class UserPreferences: | |
"""使用者偏好設定的資料結構""" | |
living_space: str # "apartment", "house_small", "house_large" | |
yard_access: str # "no_yard", "shared_yard", "private_yard" | |
exercise_time: int # minutes per day | |
exercise_type: str # "light_walks", "moderate_activity", "active_training" | |
grooming_commitment: str # "low", "medium", "high" | |
experience_level: str # "beginner", "intermediate", "advanced" | |
time_availability: str # "limited", "moderate", "flexible" | |
has_children: bool | |
children_age: str # "toddler", "school_age", "teenager" | |
noise_tolerance: str # "low", "medium", "high" | |
space_for_play: bool | |
other_pets: bool | |
climate: str # "cold", "moderate", "hot" | |
health_sensitivity: str = "medium" | |
barking_acceptance: str = None | |
size_preference: str = "no_preference" # "no_preference", "small", "medium", "large", "giant" | |
training_commitment: str = "medium" # "low", "medium", "high" - 訓練投入程度 | |
living_environment: str = "ground_floor" # "ground_floor", "with_elevator", "walk_up" - 居住環境細節 | |
def __post_init__(self): | |
if self.barking_acceptance is None: | |
self.barking_acceptance = self.noise_tolerance | |
def apply_size_filter(breed_score: float, user_preference: str, breed_size: str) -> float: | |
""" | |
強過濾機制,基於用戶的體型偏好過濾品種 | |
Parameters: | |
breed_score (float): 原始品種評分 | |
user_preference (str): 用戶偏好的體型 | |
breed_size (str): 品種的實際體型 | |
Returns: | |
float: 過濾後的評分,如果體型不符合會返回 0 | |
""" | |
if user_preference == "no_preference": | |
return breed_score | |
# 標準化 size 字串以進行比較 | |
breed_size = breed_size.lower().strip() | |
user_preference = user_preference.lower().strip() | |
# 特殊處理 "varies" 的情況 | |
if breed_size == "varies": | |
return breed_score * 0.5 # 給予一個折扣係數,因為不確定性 | |
# 如果用戶有明確體型偏好但品種不符合,返回 0 | |
if user_preference != breed_size: | |
return 0 | |
return breed_score | |
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float: | |
"""計算品種額外加分""" | |
bonus = 0.0 | |
temperament = breed_info.get('Temperament', '').lower() | |
# 1. 壽命加分(最高0.05) | |
try: | |
lifespan = breed_info.get('Lifespan', '10-12 years') | |
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]] | |
longevity_bonus = min(0.05, (max(years) - 10) * 0.01) | |
bonus += longevity_bonus | |
except: | |
pass | |
# 2. 性格特徵加分(最高0.15) | |
positive_traits = { | |
'friendly': 0.05, | |
'gentle': 0.05, | |
'patient': 0.05, | |
'intelligent': 0.04, | |
'adaptable': 0.04, | |
'affectionate': 0.04, | |
'easy-going': 0.03, | |
'calm': 0.03 | |
} | |
negative_traits = { | |
'aggressive': -0.08, | |
'stubborn': -0.06, | |
'dominant': -0.06, | |
'aloof': -0.04, | |
'nervous': -0.05, | |
'protective': -0.04 | |
} | |
personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament) | |
personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament) | |
bonus += max(-0.15, min(0.15, personality_score)) | |
# 3. 適應性加分(最高0.1) | |
adaptability_bonus = 0.0 | |
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment": | |
adaptability_bonus += 0.05 | |
if 'adaptable' in temperament or 'versatile' in temperament: | |
adaptability_bonus += 0.05 | |
bonus += min(0.1, adaptability_bonus) | |
# 4. 家庭相容性(最高0.1) | |
if user_prefs.has_children: | |
family_traits = { | |
'good with children': 0.06, | |
'patient': 0.05, | |
'gentle': 0.05, | |
'tolerant': 0.04, | |
'playful': 0.03 | |
} | |
unfriendly_traits = { | |
'aggressive': -0.08, | |
'nervous': -0.07, | |
'protective': -0.06, | |
'territorial': -0.05 | |
} | |
# 年齡評估 | |
age_adjustments = { | |
'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3}, | |
'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0}, | |
'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8} | |
} | |
adj = age_adjustments.get(user_prefs.children_age, | |
{'bonus_mult': 1.0, 'penalty_mult': 1.0}) | |
family_bonus = sum(value for trait, value in family_traits.items() | |
if trait in temperament) * adj['bonus_mult'] | |
family_penalty = sum(value for trait, value in unfriendly_traits.items() | |
if trait in temperament) * adj['penalty_mult'] | |
bonus += min(0.15, max(-0.2, family_bonus + family_penalty)) | |
# 5. 專門技能加分(最高0.1) | |
skill_bonus = 0.0 | |
special_abilities = { | |
'working': 0.03, | |
'herding': 0.03, | |
'hunting': 0.03, | |
'tracking': 0.03, | |
'agility': 0.02 | |
} | |
for ability, value in special_abilities.items(): | |
if ability in temperament.lower(): | |
skill_bonus += value | |
bonus += min(0.1, skill_bonus) | |
# 6. 適應性評估 | |
adaptability_bonus = 0.0 | |
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment": | |
adaptability_bonus += 0.08 # 小型犬更適合公寓 | |
# 環境適應性評估 | |
if 'adaptable' in temperament or 'versatile' in temperament: | |
if user_prefs.living_space == "apartment": | |
adaptability_bonus += 0.10 # 適應性在公寓環境更重要 | |
else: | |
adaptability_bonus += 0.05 # 其他環境仍有加分 | |
# 氣候適應性 | |
description = breed_info.get('Description', '').lower() | |
climate = user_prefs.climate | |
if climate == 'hot': | |
if 'heat tolerant' in description or 'warm climate' in description: | |
adaptability_bonus += 0.08 | |
elif 'thick coat' in description or 'cold climate' in description: | |
adaptability_bonus -= 0.10 | |
elif climate == 'cold': | |
if 'thick coat' in description or 'cold climate' in description: | |
adaptability_bonus += 0.08 | |
elif 'heat tolerant' in description or 'short coat' in description: | |
adaptability_bonus -= 0.10 | |
bonus += min(0.15, adaptability_bonus) | |
return min(0.5, max(-0.25, bonus)) | |
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict: | |
""" | |
計算額外的評估因素,結合品種特性與使用者需求的全面評估系統 | |
1. 多功能性評估 - 品種的多樣化能力 | |
2. 訓練性評估 - 學習和服從能力 | |
3. 能量水平評估 - 活力和運動需求 | |
4. 美容需求評估 - 護理和維護需求 | |
5. 社交需求評估 - 與人互動的需求程度 | |
6. 氣候適應性 - 對環境的適應能力 | |
7. 運動類型匹配 - 與使用者運動習慣的契合度 | |
8. 生活方式適配 - 與使用者日常生活的匹配度 | |
""" | |
factors = { | |
'versatility': 0.0, # 多功能性 | |
'trainability': 0.0, # 可訓練度 | |
'energy_level': 0.0, # 能量水平 | |
'grooming_needs': 0.0, # 美容需求 | |
'social_needs': 0.0, # 社交需求 | |
'weather_adaptability': 0.0,# 氣候適應性 | |
'exercise_match': 0.0, # 運動匹配度 | |
'lifestyle_fit': 0.0 # 生活方式適配度 | |
} | |
temperament = breed_info.get('Temperament', '').lower() | |
description = breed_info.get('Description', '').lower() | |
size = breed_info.get('Size', 'Medium') | |
# 1. 多功能性評估 - 加強品種用途評估 | |
versatile_traits = { | |
'intelligent': 0.25, | |
'adaptable': 0.25, | |
'trainable': 0.20, | |
'athletic': 0.15, | |
'versatile': 0.15 | |
} | |
working_roles = { | |
'working': 0.20, | |
'herding': 0.15, | |
'hunting': 0.15, | |
'sporting': 0.15, | |
'companion': 0.10 | |
} | |
# 計算特質分數 | |
trait_score = sum(value for trait, value in versatile_traits.items() | |
if trait in temperament) | |
# 計算角色分數 | |
role_score = sum(value for role, value in working_roles.items() | |
if role in description) | |
# 根據使用者需求調整多功能性評分 | |
purpose_traits = { | |
'light_walks': ['calm', 'gentle', 'easy-going'], | |
'moderate_activity': ['adaptable', 'balanced', 'versatile'], | |
'active_training': ['intelligent', 'trainable', 'working'] | |
} | |
if user_prefs.exercise_type in purpose_traits: | |
matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type] | |
if trait in temperament) | |
trait_score += matching_traits * 0.15 | |
factors['versatility'] = min(1.0, trait_score + role_score) | |
# 2. 訓練性評估 | |
trainable_traits = { | |
'intelligent': 0.3, | |
'eager to please': 0.3, | |
'trainable': 0.2, | |
'quick learner': 0.2, | |
'obedient': 0.2 | |
} | |
base_trainability = sum(value for trait, value in trainable_traits.items() | |
if trait in temperament) | |
# 根據使用者經驗調整訓練性評分 | |
experience_multipliers = { | |
'beginner': 1.2, # 新手更需要容易訓練的狗 | |
'intermediate': 1.0, | |
'advanced': 0.8 # 專家能處理較難訓練的狗 | |
} | |
factors['trainability'] = min(1.0, base_trainability * | |
experience_multipliers.get(user_prefs.experience_level, 1.0)) | |
# 3. 能量水平評估 | |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
energy_levels = { | |
'VERY HIGH': { | |
'score': 1.0, | |
'min_exercise': 120, | |
'ideal_exercise': 150 | |
}, | |
'HIGH': { | |
'score': 0.8, | |
'min_exercise': 90, | |
'ideal_exercise': 120 | |
}, | |
'MODERATE': { | |
'score': 0.6, | |
'min_exercise': 60, | |
'ideal_exercise': 90 | |
}, | |
'LOW': { | |
'score': 0.4, | |
'min_exercise': 30, | |
'ideal_exercise': 60 | |
} | |
} | |
breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE']) | |
# 計算運動時間匹配度 | |
if user_prefs.exercise_time >= breed_energy['ideal_exercise']: | |
energy_score = breed_energy['score'] | |
else: | |
# 如果運動時間不足,按比例降低分數 | |
deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise']) | |
energy_score = breed_energy['score'] * deficit_ratio | |
factors['energy_level'] = energy_score | |
# 4. 美容需求評估 | |
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper() | |
grooming_levels = { | |
'HIGH': 1.0, | |
'MODERATE': 0.6, | |
'LOW': 0.3 | |
} | |
# 特殊毛髮類型評估 | |
coat_adjustments = 0 | |
if 'long coat' in description: | |
coat_adjustments += 0.2 | |
if 'double coat' in description: | |
coat_adjustments += 0.15 | |
if 'curly' in description: | |
coat_adjustments += 0.15 | |
# 根據使用者承諾度調整 | |
commitment_multipliers = { | |
'low': 1.5, # 低承諾度時加重美容需求的影響 | |
'medium': 1.0, | |
'high': 0.8 # 高承諾度時降低美容需求的影響 | |
} | |
base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments | |
factors['grooming_needs'] = min(1.0, base_grooming * | |
commitment_multipliers.get(user_prefs.grooming_commitment, 1.0)) | |
# 5. 社交需求評估 | |
social_traits = { | |
'friendly': 0.25, | |
'social': 0.25, | |
'affectionate': 0.20, | |
'people-oriented': 0.20 | |
} | |
antisocial_traits = { | |
'independent': -0.20, | |
'aloof': -0.20, | |
'reserved': -0.15 | |
} | |
social_score = sum(value for trait, value in social_traits.items() | |
if trait in temperament) | |
antisocial_score = sum(value for trait, value in antisocial_traits.items() | |
if trait in temperament) | |
# 家庭情況調整 | |
if user_prefs.has_children: | |
child_friendly_bonus = 0.2 if 'good with children' in temperament else 0 | |
social_score += child_friendly_bonus | |
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score)) | |
# 6. 氣候適應性評估 - 更細緻的環境適應評估 | |
climate_traits = { | |
'cold': { | |
'positive': ['thick coat', 'winter', 'cold climate'], | |
'negative': ['short coat', 'heat sensitive'] | |
}, | |
'hot': { | |
'positive': ['short coat', 'heat tolerant', 'warm climate'], | |
'negative': ['thick coat', 'cold climate'] | |
}, | |
'moderate': { | |
'positive': ['adaptable', 'all climate'], | |
'negative': [] | |
} | |
} | |
climate_score = 0.4 # 基礎分數 | |
if user_prefs.climate in climate_traits: | |
# 正面特質加分 | |
climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive'] | |
if term in description) | |
# 負面特質減分 | |
climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative'] | |
if term in description) | |
factors['weather_adaptability'] = min(1.0, max(0.0, climate_score)) | |
# 7. 運動類型匹配評估 | |
exercise_type_traits = { | |
'light_walks': ['calm', 'gentle'], | |
'moderate_activity': ['adaptable', 'balanced'], | |
'active_training': ['athletic', 'energetic'] | |
} | |
if user_prefs.exercise_type in exercise_type_traits: | |
match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type] | |
if trait in temperament) | |
factors['exercise_match'] = min(1.0, match_score + 0.5) # 基礎分0.5 | |
# 8. 生活方式適配評估 | |
lifestyle_score = 0.5 # 基礎分數 | |
# 空間適配 | |
if user_prefs.living_space == 'apartment': | |
if size == 'Small': | |
lifestyle_score += 0.2 | |
elif size == 'Large': | |
lifestyle_score -= 0.2 | |
elif user_prefs.living_space == 'house_large': | |
if size in ['Large', 'Giant']: | |
lifestyle_score += 0.2 | |
# 時間可用性適配 | |
time_availability_bonus = { | |
'limited': -0.1, | |
'moderate': 0, | |
'flexible': 0.1 | |
} | |
lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0) | |
factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score)) | |
return factors | |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict: | |
"""計算品種與使用者條件的相容性分數""" | |
try: | |
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}") | |
print(f"Breed info keys: {breed_info.keys()}") | |
if 'Size' not in breed_info: | |
print("Missing Size information") | |
raise KeyError("Size information missing") | |
if user_prefs.size_preference != "no_preference": | |
if breed_info['Size'].lower() != user_prefs.size_preference.lower(): | |
return { | |
'space': 0, | |
'exercise': 0, | |
'grooming': 0, | |
'experience': 0, | |
'health': 0, | |
'noise': 0, | |
'overall': 0, | |
'adaptability_bonus': 0 | |
} | |
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float: | |
""" | |
1. 動態的基礎分數矩陣 | |
2. 強化空間品質評估 | |
3. 增加極端情況處理 | |
4. 考慮不同空間組合的協同效應 | |
""" | |
def get_base_score(): | |
# 基礎分數矩陣 - 更極端的分數分配 | |
base_matrix = { | |
"Small": { | |
"apartment": { | |
"no_yard": 0.85, # 小型犬在公寓仍然適合 | |
"shared_yard": 0.90, # 共享院子提供額外活動空間 | |
"private_yard": 0.95 # 私人院子最理想 | |
}, | |
"house_small": { | |
"no_yard": 0.80, | |
"shared_yard": 0.85, | |
"private_yard": 0.90 | |
}, | |
"house_large": { | |
"no_yard": 0.75, | |
"shared_yard": 0.80, | |
"private_yard": 0.85 | |
} | |
}, | |
"Medium": { | |
"apartment": { | |
"no_yard": 0.75, | |
"shared_yard": 0.85, | |
"private_yard": 0.90 | |
}, | |
"house_small": { | |
"no_yard": 0.80, | |
"shared_yard": 0.90, | |
"private_yard": 0.90 | |
}, | |
"house_large": { | |
"no_yard": 0.85, | |
"shared_yard": 0.90, | |
"private_yard": 0.95 | |
} | |
}, | |
"Large": { | |
"apartment": { | |
"no_yard": 0.70, | |
"shared_yard": 0.80, | |
"private_yard": 0.85 | |
}, | |
"house_small": { | |
"no_yard": 0.75, | |
"shared_yard": 0.85, | |
"private_yard": 0.90 | |
}, | |
"house_large": { | |
"no_yard": 0.85, | |
"shared_yard": 0.90, | |
"private_yard": 1.0 | |
} | |
}, | |
"Giant": { | |
"apartment": { | |
"no_yard": 0.65, | |
"shared_yard": 0.75, | |
"private_yard": 0.80 | |
}, | |
"house_small": { | |
"no_yard": 0.70, | |
"shared_yard": 0.80, | |
"private_yard": 0.85 | |
}, | |
"house_large": { | |
"no_yard": 0.80, | |
"shared_yard": 0.90, | |
"private_yard": 1.0 | |
} | |
} | |
} | |
yard_type = "private_yard" if has_yard else "no_yard" | |
return base_matrix.get(size, base_matrix["Medium"])[living_space][yard_type] | |
def calculate_exercise_adjustment(): | |
# 運動需求對空間評分的影響 | |
exercise_impact = { | |
"Very High": { | |
"apartment": -0.10, | |
"house_small": -0.05, | |
"house_large": 0 | |
}, | |
"High": { | |
"apartment": -0.08, | |
"house_small": -0.05, | |
"house_large": 0 | |
}, | |
"Moderate": { | |
"apartment": -0.5, | |
"house_small": -0.02, | |
"house_large": 0 | |
}, | |
"Low": { | |
"apartment": 0.10, | |
"house_small": 0.05, | |
"house_large": 0 | |
} | |
} | |
return exercise_impact.get(exercise_needs, exercise_impact["Moderate"])[living_space] | |
def calculate_yard_bonus(): | |
# 院子效益評估更加細緻 | |
if not has_yard: | |
return 0 | |
yard_benefits = { | |
"Giant": { | |
"Very High": 0.25, | |
"High": 0.20, | |
"Moderate": 0.15, | |
"Low": 0.10 | |
}, | |
"Large": { | |
"Very High": 0.20, | |
"High": 0.15, | |
"Moderate": 0.10, | |
"Low": 0.05 | |
}, | |
"Medium": { | |
"Very High": 0.15, | |
"High": 0.10, | |
"Moderate": 0.08, | |
"Low": 0.05 | |
}, | |
"Small": { | |
"Very High": 0.10, | |
"High": 0.08, | |
"Moderate": 0.05, | |
"Low": 0.03 | |
} | |
} | |
size_benefits = yard_benefits.get(size, yard_benefits["Medium"]) | |
return size_benefits.get(exercise_needs, size_benefits["Moderate"]) | |
def apply_extreme_case_adjustments(score): | |
# 處理極端情況 | |
if size == "Giant" and living_space == "apartment": | |
return score * 0.85 | |
if size == "Large" and living_space == "apartment" and exercise_needs == "Very High": | |
return score * 0.85 | |
if size == "Small" and living_space == "house_large" and exercise_needs == "Low": | |
return score * 0.9 # 低運動需求的小型犬在大房子可能過於寬敞 | |
return score | |
# 計算最終分數 | |
base_score = get_base_score() | |
exercise_adj = calculate_exercise_adjustment() | |
yard_bonus = calculate_yard_bonus() | |
# 整合所有評分因素 | |
initial_score = base_score + exercise_adj + yard_bonus | |
# 應用極端情況調整 | |
final_score = apply_extreme_case_adjustments(initial_score) | |
# 確保分數在有效範圍內,但允許更極端的結果 | |
return max(0.05, min(1.0, final_score)) | |
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float: | |
""" | |
計算品種運動需求與使用者運動條件的匹配度。此函數特別著重: | |
1. 不同品種的運動耐受度差異 | |
2. 運動時間與類型的匹配度 | |
3. 極端運動量的嚴格限制 | |
Parameters: | |
breed_needs: 品種的運動需求等級 | |
exercise_time: 使用者計劃的運動時間(分鐘) | |
exercise_type: 運動類型(輕度/中度/高度) | |
Returns: | |
float: 0.1到1.0之間的匹配分數 | |
""" | |
# 定義每個運動需求等級的具體參數 | |
exercise_levels = { | |
'VERY HIGH': { | |
'min': 120, # 最低需求 | |
'ideal': 150, # 理想運動量 | |
'max': 180, # 最大建議量 | |
'type_weights': { # 不同運動類型的權重 | |
'active_training': 1.0, | |
'moderate_activity': 0.6, | |
'light_walks': 0.3 | |
} | |
}, | |
'HIGH': { | |
'min': 90, | |
'ideal': 120, | |
'max': 150, | |
'type_weights': { | |
'active_training': 0.9, | |
'moderate_activity': 0.8, | |
'light_walks': 0.4 | |
} | |
}, | |
'MODERATE': { | |
'min': 45, | |
'ideal': 60, | |
'max': 90, | |
'type_weights': { | |
'active_training': 0.7, | |
'moderate_activity': 1.0, | |
'light_walks': 0.8 | |
} | |
}, | |
'LOW': { | |
'min': 15, | |
'ideal': 30, | |
'max': 45, | |
'type_weights': { | |
'active_training': 0.5, | |
'moderate_activity': 0.8, | |
'light_walks': 1.0 | |
} | |
} | |
} | |
# 獲取品種的運動參數 | |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE']) | |
# 計算時間匹配度 | |
def calculate_time_score(): | |
"""計算運動時間的匹配度,特別處理過度運動的情況""" | |
if exercise_time < breed_level['min']: | |
# 運動不足的嚴格懲罰 | |
deficit_ratio = exercise_time / breed_level['min'] | |
return max(0.1, deficit_ratio * 0.4) | |
elif exercise_time <= breed_level['ideal']: | |
# 理想範圍內的漸進提升 | |
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min']) | |
return 0.6 + (progress * 0.4) | |
elif exercise_time <= breed_level['max']: | |
# 理想到最大範圍的平緩下降 | |
excess_ratio = (exercise_time - breed_level['ideal']) / (breed_level['max'] - breed_level['ideal']) | |
return 1.0 - (excess_ratio * 0.2) | |
else: | |
# 過度運動的顯著懲罰 | |
excess = (exercise_time - breed_level['max']) / breed_level['max'] | |
# 低運動需求品種的過度運動懲罰更嚴重 | |
penalty_factor = 1.5 if breed_needs.upper() == 'LOW' else 1.0 | |
return max(0.1, 0.8 - (excess * 0.5 * penalty_factor)) | |
# 計算運動類型匹配度 | |
def calculate_type_score(): | |
"""評估運動類型的適合度,考慮品種特性""" | |
base_type_score = breed_level['type_weights'].get(exercise_type, 0.5) | |
# 特殊情況處理 | |
if breed_needs.upper() == 'LOW' and exercise_type == 'active_training': | |
# 低運動需求品種不適合高強度運動 | |
base_type_score *= 0.5 | |
elif breed_needs.upper() == 'VERY HIGH' and exercise_type == 'light_walks': | |
# 高運動需求品種需要更多強度 | |
base_type_score *= 0.6 | |
return base_type_score | |
# 計算最終分數 | |
time_score = calculate_time_score() | |
type_score = calculate_type_score() | |
# 根據運動需求等級調整權重 | |
if breed_needs.upper() == 'LOW': | |
# 低運動需求品種更重視運動類型的合適性 | |
final_score = (time_score * 0.6) + (type_score * 0.4) | |
elif breed_needs.upper() == 'VERY HIGH': | |
# 高運動需求品種更重視運動時間的充足性 | |
final_score = (time_score * 0.7) + (type_score * 0.3) | |
else: | |
final_score = (time_score * 0.65) + (type_score * 0.35) | |
# 極端情況的最終調整 | |
if breed_needs.upper() == 'LOW' and exercise_time > breed_level['max'] * 2: | |
# 低運動需求品種的過度運動顯著降分 | |
final_score *= 0.6 | |
elif breed_needs.upper() == 'VERY HIGH' and exercise_time < breed_level['min'] * 0.5: | |
# 高運動需求品種運動嚴重不足降分 | |
final_score *= 0.5 | |
return max(0.1, min(1.0, final_score)) | |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float: | |
""" | |
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。 | |
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。 | |
""" | |
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯 | |
base_scores = { | |
"High": { | |
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數 | |
"medium": 0.65, # 中等承諾仍有挑戰 | |
"high": 1.0 # 高承諾最適合 | |
}, | |
"Moderate": { | |
"low": 0.45, # 中等需求對低承諾有困難 | |
"medium": 0.85, # 較好的匹配 | |
"high": 0.95 # 高承諾會有餘力 | |
}, | |
"Low": { | |
"low": 0.90, # 低需求對低承諾很合適 | |
"medium": 0.85, # 略微降低以反映可能過度投入 | |
"high": 0.80 # 可能造成資源浪費 | |
} | |
} | |
# 取得基礎分數 | |
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment] | |
# 根據品種大小調整美容工作量 | |
size_adjustments = { | |
"Giant": { | |
"low": -0.35, # 大型犬的美容工作量顯著增加 | |
"medium": -0.20, | |
"high": -0.10 | |
}, | |
"Large": { | |
"low": -0.25, | |
"medium": -0.15, | |
"high": -0.05 | |
}, | |
"Medium": { | |
"low": -0.15, | |
"medium": -0.10, | |
"high": 0 | |
}, | |
"Small": { | |
"low": -0.10, | |
"medium": -0.05, | |
"high": 0 | |
} | |
} | |
# 應用體型調整 | |
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment] | |
current_score = base_score + size_adjustment | |
# 特殊毛髮類型的額外調整 | |
def get_coat_adjustment(breed_description: str, commitment: str) -> float: | |
""" | |
評估特殊毛髮類型所需的額外維護工作 | |
""" | |
adjustments = 0 | |
# 長毛品種需要更多維護 | |
if 'long coat' in breed_description.lower(): | |
coat_penalties = { | |
'low': -0.20, | |
'medium': -0.15, | |
'high': -0.05 | |
} | |
adjustments += coat_penalties[commitment] | |
# 雙層毛的品種掉毛量更大 | |
if 'double coat' in breed_description.lower(): | |
double_coat_penalties = { | |
'low': -0.15, | |
'medium': -0.10, | |
'high': -0.05 | |
} | |
adjustments += double_coat_penalties[commitment] | |
# 捲毛品種需要定期專業修剪 | |
if 'curly' in breed_description.lower(): | |
curly_penalties = { | |
'low': -0.15, | |
'medium': -0.10, | |
'high': -0.05 | |
} | |
adjustments += curly_penalties[commitment] | |
return adjustments | |
# 季節性考量 | |
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float: | |
""" | |
評估季節性掉毛對美容需求的影響 | |
""" | |
if 'seasonal shedding' in breed_description.lower(): | |
seasonal_penalties = { | |
'low': -0.15, | |
'medium': -0.10, | |
'high': -0.05 | |
} | |
return seasonal_penalties[commitment] | |
return 0 | |
# 專業美容需求評估 | |
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float: | |
""" | |
評估需要專業美容服務的影響 | |
""" | |
if 'professional grooming' in breed_description.lower(): | |
grooming_penalties = { | |
'low': -0.20, | |
'medium': -0.15, | |
'high': -0.05 | |
} | |
return grooming_penalties[commitment] | |
return 0 | |
# 應用所有額外調整 | |
# 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整 | |
coat_adjustment = get_coat_adjustment("", user_commitment) | |
seasonal_adjustment = get_seasonal_adjustment("", user_commitment) | |
professional_adjustment = get_professional_grooming_adjustment("", user_commitment) | |
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment | |
# 確保分數在有意義的範圍內,但允許更大的差異 | |
return max(0.1, min(1.0, final_score)) | |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float: | |
""" | |
計算使用者經驗與品種需求的匹配分數,更平衡的經驗等級影響 | |
改進重點: | |
1. 提高初學者的基礎分數 | |
2. 縮小經驗等級間的差距 | |
3. 保持適度的區分度 | |
""" | |
# 基礎分數矩陣 - 更合理的分數分配 | |
base_scores = { | |
"High": { | |
"beginner": 0.55, # 提高起始分,讓新手也有機會 | |
"intermediate": 0.80, # 中級玩家有不錯的勝任能力 | |
"advanced": 0.95 # 資深者幾乎完全勝任 | |
}, | |
"Moderate": { | |
"beginner": 0.65, # 適中難度對新手更友善 | |
"intermediate": 0.85, # 中級玩家相當適合 | |
"advanced": 0.90 # 資深者完全勝任 | |
}, | |
"Low": { | |
"beginner": 0.85, # 新手友善品種維持高分 | |
"intermediate": 0.90, # 中級玩家幾乎完全勝任 | |
"advanced": 0.90 # 資深者完全勝任 | |
} | |
} | |
# 取得基礎分數 | |
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience] | |
# 性格評估的權重也需要調整 | |
temperament_lower = temperament.lower() | |
temperament_adjustments = 0.0 | |
# 根據經驗等級設定不同的特徵評估標準,降低懲罰程度 | |
if user_experience == "beginner": | |
difficult_traits = { | |
'stubborn': -0.15, # 降低懲罰程度 | |
'independent': -0.12, | |
'dominant': -0.12, | |
'strong-willed': -0.10, | |
'protective': -0.10, | |
'aloof': -0.08, | |
'energetic': -0.08, | |
'aggressive': -0.20 # 保持較高懲罰,因為安全考慮 | |
} | |
easy_traits = { | |
'gentle': 0.08, # 提高獎勵以平衡 | |
'friendly': 0.08, | |
'eager to please': 0.10, | |
'patient': 0.08, | |
'adaptable': 0.08, | |
'calm': 0.08 | |
} | |
# 計算特徵調整 | |
for trait, penalty in difficult_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += penalty | |
for trait, bonus in easy_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += bonus | |
# 品種類型特殊評估,降低懲罰程度 | |
if 'terrier' in temperament_lower: | |
temperament_adjustments -= 0.10 # 降低懲罰 | |
elif 'working' in temperament_lower: | |
temperament_adjustments -= 0.12 | |
elif 'guard' in temperament_lower: | |
temperament_adjustments -= 0.12 | |
# 中級和高級玩家的調整保持不變... | |
elif user_experience == "intermediate": | |
moderate_traits = { | |
'stubborn': -0.08, | |
'independent': -0.05, | |
'intelligent': 0.10, | |
'athletic': 0.08, | |
'versatile': 0.08, | |
'protective': -0.05 | |
} | |
for trait, adjustment in moderate_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += adjustment | |
else: # advanced | |
advanced_traits = { | |
'stubborn': 0.05, | |
'independent': 0.05, | |
'intelligent': 0.10, | |
'protective': 0.05, | |
'strong-willed': 0.05 | |
} | |
for trait, bonus in advanced_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += bonus | |
# 確保最終分數範圍合理 | |
final_score = max(0.15, min(1.0, score + temperament_adjustments)) | |
return final_score | |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float: | |
""" | |
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結 | |
1. 根據使用者的健康敏感度調整分數 | |
2. 更嚴格的健康問題評估 | |
3. 考慮多重健康問題的累積效應 | |
4. 加入遺傳疾病的特別考量 | |
""" | |
if breed_name not in breed_health_info: | |
return 0.5 | |
health_notes = breed_health_info[breed_name]['health_notes'].lower() | |
# 嚴重健康問題 - 加重扣分 | |
severe_conditions = { | |
'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質 | |
'heart disease': -0.25, # 心臟疾病,需要長期治療 | |
'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明 | |
'bloat': -0.22, # 胃扭轉,致命風險 | |
'epilepsy': -0.20, # 癲癇,需要長期藥物控制 | |
'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力 | |
'von willebrand disease': -0.18 # 血液凝固障礙 | |
} | |
# 中度健康問題 - 適度扣分 | |
moderate_conditions = { | |
'allergies': -0.12, # 過敏問題,需要持續關注 | |
'eye problems': -0.15, # 眼睛問題,可能需要手術 | |
'joint problems': -0.15, # 關節問題,影響運動能力 | |
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療 | |
'ear infections': -0.10, # 耳道感染,需要定期清理 | |
'skin issues': -0.12 # 皮膚問題,需要特殊護理 | |
} | |
# 輕微健康問題 - 輕微扣分 | |
minor_conditions = { | |
'dental issues': -0.08, # 牙齒問題,需要定期護理 | |
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食 | |
'minor allergies': -0.06, # 輕微過敏,可控制 | |
'seasonal allergies': -0.06 # 季節性過敏 | |
} | |
# 計算基礎健康分數 | |
health_score = 1.0 | |
# 健康問題累積效應計算 | |
condition_counts = { | |
'severe': 0, | |
'moderate': 0, | |
'minor': 0 | |
} | |
# 計算各等級健康問題的數量和影響 | |
for condition, penalty in severe_conditions.items(): | |
if condition in health_notes: | |
health_score += penalty | |
condition_counts['severe'] += 1 | |
for condition, penalty in moderate_conditions.items(): | |
if condition in health_notes: | |
health_score += penalty | |
condition_counts['moderate'] += 1 | |
for condition, penalty in minor_conditions.items(): | |
if condition in health_notes: | |
health_score += penalty | |
condition_counts['minor'] += 1 | |
# 多重問題的額外懲罰(累積效應) | |
if condition_counts['severe'] > 1: | |
health_score *= (0.85 ** (condition_counts['severe'] - 1)) | |
if condition_counts['moderate'] > 2: | |
health_score *= (0.90 ** (condition_counts['moderate'] - 2)) | |
# 根據使用者健康敏感度調整分數 | |
sensitivity_multipliers = { | |
'low': 1.1, # 較不在意健康問題 | |
'medium': 1.0, # 標準評估 | |
'high': 0.85 # 非常注重健康問題 | |
} | |
health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0) | |
# 壽命影響評估 | |
try: | |
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12') | |
years = float(lifespan.split('-')[0]) | |
if years < 8: | |
health_score *= 0.85 # 短壽命顯著降低分數 | |
elif years < 10: | |
health_score *= 0.92 # 較短壽命輕微降低分數 | |
elif years > 13: | |
health_score *= 1.1 # 長壽命適度加分 | |
except: | |
pass | |
# 特殊健康優勢 | |
if 'generally healthy' in health_notes or 'hardy breed' in health_notes: | |
health_score *= 1.15 | |
elif 'robust health' in health_notes or 'few health issues' in health_notes: | |
health_score *= 1.1 | |
# 確保分數在合理範圍內,但允許更大的分數差異 | |
return max(0.1, min(1.0, health_score)) | |
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float: | |
""" | |
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估,很多人棄養就是因為叫聲 | |
""" | |
if breed_name not in breed_noise_info: | |
return 0.5 | |
noise_info = breed_noise_info[breed_name] | |
noise_level = noise_info['noise_level'].lower() | |
noise_notes = noise_info['noise_notes'].lower() | |
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度 | |
base_scores = { | |
'low': { | |
'low': 1.0, # 安靜的狗對低容忍完美匹配 | |
'medium': 0.95, # 安靜的狗對一般容忍很好 | |
'high': 0.90 # 安靜的狗對高容忍當然可以 | |
}, | |
'medium': { | |
'low': 0.60, # 一般吠叫對低容忍較困難 | |
'medium': 0.90, # 一般吠叫對一般容忍可接受 | |
'high': 0.95 # 一般吠叫對高容忍很好 | |
}, | |
'high': { | |
'low': 0.25, # 愛叫的狗對低容忍極不適合 | |
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰 | |
'high': 0.90 # 愛叫的狗對高容忍可以接受 | |
}, | |
'varies': { | |
'low': 0.50, # 不確定的情況對低容忍風險較大 | |
'medium': 0.75, # 不確定的情況對一般容忍可嘗試 | |
'high': 0.85 # 不確定的情況對高容忍問題較小 | |
} | |
} | |
# 取得基礎分數 | |
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance] | |
# 吠叫原因評估,根據環境調整懲罰程度 | |
barking_penalties = { | |
'separation anxiety': { | |
'apartment': -0.30, # 在公寓對鄰居影響更大 | |
'house_small': -0.25, | |
'house_large': -0.20 | |
}, | |
'excessive barking': { | |
'apartment': -0.25, | |
'house_small': -0.20, | |
'house_large': -0.15 | |
}, | |
'territorial': { | |
'apartment': -0.20, # 在公寓更容易被觸發 | |
'house_small': -0.15, | |
'house_large': -0.10 | |
}, | |
'alert barking': { | |
'apartment': -0.15, # 公寓環境刺激較多 | |
'house_small': -0.10, | |
'house_large': -0.08 | |
}, | |
'attention seeking': { | |
'apartment': -0.15, | |
'house_small': -0.12, | |
'house_large': -0.10 | |
} | |
} | |
# 計算環境相關的吠叫懲罰 | |
living_space = user_prefs.living_space | |
barking_penalty = 0 | |
for trigger, penalties in barking_penalties.items(): | |
if trigger in noise_notes: | |
barking_penalty += penalties.get(living_space, -0.15) | |
# 特殊情況評估 | |
special_adjustments = 0 | |
if user_prefs.has_children: | |
# 孩童年齡相關調整 | |
child_age_adjustments = { | |
'toddler': { | |
'high': -0.20, # 幼童對吵鬧更敏感 | |
'medium': -0.15, | |
'low': -0.05 | |
}, | |
'school_age': { | |
'high': -0.15, | |
'medium': -0.10, | |
'low': -0.05 | |
}, | |
'teenager': { | |
'high': -0.10, | |
'medium': -0.05, | |
'low': -0.02 | |
} | |
} | |
# 根據孩童年齡和噪音等級調整 | |
age_adj = child_age_adjustments.get(user_prefs.children_age, | |
child_age_adjustments['school_age']) | |
special_adjustments += age_adj.get(noise_level, -0.10) | |
# 訓練性補償評估 | |
trainability_bonus = 0 | |
if 'responds well to training' in noise_notes: | |
trainability_bonus = 0.12 | |
elif 'can be trained' in noise_notes: | |
trainability_bonus = 0.08 | |
elif 'difficult to train' in noise_notes: | |
trainability_bonus = 0.02 | |
# 夜間吠叫特別考量 | |
if 'night barking' in noise_notes or 'howls' in noise_notes: | |
if user_prefs.living_space == 'apartment': | |
special_adjustments -= 0.15 | |
elif user_prefs.living_space == 'house_small': | |
special_adjustments -= 0.10 | |
else: | |
special_adjustments -= 0.05 | |
# 計算最終分數,確保更大的分數範圍 | |
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus | |
return max(0.1, min(1.0, final_score)) | |
# 1. 計算基礎分數 | |
print("\n=== 開始計算品種相容性分數 ===") | |
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}") | |
print(f"品種信息: {breed_info}") | |
print(f"使用者偏好: {vars(user_prefs)}") | |
# 計算所有基礎分數並整合到字典中 | |
scores = { | |
'space': calculate_space_score( | |
breed_info['Size'], | |
user_prefs.living_space, | |
user_prefs.yard_access != 'no_yard', | |
breed_info.get('Exercise Needs', 'Moderate') | |
), | |
'exercise': calculate_exercise_score( | |
breed_info.get('Exercise Needs', 'Moderate'), | |
user_prefs.exercise_time, | |
user_prefs.exercise_type | |
), | |
'grooming': calculate_grooming_score( | |
breed_info.get('Grooming Needs', 'Moderate'), | |
user_prefs.grooming_commitment.lower(), | |
breed_info['Size'] | |
), | |
'experience': calculate_experience_score( | |
breed_info.get('Care Level', 'Moderate'), | |
user_prefs.experience_level, | |
breed_info.get('Temperament', '') | |
), | |
'health': calculate_health_score( | |
breed_info.get('Breed', ''), | |
user_prefs | |
), | |
'noise': calculate_noise_score( | |
breed_info.get('Breed', ''), | |
user_prefs | |
) | |
} | |
final_score = calculate_breed_compatibility_score( | |
scores=scores, | |
user_prefs=user_prefs, | |
breed_info=breed_info | |
) | |
# 計算環境適應性加成 | |
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs) | |
# 處理極端情況(新增) | |
if user_prefs.living_space == "apartment" and breed_info['Size'] in ["Giant", "Large"]: | |
final_score *= 0.7 # 大型犬在公寓環境下的顯著懲罰 | |
if (breed_info.get('Exercise Needs') == "Very High" and | |
user_prefs.living_space == "apartment" and | |
user_prefs.exercise_time < 90): | |
final_score *= 0.75 # 高運動需求但條件不足的懲罰 | |
# 整合最終分數和加成 | |
combined_score = (final_score * 0.9) + (adaptability_bonus * 0.1) | |
# 體型過濾 | |
filtered_score = apply_size_filter( | |
breed_score=combined_score, | |
user_preference=user_prefs.size_preference, | |
breed_size=breed_info['Size'] | |
) | |
final_score = amplify_score_extreme(filtered_score) | |
# 更新並返回完整的評分結果 | |
scores.update({ | |
'overall': final_score, | |
'size': breed_info['Size'], | |
'adaptability_bonus': adaptability_bonus | |
}) | |
return scores | |
except Exception as e: | |
print(f"\n!!!!! 發生嚴重錯誤 !!!!!") | |
print(f"錯誤類型: {type(e).__name__}") | |
print(f"錯誤訊息: {str(e)}") | |
print(f"完整錯誤追蹤:") | |
print(traceback.format_exc()) | |
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']} | |
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float: | |
"""計算品種與環境的適應性加成""" | |
adaptability_score = 0.0 | |
description = breed_info.get('Description', '').lower() | |
temperament = breed_info.get('Temperament', '').lower() | |
# 環境適應性評估 | |
if user_prefs.living_space == 'apartment': | |
if 'adaptable' in temperament or 'apartment' in description: | |
adaptability_score += 0.1 | |
if breed_info.get('Size') == 'Small': | |
adaptability_score += 0.05 | |
elif user_prefs.living_space == 'house_large': | |
if 'active' in temperament or 'energetic' in description: | |
adaptability_score += 0.1 | |
# 氣候適應性 | |
if user_prefs.climate in description or user_prefs.climate in temperament: | |
adaptability_score += 0.05 | |
return min(0.2, adaptability_score) | |
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float: | |
""" | |
1. 運動類型與時間的精確匹配 | |
2. 進階使用者的專業需求 | |
3. 空間利用的實際效果 | |
4. 條件組合的嚴格評估 | |
""" | |
def evaluate_perfect_conditions(): | |
""" | |
評估條件匹配度,特別強化: | |
1. 運動類型與時間的綜合評估 | |
2. 專業技能需求評估 | |
3. 品種特性評估 | |
""" | |
perfect_matches = { | |
'size_match': 0, | |
'exercise_match': 0, | |
'experience_match': 0, | |
'living_condition_match': 0, | |
'breed_trait_match': 0 # 新增品種特性匹配度 | |
} | |
# 第一部分:運動需求評估 | |
def evaluate_exercise_compatibility(): | |
""" | |
評估運動需求的匹配度,特別關注: | |
1. 時間與強度的合理搭配 | |
2. 不同品種的運動特性 | |
3. 運動類型的適配性 | |
這個函數就像是一個體育教練,需要根據每個"運動員"(狗品種)的特點, | |
為他們制定合適的訓練計劃。 | |
""" | |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
exercise_time = user_prefs.exercise_time | |
exercise_type = user_prefs.exercise_type | |
temperament = breed_info.get('Temperament', '').lower() | |
description = breed_info.get('Description', '').lower() | |
# 定義更精確的品種運動特性 | |
breed_exercise_patterns = { | |
'sprint_type': { # 短跑型犬種,如 Whippet, Saluki | |
'identifiers': ['fast', 'speed', 'sprint', 'racing', 'coursing', 'sight hound'], | |
'ideal_exercise': { | |
'active_training': 1.0, # 完美匹配高強度訓練 | |
'moderate_activity': 0.5, # 持續運動不是最佳選擇 | |
'light_walks': 0.3 # 輕度運動效果很差 | |
}, | |
'time_ranges': { | |
'ideal': (30, 60), # 最適合的運動時間範圍 | |
'acceptable': (20, 90), # 可以接受的時間範圍 | |
'penalty_start': 90 # 開始給予懲罰的時間點 | |
}, | |
'penalty_rate': 0.8 # 超出範圍時的懲罰係數 | |
}, | |
'endurance_type': { # 耐力型犬種,如 Border Collie | |
'identifiers': ['herding', 'working', 'tireless', 'energetic', 'stamina', 'athletic'], | |
'ideal_exercise': { | |
'active_training': 0.9, # 高強度訓練很好 | |
'moderate_activity': 1.0, # 持續運動是最佳選擇 | |
'light_walks': 0.4 # 輕度運動不足 | |
}, | |
'time_ranges': { | |
'ideal': (90, 180), # 需要較長的運動時間 | |
'acceptable': (60, 180), | |
'penalty_start': 60 # 運動時間過短會受罰 | |
}, | |
'penalty_rate': 0.7 | |
}, | |
'moderate_type': { # 一般活動型犬種,如 Labrador | |
'identifiers': ['friendly', 'playful', 'adaptable', 'versatile', 'companion'], | |
'ideal_exercise': { | |
'active_training': 0.8, | |
'moderate_activity': 1.0, | |
'light_walks': 0.6 | |
}, | |
'time_ranges': { | |
'ideal': (60, 120), | |
'acceptable': (45, 150), | |
'penalty_start': 150 | |
}, | |
'penalty_rate': 0.6 | |
} | |
} | |
def determine_breed_type(): | |
"""改進品種運動類型的判斷,更精確識別工作犬""" | |
# 優先檢查特殊運動類型的標識符 | |
for breed_type, pattern in breed_exercise_patterns.items(): | |
if any(identifier in temperament or identifier in description | |
for identifier in pattern['identifiers']): | |
return breed_type | |
# 改進:根據運動需求和工作犬特徵進行更細緻的判斷 | |
if (exercise_needs in ['VERY HIGH', 'HIGH'] or | |
any(trait in temperament.lower() for trait in | |
['herding', 'working', 'intelligent', 'athletic', 'tireless'])): | |
if user_prefs.experience_level == 'advanced': | |
return 'endurance_type' # 優先判定為耐力型 | |
elif exercise_needs == 'LOW': | |
return 'moderate_type' | |
return 'moderate_type' | |
def calculate_time_match(pattern): | |
""" | |
計算運動時間的匹配度。 | |
這就像在判斷運動時間是否符合訓練計劃。 | |
""" | |
ideal_min, ideal_max = pattern['time_ranges']['ideal'] | |
accept_min, accept_max = pattern['time_ranges']['acceptable'] | |
penalty_start = pattern['time_ranges']['penalty_start'] | |
# 在理想範圍內 | |
if ideal_min <= exercise_time <= ideal_max: | |
return 1.0 | |
# 超出可接受範圍的嚴格懲罰 | |
elif exercise_time < accept_min: | |
deficit = accept_min - exercise_time | |
return max(0.2, 1 - (deficit / accept_min) * 1.2) | |
elif exercise_time > accept_max: | |
excess = exercise_time - penalty_start | |
penalty = min(0.8, (excess / penalty_start) * pattern['penalty_rate']) | |
return max(0.2, 1 - penalty) | |
# 在可接受範圍但不在理想範圍 | |
else: | |
if exercise_time < ideal_min: | |
progress = (exercise_time - accept_min) / (ideal_min - accept_min) | |
return 0.6 + (0.4 * progress) | |
else: | |
remaining = (accept_max - exercise_time) / (accept_max - ideal_max) | |
return 0.6 + (0.4 * remaining) | |
def apply_special_adjustments(time_score, type_score, breed_type, pattern): | |
""" | |
處理特殊情況,確保運動方式真正符合品種需求。 | |
特別加強: | |
1. 短跑型犬種的長時間運動懲罰 | |
2. 耐力型犬種的獎勵機制 | |
3. 運動類型匹配的重要性 | |
""" | |
# 短跑型品種的特殊處理 | |
if breed_type == 'sprint_type': | |
if exercise_time > pattern['time_ranges']['penalty_start']: | |
# 加重長時間運動的懲罰 | |
penalty_factor = min(0.8, (exercise_time - pattern['time_ranges']['penalty_start']) / 60) | |
time_score *= max(0.3, 1 - penalty_factor) # 最低降到0.3 | |
# 運動類型不適合時的額外懲罰 | |
if exercise_type != 'active_training': | |
type_score *= 0.3 # 更嚴重的懲罰 | |
# 耐力型品種的特殊處理 | |
elif breed_type == 'endurance_type': | |
if exercise_time < pattern['time_ranges']['penalty_start']: | |
time_score *= 0.5 # 維持運動不足的懲罰 | |
elif exercise_time >= 150: # 新增:高運動量獎勵 | |
if exercise_type in ['active_training', 'moderate_activity']: | |
time_bonus = min(0.3, (exercise_time - 150) / 150) | |
time_score = min(1.0, time_score * (1 + time_bonus)) | |
type_score = min(1.0, type_score * 1.2) | |
# 運動強度不足的懲罰 | |
if exercise_type == 'light_walks': | |
if exercise_time > 90: | |
type_score *= 0.4 # 加重懲罰 | |
else: | |
type_score *= 0.5 | |
return time_score, type_score | |
# 執行評估流程 | |
breed_type = determine_breed_type() | |
pattern = breed_exercise_patterns[breed_type] | |
# 計算基礎分數 | |
time_score = calculate_time_match(pattern) | |
type_score = pattern['ideal_exercise'].get(exercise_type, 0.5) | |
# 應用特殊調整 | |
time_score, type_score = apply_special_adjustments(time_score, type_score, breed_type, pattern) | |
# 根據品種類型決定最終權重 | |
if breed_type == 'sprint_type': | |
if exercise_time > pattern['time_ranges']['penalty_start']: | |
# 超時時更重視運動類型的匹配度 | |
return (time_score * 0.3) + (type_score * 0.7) | |
else: | |
return (time_score * 0.5) + (type_score * 0.5) | |
elif breed_type == 'endurance_type': | |
if exercise_time < pattern['time_ranges']['penalty_start']: | |
# 時間不足時更重視時間因素 | |
return (time_score * 0.7) + (type_score * 0.3) | |
else: | |
return (time_score * 0.6) + (type_score * 0.4) | |
else: | |
return (time_score * 0.5) + (type_score * 0.5) | |
# 第二部分:專業技能需求評估 | |
def evaluate_expertise_requirements(): | |
care_level = breed_info.get('Care Level', 'MODERATE').upper() | |
temperament = breed_info.get('Temperament', '').lower() | |
# 定義專業技能要求 | |
expertise_requirements = { | |
'training_complexity': { | |
'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0}, | |
'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0}, | |
'LOW': {'beginner': 0.9, 'intermediate': 0.95, 'advanced': 0.9} | |
}, | |
'special_traits': { | |
'working': 0.2, # 工作犬需要額外技能 | |
'herding': 0.2, # 牧羊犬需要特殊訓練 | |
'intelligent': 0.15,# 高智商犬種需要心智刺激 | |
'independent': 0.15,# 獨立性強的需要特殊處理 | |
'protective': 0.1 # 護衛犬需要適當訓練 | |
} | |
} | |
# 基礎分數 | |
base_score = expertise_requirements['training_complexity'][care_level][user_prefs.experience_level] | |
# 特殊特徵評估 | |
trait_penalty = 0 | |
for trait, penalty in expertise_requirements['special_traits'].items(): | |
if trait in temperament: | |
if user_prefs.experience_level == 'beginner': | |
trait_penalty += penalty | |
elif user_prefs.experience_level == 'advanced': | |
trait_penalty -= penalty * 0.5 # 專家反而因應對特殊特徵而加分 | |
return max(0.2, min(1.0, base_score - trait_penalty)) | |
# 第三部分:生活環境評估 | |
# def evaluate_living_conditions(): | |
# size = breed_info['Size'] | |
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
# # 空間需求矩陣 | |
# space_requirements = { | |
# 'apartment': { | |
# 'Small': 1.0, 'Medium': 0.4, 'Large': 0.2, 'Giant': 0.1 | |
# }, | |
# 'house_small': { | |
# 'Small': 0.9, 'Medium': 1.0, 'Large': 0.5, 'Giant': 0.3 | |
# }, | |
# 'house_large': { | |
# 'Small': 0.8, 'Medium': 0.9, 'Large': 1.0, 'Giant': 1.0 | |
# } | |
# } | |
# # 基礎空間分數 | |
# space_score = space_requirements.get(user_prefs.living_space, | |
# space_requirements['house_small'])[size] | |
# # 活動空間需求調整 | |
# if exercise_needs in ['HIGH', 'VERY HIGH']: | |
# if user_prefs.living_space != 'house_large': | |
# space_score *= 0.8 | |
# # 院子可用性評估 | |
# yard_scores = { | |
# 'no_yard': 0.7, | |
# 'shared_yard': 0.85, | |
# 'private_yard': 1.0 | |
# } | |
# space_score *= yard_scores.get(user_prefs.yard_access, 0.8) | |
# return space_score | |
def evaluate_living_conditions() -> float: | |
""" | |
評估生活環境適配性,特別加強: | |
1. 降低對大型犬的過度懲罰 | |
2. 增加品種特性評估 | |
3. 提升對適應性的重視度 | |
""" | |
size = breed_info['Size'] | |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
temperament = breed_info.get('Temperament', '').lower() | |
description = breed_info.get('Description', '').lower() | |
# 重新定義空間需求矩陣,降低對大型犬的懲罰 | |
space_requirements = { | |
'apartment': { | |
'Small': 1.0, | |
'Medium': 0.7, # 從0.4提升到0.7 | |
'Large': 0.6, # 從0.2提升到0.6 | |
'Giant': 0.5 # 從0.1提升到0.5 | |
}, | |
'house_small': { | |
'Small': 0.9, | |
'Medium': 1.0, | |
'Large': 0.8, # 從0.5提升到0.8 | |
'Giant': 0.7 # 從0.3提升到0.7 | |
}, | |
'house_large': { | |
'Small': 0.8, | |
'Medium': 0.9, | |
'Large': 1.0, | |
'Giant': 1.0 | |
} | |
} | |
# 基礎空間分數 | |
space_score = space_requirements.get( | |
user_prefs.living_space, | |
space_requirements['house_small'] | |
)[size] | |
# 品種適應性評估 | |
adaptability_bonus = 0 | |
adaptable_traits = ['adaptable', 'calm', 'quiet', 'gentle', 'laid-back'] | |
challenging_traits = ['hyperactive', 'restless', 'requires space'] | |
# 計算適應性加分 | |
if user_prefs.living_space == 'apartment': | |
for trait in adaptable_traits: | |
if trait in temperament or trait in description: | |
adaptability_bonus += 0.1 | |
# 特別處理大型犬的適應性 | |
if size in ['Large', 'Giant']: | |
apartment_friendly_traits = ['calm', 'gentle', 'quiet'] | |
matched_traits = sum(1 for trait in apartment_friendly_traits | |
if trait in temperament or trait in description) | |
if matched_traits > 0: | |
adaptability_bonus += 0.15 * matched_traits | |
# 活動空間需求調整,更寬容的評估 | |
if exercise_needs in ['HIGH', 'VERY HIGH']: | |
if user_prefs.living_space != 'house_large': | |
space_score *= 0.9 # 從0.8提升到0.9,降低懲罰 | |
# 院子可用性評估,提供更合理的獎勵 | |
yard_scores = { | |
'no_yard': 0.85, # 從0.7提升到0.85 | |
'shared_yard': 0.92, # 從0.85提升到0.92 | |
'private_yard': 1.0 | |
} | |
yard_multiplier = yard_scores.get(user_prefs.yard_access, 0.85) | |
# 根據體型調整院子重要性 | |
if size in ['Large', 'Giant']: | |
yard_importance = 1.2 | |
elif size == 'Medium': | |
yard_importance = 1.1 | |
else: | |
yard_importance = 1.0 | |
# 計算最終分數 | |
final_score = space_score * (1 + adaptability_bonus) | |
# 應用院子影響 | |
if user_prefs.yard_access != 'no_yard': | |
yard_bonus = (yard_multiplier - 1) * yard_importance | |
final_score = min(1.0, final_score + yard_bonus) | |
# 確保分數在合理範圍內,但提供更高的基礎分數 | |
return max(0.4, min(1.0, final_score)) | |
# 第四部分:品種特性評估 | |
def evaluate_breed_traits(): | |
temperament = breed_info.get('Temperament', '').lower() | |
description = breed_info.get('Description', '').lower() | |
trait_scores = [] | |
# 評估性格特徵 | |
if user_prefs.has_children: | |
if 'good with children' in description: | |
trait_scores.append(1.0) | |
elif 'patient' in temperament or 'gentle' in temperament: | |
trait_scores.append(0.8) | |
else: | |
trait_scores.append(0.5) | |
# 評估適應性 | |
adaptability_keywords = ['adaptable', 'versatile', 'flexible'] | |
if any(keyword in temperament for keyword in adaptability_keywords): | |
trait_scores.append(1.0) | |
else: | |
trait_scores.append(0.7) | |
return sum(trait_scores) / len(trait_scores) if trait_scores else 0.7 | |
# 計算各項匹配分數 | |
perfect_matches['exercise_match'] = evaluate_exercise_compatibility() | |
perfect_matches['experience_match'] = evaluate_expertise_requirements() | |
perfect_matches['living_condition_match'] = evaluate_living_conditions() | |
perfect_matches['size_match'] = evaluate_living_conditions() # 共用生活環境評估 | |
perfect_matches['breed_trait_match'] = evaluate_breed_traits() | |
return perfect_matches | |
def calculate_weights() -> dict: | |
""" | |
動態計算評分權重,特別關注: | |
1. 極端情況的權重調整 | |
2. 使用者條件的協同效應 | |
3. 品種特性的影響 | |
Returns: | |
dict: 包含各評分項目權重的字典 | |
""" | |
# 定義基礎權重 - 提供更合理的起始分配 | |
base_weights = { | |
'space': 0.25, # 提升空間權重,因為這是最基本的需求 | |
'exercise': 0.25, # 運動需求同樣重要 | |
'experience': 0.20, # 保持經驗的重要性 | |
'grooming': 0.10, # 稍微降低美容需求的權重 | |
'noise': 0.10, # 維持噪音評估的權重 | |
'health': 0.10 # 維持健康評估的權重 | |
} | |
def analyze_condition_extremity() -> dict: | |
""" | |
評估使用者條件的極端程度,這影響權重的動態調整。 | |
根據條件的極端程度返回相應的調整建議。 | |
""" | |
extremities = {} | |
# 運動時間評估 - 更細緻的分級 | |
if user_prefs.exercise_time <= 30: | |
extremities['exercise'] = ('extremely_low', 0.8) | |
elif user_prefs.exercise_time <= 60: | |
extremities['exercise'] = ('low', 0.6) | |
elif user_prefs.exercise_time >= 180: | |
extremities['exercise'] = ('extremely_high', 0.8) | |
elif user_prefs.exercise_time >= 120: | |
extremities['exercise'] = ('high', 0.6) | |
else: | |
extremities['exercise'] = ('moderate', 0.3) | |
# 空間限制評估 - 更合理的空間評估 | |
space_extremity = { | |
'apartment': ('restricted', 0.7), # 從0.9降低到0.7,減少限制 | |
'house_small': ('moderate', 0.5), | |
'house_large': ('spacious', 0.3) | |
} | |
extremities['space'] = space_extremity.get(user_prefs.living_space, ('moderate', 0.5)) | |
# 經驗水平評估 - 保持原有的評估邏輯 | |
experience_extremity = { | |
'beginner': ('low', 0.7), | |
'intermediate': ('moderate', 0.4), | |
'advanced': ('high', 0.6) | |
} | |
extremities['experience'] = experience_extremity.get(user_prefs.experience_level, ('moderate', 0.5)) | |
return extremities | |
def calculate_weight_adjustments(extremities: dict) -> dict: | |
""" | |
根據極端程度計算權重調整,特別注意條件組合的影響。 | |
""" | |
adjustments = {} | |
temperament = breed_info.get('Temperament', '').lower() | |
is_working_dog = any(trait in temperament | |
for trait in ['herding', 'working', 'intelligent', 'tireless']) | |
# 空間權重調整 - 更平衡的調整方式 | |
if extremities['space'][0] == 'restricted': | |
if extremities['exercise'][0] in ['high', 'extremely_high']: | |
adjustments['space'] = 1.5 # 從1.8降低到1.5 | |
adjustments['exercise'] = 1.8 # 從2.5降低到1.8 | |
else: | |
adjustments['space'] = 1.6 # 從2.5降低到1.6 | |
adjustments['noise'] = 1.5 # 保持合理的噪音權重 | |
# 運動需求權重調整 - 更合理的運動評估 | |
if extremities['exercise'][0] in ['extremely_high', 'extremely_low']: | |
base_adjustment = 1.8 # 從2.5降低到1.8 | |
if extremities['exercise'][0] == 'extremely_high': | |
if is_working_dog: | |
base_adjustment = 2.0 # 從3.0降低到2.0 | |
adjustments['exercise'] = base_adjustment | |
# 經驗需求權重調整 - 維持原有的評估邏輯 | |
if extremities['experience'][0] == 'low': | |
adjustments['experience'] = 1.8 | |
if breed_info.get('Care Level') == 'HIGH': | |
adjustments['experience'] = 2.0 | |
elif extremities['experience'][0] == 'high': | |
if is_working_dog: | |
adjustments['experience'] = 1.8 # 從2.5降低到1.8 | |
# 特殊組合的處理 | |
def adjust_for_combinations(): | |
if (extremities['space'][0] == 'restricted' and | |
extremities['exercise'][0] in ['high', 'extremely_high']): | |
# 適度降低極端組合的影響 | |
adjustments['space'] = adjustments.get('space', 1.0) * 1.2 | |
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.2 | |
# 理想組合的獎勵 | |
if (extremities['experience'][0] == 'high' and | |
extremities['space'][0] == 'spacious' and | |
extremities['exercise'][0] in ['high', 'extremely_high'] and | |
is_working_dog): | |
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3 | |
adjustments['experience'] = adjustments.get('experience', 1.0) * 1.3 | |
adjust_for_combinations() | |
return adjustments | |
# 獲取條件極端度 | |
extremities = analyze_condition_extremity() | |
# 計算權重調整 | |
weight_adjustments = calculate_weight_adjustments(extremities) | |
# 應用權重調整,確保總和為1 | |
final_weights = base_weights.copy() | |
for key, adjustment in weight_adjustments.items(): | |
if key in final_weights: | |
final_weights[key] *= adjustment | |
# 正規化權重 | |
total_weight = sum(final_weights.values()) | |
normalized_weights = {k: v/total_weight for k, v in final_weights.items()} | |
return normalized_weights | |
def calculate_weight_adjustments(extremities): | |
""" | |
1. 高運動量時對耐力型犬種的偏好 | |
2. 專家級別對工作犬種的偏好 | |
3. 條件組合的整體評估 | |
""" | |
adjustments = {} | |
temperament = breed_info.get('Temperament', '').lower() | |
is_working_dog = any(trait in temperament | |
for trait in ['herding', 'working', 'intelligent', 'tireless']) | |
# 空間權重調整邏輯保持不變 | |
if extremities['space'][0] == 'highly_restricted': | |
if extremities['exercise'][0] in ['high', 'extremely_high']: | |
adjustments['space'] = 1.8 # 降低空間限制的權重 | |
adjustments['exercise'] = 2.5 # 提高運動能力的權重 | |
else: | |
adjustments['space'] = 2.5 | |
adjustments['noise'] = 2.0 | |
elif extremities['space'][0] == 'restricted': | |
adjustments['space'] = 1.8 | |
adjustments['noise'] = 1.5 | |
elif extremities['space'][0] == 'spacious': | |
adjustments['space'] = 0.8 | |
adjustments['exercise'] = 1.4 | |
# 改進運動需求權重調整 | |
if extremities['exercise'][0] in ['high', 'extremely_high']: | |
# 提高運動量高時的基礎分數 | |
base_exercise_adjustment = 2.2 | |
if user_prefs.living_space == 'apartment': | |
base_exercise_adjustment = 2.5 # 特別獎勵公寓住戶的高運動量 | |
adjustments['exercise'] = base_exercise_adjustment | |
if extremities['exercise'][0] in ['extremely_low', 'extremely_high']: | |
base_adjustment = 2.5 | |
if extremities['exercise'][0] == 'extremely_high': | |
if is_working_dog: | |
base_adjustment = 3.0 # 工作犬在高運動量時獲得更高權重 | |
adjustments['exercise'] = base_adjustment | |
elif extremities['exercise'][0] in ['low', 'high']: | |
adjustments['exercise'] = 1.8 | |
# 改進經驗需求權重調整 | |
if extremities['experience'][0] == 'low': | |
adjustments['experience'] = 2.2 | |
if breed_info.get('Care Level') == 'HIGH': | |
adjustments['experience'] = 2.5 | |
elif extremities['experience'][0] == 'high': | |
if is_working_dog: | |
adjustments['experience'] = 2.5 # 提高專家對工作犬的權重 | |
if extremities['exercise'][0] in ['high', 'extremely_high']: | |
adjustments['experience'] = 2.8 # 特別強化高運動量工作犬 | |
else: | |
adjustments['experience'] = 1.8 | |
# 綜合條件影響 | |
def adjust_for_combinations(): | |
# 保持原有的基礎邏輯 | |
if (extremities['space'][0] == 'highly_restricted' and | |
extremities['exercise'][0] in ['high', 'extremely_high']): | |
adjustments['space'] = adjustments.get('space', 1.0) * 1.3 | |
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3 | |
# 新增:專家 + 大空間 + 高運動量 + 工作犬的組合 | |
if (extremities['experience'][0] == 'high' and | |
extremities['space'][0] == 'spacious' and | |
extremities['exercise'][0] in ['high', 'extremely_high'] and | |
is_working_dog): | |
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.4 | |
adjustments['experience'] = adjustments.get('experience', 1.0) * 1.4 | |
if extremities['space'][0] == 'spacious': | |
for key in ['grooming', 'health', 'noise']: | |
if key not in adjustments: | |
adjustments[key] = 1.2 | |
def ensure_minimum_score(score): | |
if all([ | |
extremities['exercise'][0] in ['high', 'extremely_high'], | |
breed_matches_exercise_needs(), # 檢查品種是否適合該運動量 | |
score < 0.85 | |
]): | |
return 0.85 | |
return score | |
adjust_for_combinations() | |
return adjustments | |
# 獲取條件極端度 | |
extremities = analyze_condition_extremity() | |
# 計算權重調整 | |
weight_adjustments = calculate_weight_adjustments(extremities) | |
# 應用權重調整 | |
final_weights = base_weights.copy() | |
for key, adjustment in weight_adjustments.items(): | |
if key in final_weights: | |
final_weights[key] *= adjustment | |
return final_weights | |
def apply_special_case_adjustments(score: float) -> float: | |
""" | |
處理特殊情況和極端案例的評分調整。這個函數特別關注: | |
1. 條件組合的協同效應 | |
2. 品種特性的獨特需求 | |
3. 極端情況的合理處理 | |
這個函數就像是一個細心的裁判,會考慮到各種特殊情況, | |
並根據具體場景做出合理的評分調整。 | |
Parameters: | |
score: 初始評分 | |
Returns: | |
float: 調整後的評分(0.2-1.0之間) | |
""" | |
severity_multiplier = 1.0 | |
def evaluate_spatial_exercise_combination() -> float: | |
""" | |
評估空間與運動需求的組合效應。 | |
這個函數不再過分懲罰大型犬,而是更多地考慮品種的實際特性。 | |
就像評估一個運動員是否適合在特定場地訓練一樣,我們需要考慮 | |
場地大小和運動需求的整體匹配度。 | |
""" | |
multiplier = 1.0 | |
if user_prefs.living_space == 'apartment': | |
temperament = breed_info.get('Temperament', '').lower() | |
description = breed_info.get('Description', '').lower() | |
# 檢查品種是否有利於公寓生活的特徵 | |
apartment_friendly = any(trait in temperament or trait in description | |
for trait in ['calm', 'adaptable', 'quiet']) | |
# 大型犬的特殊處理 | |
if breed_info['Size'] in ['Large', 'Giant']: | |
if apartment_friendly: | |
multiplier *= 0.85 # 從0.7提升到0.85,降低懲罰 | |
else: | |
multiplier *= 0.75 # 從0.5提升到0.75 | |
# 檢查運動需求的匹配度 | |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
exercise_time = user_prefs.exercise_time | |
if exercise_needs in ['HIGH', 'VERY HIGH']: | |
if exercise_time >= 120: # 高運動量可以部分補償空間限制 | |
multiplier *= 1.1 | |
return multiplier | |
def evaluate_experience_combination() -> float: | |
""" | |
評估經驗需求的複合影響。 | |
這個函數就像是評估一個工作崗位與應聘者經驗的匹配度, | |
需要綜合考慮工作難度和應聘者能力。 | |
""" | |
multiplier = 1.0 | |
temperament = breed_info.get('Temperament', '').lower() | |
care_level = breed_info.get('Care Level', 'MODERATE') | |
# 新手飼主的特殊考慮,更寬容的評估標準 | |
if user_prefs.experience_level == 'beginner': | |
if care_level == 'HIGH': | |
if user_prefs.has_children: | |
multiplier *= 0.7 # 從0.5提升到0.7 | |
else: | |
multiplier *= 0.8 # 從0.6提升到0.8 | |
# 性格特徵影響,降低懲罰程度 | |
challenging_traits = { | |
'stubborn': -0.10, # 從-0.15降低 | |
'independent': -0.08, # 從-0.12降低 | |
'dominant': -0.08, # 從-0.12降低 | |
'protective': -0.06, # 從-0.10降低 | |
'aggressive': -0.15 # 保持較高懲罰因安全考慮 | |
} | |
for trait, penalty in challenging_traits.items(): | |
if trait in temperament: | |
multiplier *= (1 + penalty) | |
return multiplier | |
def evaluate_breed_specific_requirements() -> float: | |
""" | |
評估品種特定需求。 | |
這個函數就像是為每個品種量身定制評估標準, | |
考慮其獨特的特性和需求。 | |
""" | |
multiplier = 1.0 | |
exercise_time = user_prefs.exercise_time | |
exercise_type = user_prefs.exercise_type | |
# 檢查品種特性 | |
temperament = breed_info.get('Temperament', '').lower() | |
description = breed_info.get('Description', '').lower() | |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
# 運動需求匹配度評估,更合理的標準 | |
if exercise_needs == 'LOW': | |
if exercise_time > 120: | |
multiplier *= 0.85 # 從0.5提升到0.85 | |
elif exercise_needs == 'VERY HIGH': | |
if exercise_time < 60: | |
multiplier *= 0.7 # 從0.5提升到0.7 | |
# 特殊品種類型的考慮 | |
if 'sprint' in temperament: | |
if exercise_time > 120 and exercise_type != 'active_training': | |
multiplier *= 0.85 # 從0.7提升到0.85 | |
if any(trait in temperament for trait in ['working', 'herding']): | |
if exercise_time < 90 or exercise_type == 'light_walks': | |
multiplier *= 0.8 # 從0.7提升到0.8 | |
return multiplier | |
# 計算各項調整 | |
space_exercise_mult = evaluate_spatial_exercise_combination() | |
experience_mult = evaluate_experience_combination() | |
breed_specific_mult = evaluate_breed_specific_requirements() | |
# 整合所有調整因素 | |
severity_multiplier *= space_exercise_mult | |
severity_multiplier *= experience_mult | |
severity_multiplier *= breed_specific_mult | |
# 應用最終調整,確保分數在合理範圍內 | |
final_score = score * severity_multiplier | |
return max(0.2, min(1.0, final_score)) | |
def calculate_base_score(scores: dict, weights: dict) -> float: | |
""" | |
計算基礎評分分數,採用更靈活的評分機制。 | |
這個函數使用了改進後的評分邏輯,主要關注: | |
1. 降低關鍵指標的最低門檻,使系統更包容 | |
2. 引入非線性評分曲線,讓分數分布更合理 | |
3. 優化多重條件失敗的處理方式 | |
4. 加強對品種特性的考慮 | |
Parameters: | |
scores: 包含各項評分的字典 | |
weights: 包含各項權重的字典 | |
Returns: | |
float: 0.2到1.0之間的基礎分數 | |
""" | |
# 重新定義關鍵指標閾值,提供更寬容的評分標準 | |
critical_thresholds = { | |
'space': 0.4, # 從0.45降低到0.4 | |
'exercise': 0.4, # 從0.45降低到0.4 | |
'experience': 0.5, # 從0.55降低到0.5 | |
'noise': 0.5 # 保持不變,因為噪音確實是重要考慮因素 | |
} | |
# 評估關鍵指標失敗情況 | |
def evaluate_critical_failures() -> list: | |
""" | |
評估關鍵指標的失敗情況,但採用更寬容的標準。 | |
根據品種特性動態調整失敗判定。 | |
""" | |
failures = [] | |
temperament = breed_info.get('Temperament', '').lower() | |
for metric, threshold in critical_thresholds.items(): | |
if scores[metric] < threshold: | |
# 特殊情況處理:適應性強的品種可以有更低的空間要求 | |
if metric == 'space' and any(trait in temperament | |
for trait in ['adaptable', 'calm', 'apartment']): | |
if scores[metric] >= threshold - 0.1: | |
continue | |
# 運動需求的特殊處理 | |
elif metric == 'exercise': | |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
if exercise_needs == 'LOW' and scores[metric] >= threshold - 0.1: | |
continue | |
failures.append((metric, scores[metric])) | |
return failures | |
# 計算基礎分數 | |
def calculate_weighted_score() -> float: | |
""" | |
計算加權分數,使用非線性函數使分數分布更合理。 | |
""" | |
weighted_scores = [] | |
for key, score in scores.items(): | |
if key in weights: | |
# 使用sigmoid函數使分數曲線更平滑 | |
adjusted_score = 1 / (1 + math.exp(-10 * (score - 0.5))) | |
weighted_scores.append(adjusted_score * weights[key]) | |
return sum(weighted_scores) | |
# 處理臨界失敗情況 | |
critical_failures = evaluate_critical_failures() | |
base_score = calculate_weighted_score() | |
if critical_failures: | |
# 分離空間和運動相關的懲罰 | |
space_exercise_penalty = 0 | |
other_penalty = 0 | |
for metric, score in critical_failures: | |
if metric in ['space', 'exercise']: | |
# 降低空間和運動失敗的懲罰程度 | |
penalty = (critical_thresholds[metric] - score) * 0.12 # 從0.15降低到0.12 | |
space_exercise_penalty += penalty | |
else: | |
# 其他失敗的懲罰保持較高 | |
penalty = (critical_thresholds[metric] - score) * 0.25 # 從0.3降低到0.25 | |
other_penalty += penalty | |
# 計算總懲罰,但使用更溫和的方式 | |
total_penalty = (space_exercise_penalty + other_penalty) / 2 | |
base_score *= (1 - total_penalty) | |
# 多重失敗的處理更寬容 | |
if len(critical_failures) > 1: | |
# 從0.98提升到0.99,降低多重失敗的疊加懲罰 | |
base_score *= (0.99 ** (len(critical_failures) - 1)) | |
# 品種特性加分 | |
def apply_breed_bonus() -> float: | |
""" | |
根據品種特性提供額外加分, | |
特別是對於在特定環境下表現良好的品種。 | |
""" | |
bonus = 0 | |
temperament = breed_info.get('Temperament', '').lower() | |
description = breed_info.get('Description', '').lower() | |
# 適應性加分 | |
adaptability_traits = ['adaptable', 'versatile', 'easy-going'] | |
if any(trait in temperament for trait in adaptability_traits): | |
bonus += 0.05 | |
# 公寓適應性加分 | |
if user_prefs.living_space == 'apartment': | |
apartment_traits = ['calm', 'quiet', 'good for apartments'] | |
if any(trait in temperament or trait in description for trait in apartment_traits): | |
bonus += 0.05 | |
return min(0.1, bonus) # 限制最大加分 | |
# 應用品種特性加分 | |
breed_bonus = apply_breed_bonus() | |
base_score = min(1.0, base_score * (1 + breed_bonus)) | |
# 確保最終分數在合理範圍內 | |
return max(0.2, min(1.0, base_score)) | |
def evaluate_condition_interactions(scores: dict) -> float: | |
""" | |
評估不同條件間的相互影響,更寬容地處理極端組合 | |
""" | |
interaction_penalty = 1.0 | |
# 只保留最基本的經驗相關評估 | |
if user_prefs.experience_level == 'beginner': | |
if breed_info.get('Care Level') == 'HIGH': | |
interaction_penalty *= 0.95 | |
# 運動時間與類型的基本互動也降低懲罰程度 | |
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper() | |
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks': | |
interaction_penalty *= 0.95 | |
return interaction_penalty | |
def calculate_adjusted_perfect_bonus(perfect_conditions: dict) -> float: | |
""" | |
計算完美匹配獎勵,但更注重條件的整體表現。 | |
""" | |
bonus = 1.0 | |
# 降低單項獎勵的影響力 | |
bonus += 0.06 * perfect_conditions['size_match'] | |
bonus += 0.06 * perfect_conditions['exercise_match'] | |
bonus += 0.06 * perfect_conditions['experience_match'] | |
bonus += 0.03 * perfect_conditions['living_condition_match'] | |
# 如果有任何條件表現不佳,降低整體獎勵 | |
low_scores = [score for score in perfect_conditions.values() if score < 0.6] | |
if low_scores: | |
bonus *= (0.85 ** len(low_scores)) | |
# 確保獎勵不會過高 | |
return min(1.25, bonus) | |
def apply_breed_specific_adjustments(score: float) -> float: | |
""" | |
根據品種特性進行最終調整。 | |
考慮品種的特殊性質和限制因素。 | |
""" | |
# 檢查是否存在極端不匹配的情況 | |
exercise_mismatch = False | |
size_mismatch = False | |
experience_mismatch = False | |
# 運動需求極端不匹配 | |
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH': | |
if user_prefs.exercise_time < 90 or user_prefs.exercise_type == 'light_walks': | |
exercise_mismatch = True | |
# 體型與空間極端不匹配 | |
if user_prefs.living_space == 'apartment' and breed_info['Size'] in ['Large', 'Giant']: | |
size_mismatch = True | |
# 經驗需求極端不匹配 | |
if user_prefs.experience_level == 'beginner' and breed_info.get('Care Level') == 'HIGH': | |
experience_mismatch = True | |
# 根據不匹配的數量進行懲罰 | |
mismatch_count = sum([exercise_mismatch, size_mismatch, experience_mismatch]) | |
if mismatch_count > 0: | |
score *= (0.8 ** mismatch_count) | |
return score | |
# 計算動態權重 | |
weights = calculate_weights() | |
# 正規化權重 | |
total_weight = sum(weights.values()) | |
normalized_weights = {k: v/total_weight for k, v in weights.items()} | |
# 計算基礎分數 | |
base_score = calculate_base_score(scores, normalized_weights) | |
# 評估條件互動 | |
interaction_multiplier = evaluate_condition_interactions(scores) | |
# 計算完美匹配獎勵 | |
perfect_conditions = evaluate_perfect_conditions() | |
perfect_bonus = calculate_adjusted_perfect_bonus(perfect_conditions) | |
# 計算初步分數 | |
preliminary_score = base_score * interaction_multiplier * perfect_bonus | |
# 應用品種特定調整 | |
final_score = apply_breed_specific_adjustments(preliminary_score) | |
# 確保分數在合理範圍內,並降低最高可能分數 | |
max_possible_score = 0.96 # 降低最高可能分數 | |
min_possible_score = 0.3 | |
return min(max_possible_score, max(min_possible_score, final_score)) | |
def amplify_score_extreme(score: float) -> float: | |
""" | |
優化分數分布,提供更有意義的評分範圍。 | |
這個函數就像是一個分數校準器,它的作用類似於相機的色彩校準, | |
讓原始的分數分布能更好地反映實際的匹配程度。比如,一個90分的匹配 | |
應該確實代表一個非常好的搭配,而不是一個僅僅"還可以"的選擇。 | |
我們使用分段函數和平滑曲線來實現這個目標: | |
- 90-100分代表極佳匹配(映射到96-100) | |
- 80-90分代表優秀匹配(映射到90-96) | |
- 70-80分代表良好匹配(映射到82-90) | |
- 50-70分代表可接受匹配(映射到75-82) | |
- 50分以下代表較差匹配(映射到70-75) | |
Parameters: | |
score: 原始評分(0-1之間的浮點數) | |
Returns: | |
float: 調整後的評分(0-1之間的浮點數) | |
""" | |
def smooth_curve(x: float, steepness: float = 12) -> float: | |
""" | |
創建平滑的S型曲線用於分數轉換。 | |
這個函數使用sigmoid函數來產生平滑的轉換曲線,避免分數在 | |
不同區間之間產生突兀的跳變。就像是在照片編輯中,我們會使用 | |
漸變而不是突變來調整色調。 | |
Parameters: | |
x: 輸入值(0-1之間) | |
steepness: 曲線的陡峭程度,越大曲線越陡 | |
Returns: | |
float: 轉換後的值(0-1之間) | |
""" | |
import math | |
return 1 / (1 + math.exp(-steepness * (x - 0.5))) | |
def apply_range_mapping(score: float) -> float: | |
""" | |
將分數映射到新的範圍,並保持平滑過渡。 | |
這個函數負責將原始分數轉換到新的分數範圍。就像是將溫度從 | |
攝氏度轉換到華氏度,但要保持溫度變化的連續性。 | |
Parameters: | |
score: 原始分數 | |
Returns: | |
float: 映射後的分數 | |
""" | |
# 極佳匹配區間(90-100) | |
if score >= 0.90: | |
# 計算在當前區間內的相對位置 | |
position = (score - 0.90) / 0.10 | |
# 映射到96-100的範圍 | |
return 0.96 + (position * 0.04) | |
# 優秀匹配區間(80-90) | |
elif score >= 0.80: | |
position = (score - 0.80) / 0.10 | |
# 使用平滑曲線進行轉換 | |
transition = smooth_curve(position) | |
return 0.90 + (transition * 0.06) | |
# 良好匹配區間(70-80) | |
elif score >= 0.70: | |
position = (score - 0.70) / 0.10 | |
# 加入輕微的非線性轉換 | |
return 0.82 + (math.pow(position, 0.9) * 0.08) | |
# 可接受匹配區間(50-70) | |
elif score >= 0.50: | |
position = (score - 0.50) / 0.20 | |
# 使用更平緩的曲線 | |
return 0.75 + (smooth_curve(position) * 0.07) | |
# 較差匹配區間(50以下) | |
else: | |
position = score / 0.50 | |
# 確保即使是較低分數也能得到基本分數 | |
return 0.70 + (smooth_curve(position) * 0.05) | |
def apply_context_bonus(score: float) -> float: | |
""" | |
根據具體情況添加額外的分數調整。 | |
這個函數考慮特定的場景來微調分數,就像是考試時會根據題目 | |
的難度來調整給分標準。 | |
Parameters: | |
score: 當前分數 | |
Returns: | |
float: 調整後的分數 | |
""" | |
bonus = 0 | |
# 特殊場景加分 | |
temperament = breed_info.get('Temperament', '').lower() | |
if user_prefs.living_space == 'apartment': | |
if 'adaptable' in temperament and score > 0.85: | |
bonus += 0.02 | |
# 運動需求匹配度加分 | |
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'LOW': | |
if user_prefs.exercise_time <= 60 and score > 0.85: | |
bonus += 0.01 | |
return min(1.0, score + bonus) | |
# 應用基本的範圍映射 | |
adjusted_score = apply_range_mapping(score) | |
# 應用情境相關的調整 | |
final_score = apply_context_bonus(adjusted_score) | |
# 確保分數在有效範圍內 | |
return round(min(1.0, max(0.0, final_score)), 4) | |
# def amplify_score_extreme(score: float) -> float: | |
# """優化分數分布,提供更高的分數範圍""" | |
# def smooth_curve(x: float, steepness: float = 12) -> float: | |
# import math | |
# return 1 / (1 + math.exp(-steepness * (x - 0.5))) | |
# if score >= 0.9: | |
# position = (score - 0.9) / 0.1 | |
# return 0.96 + (position * 0.04) # 90-100的原始分映射到96-100 | |
# elif score >= 0.8: | |
# position = (score - 0.8) / 0.1 | |
# return 0.90 + (position * 0.06) # 80-90的原始分映射到90-96 | |
# elif score >= 0.7: | |
# position = (score - 0.7) / 0.1 | |
# return 0.82 + (position * 0.08) # 70-80的原始分映射到82-90 | |
# elif score >= 0.5: | |
# position = (score - 0.5) / 0.2 | |
# return 0.75 + (smooth_curve(position) * 0.07) # 50-70的原始分映射到75-82 | |
# else: | |
# position = score / 0.5 | |
# return 0.70 + (smooth_curve(position) * 0.05) # 50以下的原始分映射到70-75 |