AudioGPT / NeuralSeq /modules /syntaspeech /syntactic_graph_buider.py
Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
from copy import deepcopy
import torch
import dgl
import stanza
import networkx as nx
class Sentence2GraphParser:
def __init__(self, language='zh', use_gpu=False, download=False):
self.language = language
if download:
self.stanza_parser = stanza.Pipeline(lang=language, use_gpu=use_gpu)
else:
self.stanza_parser = stanza.Pipeline(lang=language, use_gpu=use_gpu, download_method=None)
def parse(self, clean_sentence=None, words=None, ph_words=None):
if self.language == 'zh':
assert words is not None and ph_words is not None
ret = self._parse_zh(words, ph_words)
elif self.language == 'en':
assert clean_sentence is not None
ret = self._parse_en(clean_sentence)
else:
raise NotImplementedError
return ret
def _parse_zh(self, words, ph_words, enable_backward_edge=True, enable_recur_edge=True,
enable_inter_sentence_edge=True, sequential_edge=False):
"""
words: <List of str>, each character in chinese is one item
ph_words: <List of str>, each character in chinese is one item, represented by the phoneme
Example:
text1 = '宝马配挂跛骡鞍,貂蝉怨枕董翁榻.'
words = ['<BOS>', '宝', '马', '配', '挂', '跛', '骡', '鞍', ','
, '貂', '蝉', '怨', '枕', '董', '翁', '榻', '<EOS>']
ph_words = ['<BOS>', 'b_ao3_|', 'm_a3_#', 'p_ei4_|', 'g_ua4_#',
'b_o3_#', 'l_uo2_|', 'an1', ',', 'd_iao1_|',
'ch_an2_#', 'van4_#', 'zh_en3_#', 'd_ong3_|', 'ueng1_#', 't_a4', '<EOS>']
"""
words, ph_words = words[1:-1], ph_words[1:-1] # delete <BOS> and <EOS>
for i, p_w in enumerate(ph_words):
if p_w == ',':
# change english ',' into chinese
# we found it necessary in stanza's dependency parsing
words[i], ph_words[i] = ',', ','
tmp_words = deepcopy(words)
num_added_space = 0
for i, p_w in enumerate(ph_words):
if p_w.endswith("#"):
# add a blank after the p_w with '#', to separate words
tmp_words.insert(num_added_space + i + 1, " ")
num_added_space += 1
if p_w in [',', ',']:
# add one blank before and after ', ', respectively
tmp_words.insert(num_added_space + i + 1, " ") # insert behind ',' first
tmp_words.insert(num_added_space + i, " ") # insert before
num_added_space += 2
clean_text = ''.join(tmp_words).strip()
parser_out = self.stanza_parser(clean_text)
idx_to_word = {i + 1: w for i, w in enumerate(words)}
vocab_nodes = {}
vocab_idx_offset = 0
for sentence in parser_out.sentences:
num_nodes_in_current_sentence = 0
for vocab_node in sentence.words:
num_nodes_in_current_sentence += 1
vocab_idx = vocab_node.id + vocab_idx_offset
vocab_text = vocab_node.text.replace(" ", "") # delete blank in vocab
vocab_nodes[vocab_idx] = vocab_text
vocab_idx_offset += num_nodes_in_current_sentence
# start vocab-to-word alignment
vocab_to_word = {}
current_word_idx = 1
for vocab_i in vocab_nodes.keys():
vocab_to_word[vocab_i] = []
for w_in_vocab_i in vocab_nodes[vocab_i]:
if w_in_vocab_i != idx_to_word[current_word_idx]:
raise ValueError("Word Mismatch!")
vocab_to_word[vocab_i].append(current_word_idx) # add a path (vocab_node_idx, word_global_idx)
current_word_idx += 1
# then we compute the vocab-level edges
if len(parser_out.sentences) > 5:
print("Detect more than 5 input sentence! pls check whether the sentence is too long!")
vocab_level_source_id, vocab_level_dest_id = [], []
vocab_level_edge_types = []
sentences_heads = []
vocab_id_offset = 0
# get forward edges
for s in parser_out.sentences:
for w in s.words:
w_idx = w.id + vocab_id_offset # it starts from 1, just same as binarizer
w_dest_idx = w.head + vocab_id_offset
if w.head == 0:
sentences_heads.append(w_idx)
continue
vocab_level_source_id.append(w_idx)
vocab_level_dest_id.append(w_dest_idx)
vocab_id_offset += len(s.words)
vocab_level_edge_types += [0] * len(vocab_level_source_id)
num_vocab = vocab_id_offset
# optional: get backward edges
if enable_backward_edge:
back_source, back_dest = deepcopy(vocab_level_dest_id), deepcopy(vocab_level_source_id)
vocab_level_source_id += back_source
vocab_level_dest_id += back_dest
vocab_level_edge_types += [1] * len(back_source)
# optional: get inter-sentence edges if num_sentences > 1
inter_sentence_source, inter_sentence_dest = [], []
if enable_inter_sentence_edge and len(sentences_heads) > 1:
def get_full_graph_edges(nodes):
tmp_edges = []
for i, node_i in enumerate(nodes):
for j, node_j in enumerate(nodes):
if i == j:
continue
tmp_edges.append((node_i, node_j))
return tmp_edges
tmp_edges = get_full_graph_edges(sentences_heads)
for (source, dest) in tmp_edges:
inter_sentence_source.append(source)
inter_sentence_dest.append(dest)
vocab_level_source_id += inter_sentence_source
vocab_level_dest_id += inter_sentence_dest
vocab_level_edge_types += [3] * len(inter_sentence_source)
if sequential_edge:
seq_source, seq_dest = list(range(1, num_vocab)) + list(range(num_vocab, 0, -1)), \
list(range(2, num_vocab + 1)) + list(range(num_vocab - 1, -1, -1))
vocab_level_source_id += seq_source
vocab_level_dest_id += seq_dest
vocab_level_edge_types += [4] * (num_vocab - 1) + [5] * (num_vocab - 1)
# Then, we use the vocab-level edges and the vocab-to-word path, to construct the word-level graph
num_word = len(words)
source_id, dest_id, edge_types = [], [], []
for (vocab_start, vocab_end, vocab_edge_type) in zip(vocab_level_source_id, vocab_level_dest_id,
vocab_level_edge_types):
# connect the first word in the vocab
word_start = min(vocab_to_word[vocab_start])
word_end = min(vocab_to_word[vocab_end])
source_id.append(word_start)
dest_id.append(word_end)
edge_types.append(vocab_edge_type)
# sequential connection in words
for word_indices_in_v in vocab_to_word.values():
for i, word_idx in enumerate(word_indices_in_v):
if i + 1 < len(word_indices_in_v):
source_id.append(word_idx)
dest_id.append(word_idx + 1)
edge_types.append(4)
if i - 1 >= 0:
source_id.append(word_idx)
dest_id.append(word_idx - 1)
edge_types.append(5)
# optional: get recurrent edges
if enable_recur_edge:
recur_source, recur_dest = list(range(1, num_word + 1)), list(range(1, num_word + 1))
source_id += recur_source
dest_id += recur_dest
edge_types += [2] * len(recur_source)
# add <BOS> and <EOS>
source_id += [0, num_word + 1, 1, num_word]
dest_id += [1, num_word, 0, num_word + 1]
edge_types += [4, 4, 5, 5] # 4 represents sequentially forward, 5 is sequential backward
edges = (torch.LongTensor(source_id), torch.LongTensor(dest_id))
dgl_graph = dgl.graph(edges)
assert dgl_graph.num_edges() == len(edge_types)
return dgl_graph, torch.LongTensor(edge_types)
def _parse_en(self, clean_sentence, enable_backward_edge=True, enable_recur_edge=True,
enable_inter_sentence_edge=True, sequential_edge=False, consider_bos_for_index=True):
"""
clean_sentence: <str>, each word or punctuation should be separated by one blank.
"""
edge_types = [] # required for gated graph neural network
clean_sentence = clean_sentence.strip()
if clean_sentence.endswith((" .", " ,", " ;", " :", " ?", " !")):
clean_sentence = clean_sentence[:-2]
if clean_sentence.startswith(". "):
clean_sentence = clean_sentence[2:]
parser_out = self.stanza_parser(clean_sentence)
if len(parser_out.sentences) > 5:
print("Detect more than 5 input sentence! pls check whether the sentence is too long!")
print(clean_sentence)
source_id, dest_id = [], []
sentences_heads = []
word_id_offset = 0
# get forward edges
for s in parser_out.sentences:
for w in s.words:
w_idx = w.id + word_id_offset # it starts from 1, just same as binarizer
w_dest_idx = w.head + word_id_offset
if w.head == 0:
sentences_heads.append(w_idx)
continue
source_id.append(w_idx)
dest_id.append(w_dest_idx)
word_id_offset += len(s.words)
num_word = word_id_offset
edge_types += [0] * len(source_id)
# optional: get backward edges
if enable_backward_edge:
back_source, back_dest = deepcopy(dest_id), deepcopy(source_id)
source_id += back_source
dest_id += back_dest
edge_types += [1] * len(back_source)
# optional: get recurrent edges
if enable_recur_edge:
recur_source, recur_dest = list(range(1, num_word + 1)), list(range(1, num_word + 1))
source_id += recur_source
dest_id += recur_dest
edge_types += [2] * len(recur_source)
# optional: get inter-sentence edges if num_sentences > 1
inter_sentence_source, inter_sentence_dest = [], []
if enable_inter_sentence_edge and len(sentences_heads) > 1:
def get_full_graph_edges(nodes):
tmp_edges = []
for i, node_i in enumerate(nodes):
for j, node_j in enumerate(nodes):
if i == j:
continue
tmp_edges.append((node_i, node_j))
return tmp_edges
tmp_edges = get_full_graph_edges(sentences_heads)
for (source, dest) in tmp_edges:
inter_sentence_source.append(source)
inter_sentence_dest.append(dest)
source_id += inter_sentence_source
dest_id += inter_sentence_dest
edge_types += [3] * len(inter_sentence_source)
# add <BOS> and <EOS>
source_id += [0, num_word + 1, 1, num_word]
dest_id += [1, num_word, 0, num_word + 1]
edge_types += [4, 4, 5, 5] # 4 represents sequentially forward, 5 is sequential backward
# optional: sequential edge
if sequential_edge:
seq_source, seq_dest = list(range(1, num_word)) + list(range(num_word, 0, -1)), \
list(range(2, num_word + 1)) + list(range(num_word - 1, -1, -1))
source_id += seq_source
dest_id += seq_dest
edge_types += [4] * (num_word - 1) + [5] * (num_word - 1)
if consider_bos_for_index:
edges = (torch.LongTensor(source_id), torch.LongTensor(dest_id))
else:
edges = (torch.LongTensor(source_id) - 1, torch.LongTensor(dest_id) - 1)
dgl_graph = dgl.graph(edges)
assert dgl_graph.num_edges() == len(edge_types)
return dgl_graph, torch.LongTensor(edge_types)
def plot_dgl_sentence_graph(dgl_graph, labels):
"""
labels = {idx: word for idx,word in enumerate(sentence.split(" ")) }
"""
import matplotlib.pyplot as plt
nx_graph = dgl_graph.to_networkx()
pos = nx.random_layout(nx_graph)
nx.draw(nx_graph, pos, with_labels=False)
nx.draw_networkx_labels(nx_graph, pos, labels)
plt.show()
if __name__ == '__main__':
# Unit Test for Chinese Graph Builder
parser = Sentence2GraphParser("zh")
text1 = '宝马配挂跛骡鞍,貂蝉怨枕董翁榻.'
words = ['<BOS>', '宝', '马', '配', '挂', '跛', '骡', '鞍', ',', '貂', '蝉', '怨', '枕', '董', '翁', '榻', '<EOS>']
ph_words = ['<BOS>', 'b_ao3_|', 'm_a3_#', 'p_ei4_|', 'g_ua4_#', 'b_o3_#', 'l_uo2_|', 'an1', ',', 'd_iao1_|',
'ch_an2_#', 'van4_#', 'zh_en3_#', 'd_ong3_|', 'ueng1_#', 't_a4', '<EOS>']
graph1, etypes1 = parser.parse(text1, words, ph_words)
plot_dgl_sentence_graph(graph1, {i: w for i, w in enumerate(ph_words)})
# Unit Test for English Graph Builder
parser = Sentence2GraphParser("en")
text2 = "I love you . You love me . Mixue ice-scream and tea ."
graph2, etypes2 = parser.parse(text2)
plot_dgl_sentence_graph(graph2, {i: w for i, w in enumerate(("<BOS> " + text2 + " <EOS>").split(" "))})