|
import spacy |
|
import wikipediaapi |
|
import wikipedia |
|
from wikipedia.exceptions import DisambiguationError |
|
from transformers import TFAutoModel, AutoTokenizer |
|
import numpy as np |
|
import pandas as pd |
|
import faiss |
|
import gradio as gr |
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except: |
|
spacy.cli.download("en_core_web_sm") |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
wh_words = ['what', 'who', 'how', 'when', 'which'] |
|
def get_concepts(text): |
|
text = text.lower() |
|
doc = nlp(text) |
|
concepts = [] |
|
for chunk in doc.noun_chunks: |
|
if chunk.text not in wh_words: |
|
concepts.append(chunk.text) |
|
return concepts |
|
|
|
def get_passages(text, k=100): |
|
doc = nlp(text) |
|
passages = [] |
|
passage_len = 0 |
|
passage = "" |
|
sents = list(doc.sents) |
|
for i in range(len(sents)): |
|
sen = sents[i] |
|
passage_len+=len(sen) |
|
if passage_len >= k: |
|
passages.append(passage) |
|
passage = sen.text |
|
passage_len = len(sen) |
|
continue |
|
|
|
elif i==(len(sents)-1): |
|
passage+=" "+sen.text |
|
passages.append(passage) |
|
passage = "" |
|
passage_len = 0 |
|
continue |
|
|
|
passage+=" "+sen.text |
|
return passages |
|
|
|
def get_dicts_for_dpr(concepts, n_results=20, k=100): |
|
dicts = [] |
|
for concept in concepts: |
|
wikis = wikipedia.search(concept, results=n_results) |
|
print(concept, "No of Wikis: ",len(wikis)) |
|
for wiki in wikis: |
|
try: |
|
html_page = wikipedia.page(title = wiki, auto_suggest = False) |
|
except DisambiguationError: |
|
continue |
|
|
|
htmlResults=html_page.content |
|
|
|
passages = get_passages(htmlResults, k=k) |
|
for passage in passages: |
|
i_dicts = {} |
|
i_dicts['text'] = passage |
|
i_dicts['title'] = wiki |
|
dicts.append(i_dicts) |
|
return dicts |
|
|
|
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") |
|
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") |
|
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") |
|
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") |
|
|
|
def get_title_text_combined(passage_dicts): |
|
res = [] |
|
for p in passage_dicts: |
|
res.append(tuple((p['title'], p['text']))) |
|
return res |
|
|
|
def extracted_passage_embeddings(processed_passages, max_length=156): |
|
passage_inputs = p_tokenizer.batch_encode_plus( |
|
processed_passages, |
|
add_special_tokens=True, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=max_length, |
|
return_token_type_ids=True |
|
) |
|
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), |
|
np.array(passage_inputs['attention_mask']), |
|
np.array(passage_inputs['token_type_ids'])], |
|
batch_size=64, |
|
verbose=1) |
|
return passage_embeddings |
|
|
|
def extracted_query_embeddings(queries, max_length=64): |
|
query_inputs = q_tokenizer.batch_encode_plus( |
|
queries, |
|
add_special_tokens=True, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=max_length, |
|
return_token_type_ids=True |
|
) |
|
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), |
|
np.array(query_inputs['attention_mask']), |
|
np.array(query_inputs['token_type_ids'])], |
|
batch_size=1, |
|
verbose=1) |
|
return query_embeddings |
|
|
|
|
|
|
|
def get_pagetext(page): |
|
s=str(page).replace("/t","") |
|
|
|
return s |
|
|
|
def get_wiki_summary(search): |
|
wiki_wiki = wikipediaapi.Wikipedia('en') |
|
page = wiki_wiki.page(search) |
|
|
|
isExist = page.exists() |
|
if not isExist: |
|
return isExist, "Not found", "Not found", "Not found", "Not found" |
|
|
|
pageurl = page.fullurl |
|
pagetitle = page.title |
|
pagesummary = page.summary[0:60] |
|
pagetext = get_pagetext(page.text) |
|
|
|
backlinks = page.backlinks |
|
linklist = "" |
|
for link in backlinks.items(): |
|
pui = link[0] |
|
linklist += pui + " , " |
|
a=1 |
|
|
|
categories = page.categories |
|
categorylist = "" |
|
for category in categories.items(): |
|
pui = category[0] |
|
categorylist += pui + " , " |
|
a=1 |
|
|
|
links = page.links |
|
linklist2 = "" |
|
for link in links.items(): |
|
pui = link[0] |
|
linklist2 += pui + " , " |
|
a=1 |
|
|
|
sections = page.sections |
|
|
|
ex_dic = { |
|
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"], |
|
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ] |
|
} |
|
|
|
df = pd.DataFrame(ex_dic) |
|
|
|
return df |
|
|
|
def search(question): |
|
concepts = get_concepts(question) |
|
print("concepts: ",concepts) |
|
dicts = get_dicts_for_dpr(concepts, n_results=1) |
|
lendicts = len(dicts) |
|
print("dicts len: ", lendicts) |
|
if lendicts == 0: |
|
return pd.DataFrame() |
|
processed_passages = get_title_text_combined(dicts) |
|
passage_embeddings = extracted_passage_embeddings(processed_passages) |
|
query_embeddings = extracted_query_embeddings([question]) |
|
faiss_index = faiss.IndexFlatL2(128) |
|
faiss_index.add(passage_embeddings.pooler_output) |
|
prob, index = faiss_index.search(query_embeddings.pooler_output, k=lendicts) |
|
return pd.DataFrame([dicts[i] for i in index[0]]) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("<h1><center>π° Ultimate Wikipedia AI π¨</center></h1>") |
|
gr.Markdown("""<div align="center">Search and Find Anything Then Use in AI! <a href="https://www.mediawiki.org/wiki/API:Main_page">MediaWiki - API for Wikipedia</a>. <a href="https://paperswithcode.com/datasets?q=wikipedia&v=lst&o=newest">Papers,Code,Datasets for SOTA w/ Wikipedia</a>""") |
|
with gr.Row(): |
|
inp = gr.Textbox(lines=1, default="Syd Mead", label="Question") |
|
with gr.Row(): |
|
b3 = gr.Button("Search AI Summaries") |
|
b4 = gr.Button("Search Web Live") |
|
with gr.Row(): |
|
out = gr.Dataframe(label="Answers", type="pandas") |
|
with gr.Row(): |
|
out_DF = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate", datatype = ["markdown", "markdown"], headers=['Entity', 'Value']) |
|
inp.submit(fn=get_wiki_summary, inputs=inp, outputs=out_DF) |
|
b3.click(fn=search, inputs=inp, outputs=out) |
|
b4.click(fn=get_wiki_summary, inputs=inp, outputs=out_DF ) |
|
demo.launch(debug=True, show_error=True) |