2-GradioLiveASR / app.py
awacke1's picture
Upload 4 files
39f273a
raw
history blame
4.69 kB
import gradio as gr
import torch
import time
import librosa
import soundfile
import nemo.collections.asr as nemo_asr
import tempfile
import os
import uuid
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
# PersistDataset -----
import os
import csv
import gradio as gr
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime
# ---------------------------------------------
# Dataset and Token links - change awacke1 to your own HF id, and add a HF_TOKEN copy to your repo for write permissions
# This should allow you to save your results to your own Dataset hosted on HF.
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/ASRLive.csv"
DATASET_REPO_ID = "awacke1/ASRLive.csv"
DATA_FILENAME = "ASRLive.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
PersistToDataset = False
#PersistToDataset = True # uncomment to save inference output to ASRLive.csv dataset
if PersistToDataset:
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def store_message(name: str, message: str):
if name and message:
with open(DATA_FILE, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
writer.writerow(
{"name": name.strip(), "message": message.strip(), "time": str(datetime.now())}
)
# uncomment line below to begin saving -
commit_url = repo.push_to_hub()
ret = ""
with open(DATA_FILE, "r") as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
ret += row
ret += "\r\n"
return ret
# main -------------------------
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
def take_last_tokens(inputs, note_history, history):
filterTokenCount = 128 # filter last 128 tokens
if inputs['input_ids'].shape[1] > filterTokenCount:
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-filterTokenCount:].tolist()])
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-filterTokenCount:].tolist()])
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
history = history[1:]
return inputs, note_history, history
def add_note_to_history(note, note_history):
note_history.append(note)
note_history = '</s> <s>'.join(note_history)
return [note_history]
SAMPLE_RATE = 16000
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
model.change_decoding_strategy(None)
model.eval()
def process_audio_file(file):
data, sr = librosa.load(file)
if sr != SAMPLE_RATE:
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
data = librosa.to_mono(data)
return data
def transcribe(audio, state = ""):
if state is None:
state = ""
audio_data = process_audio_file(audio)
with tempfile.TemporaryDirectory() as tmpdir:
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
transcriptions = model.transcribe([audio_path])
if type(transcriptions) == tuple and len(transcriptions) == 2:
transcriptions = transcriptions[0]
transcriptions = transcriptions[0]
if PersistToDataset:
ret = store_message(transcriptions, state) # Save to dataset - uncomment to store into a dataset - hint you will need your HF_TOKEN
state = state + transcriptions + " " + ret
else:
state = state + transcriptions
return state, state
gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(source="microphone", type='filepath', streaming=True),
"state",
],
outputs=[
"textbox",
"state"
],
layout="horizontal",
theme="huggingface",
title="🗣️ASR-Gradio-Live🧠💾",
description=f"Live Automatic Speech Recognition (ASR).",
allow_flagging='never',
live=True,
article=f"Result💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
).launch(debug=True)