DeepCritical / docs /api /orchestrators.md
Joseph Pollack
adds chathistory , docs, tests , integration
f173aad

A newer version of the Gradio SDK is available: 6.1.0

Upgrade

Orchestrators API Reference

This page documents the API for DeepCritical orchestrators.

IterativeResearchFlow

Module: src.orchestrator.research_flow

Purpose: Single-loop research with search-judge-synthesize cycles.

Methods

run

IterativeResearchFlow.run start_line:134 end_line:140

Runs iterative research flow.

Parameters:

  • query: Research query string
  • background_context: Background context (default: "")
  • output_length: Optional description of desired output length (default: "")
  • output_instructions: Optional additional instructions for report generation (default: "")
  • message_history: Optional user conversation history in Pydantic AI ModelMessage format (default: None)

Returns: Final report string.

Note: The message_history parameter enables multi-turn conversations by providing context from previous interactions.

Note: max_iterations, max_time_minutes, and token_budget are constructor parameters, not run() parameters.

DeepResearchFlow

Module: src.orchestrator.research_flow

Purpose: Multi-section parallel research with planning and synthesis.

Methods

run

DeepResearchFlow.run start_line:778 end_line:778

Runs deep research flow.

Parameters:

  • query: Research query string
  • message_history: Optional user conversation history in Pydantic AI ModelMessage format (default: None)

Returns: Final report string.

Note: The message_history parameter enables multi-turn conversations by providing context from previous interactions.

Note: max_iterations_per_section, max_time_minutes, and token_budget are constructor parameters, not run() parameters.

GraphOrchestrator

Module: src.orchestrator.graph_orchestrator

Purpose: Graph-based execution using Pydantic AI agents as nodes.

Methods

run

GraphOrchestrator.run start_line:177 end_line:177

Runs graph-based research orchestration.

Parameters:

  • query: Research query string
  • message_history: Optional user conversation history in Pydantic AI ModelMessage format (default: None)

Yields: AgentEvent objects during graph execution.

Note:

  • research_mode and use_graph are constructor parameters, not run() parameters.
  • The message_history parameter enables multi-turn conversations by providing context from previous interactions. Message history is stored in GraphExecutionContext and passed to agents during execution.

Orchestrator Factory

Module: src.orchestrator_factory

Purpose: Factory for creating orchestrators.

Functions

create_orchestrator

create_orchestrator start_line:44 end_line:50

Creates an orchestrator instance.

Parameters:

  • search_handler: Search handler protocol implementation (optional, required for simple mode)
  • judge_handler: Judge handler protocol implementation (optional, required for simple mode)
  • config: Configuration object (optional)
  • mode: Orchestrator mode ("simple", "advanced", "magentic", "iterative", "deep", "auto", or None for auto-detect)
  • oauth_token: Optional OAuth token from HuggingFace login (takes priority over env vars)

Returns: Orchestrator instance.

Raises:

  • ValueError: If requirements not met

Modes:

  • "simple": Legacy orchestrator
  • "advanced" or "magentic": Magentic orchestrator (requires OpenAI API key)
  • None: Auto-detect based on API key availability

MagenticOrchestrator

Module: src.orchestrator_magentic

Purpose: Multi-agent coordination using Microsoft Agent Framework.

Methods

run

MagenticOrchestrator.run start_line:101 end_line:101

Runs Magentic orchestration.

Parameters:

  • query: Research query string

Yields: AgentEvent objects converted from Magentic events.

Note: max_rounds and max_stalls are constructor parameters, not run() parameters.

Requirements:

  • agent-framework-core package
  • OpenAI API key

See Also