Spaces:
Runtime error
Runtime error
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) { | |
// iterator for the probabilities | |
struct probs_iterator { | |
typedef std::input_iterator_tag iterator_category; | |
typedef float value_type; | |
typedef float * pointer; | |
typedef float & reference; | |
typedef ptrdiff_t difference_type; | |
const llama_token_data * data; | |
bool operator==(const probs_iterator & other) const { return data == other.data; } | |
bool operator!=(const probs_iterator & other) const { return data != other.data; } | |
const float & operator*() const { return data->p; } | |
probs_iterator & operator++() { ++data; return *this; } | |
probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; } | |
}; | |
std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size}); | |
return dist(rng); | |
} | |
/* | |
static void llama_log_softmax(float * array, size_t size) { | |
float max_l = *std::max_element(array, array + size); | |
float sum = 0.f; | |
for (size_t i = 0; i < size; ++i) { | |
float p = expf(array[i] - max_l); | |
sum += p; | |
array[i] = p; | |
} | |
for (size_t i = 0; i < size; ++i) { | |
array[i] = logf(array[i] / sum); | |
} | |
} | |
*/ | |
static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) { | |
if (temp <= 0.0f) { | |
// find the token with the highest logit and set the rest to -inf | |
size_t max_i = 0; | |
float max_l = cur_p->data[0].logit; | |
for (size_t i = 1; i < cur_p->size; ++i) { | |
if (cur_p->data[i ].logit > max_l) { | |
cur_p->data[max_i].logit = -INFINITY; | |
max_i = i; | |
max_l = cur_p->data[i].logit; | |
} else { | |
cur_p->data[i].logit = -INFINITY; | |
} | |
} | |
return; | |
} | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
cur_p->data[i].logit /= temp; | |
} | |
} | |
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { | |
GGML_ASSERT(cur_p->size > 0); | |
// Sort the logits in descending order | |
if (!cur_p->sorted) { | |
std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}); | |
cur_p->sorted = true; | |
} | |
float max_l = cur_p->data[0].logit; | |
float cum_sum = 0.0f; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
float p = expf(cur_p->data[i].logit - max_l); | |
cur_p->data[i].p = p; | |
cum_sum += p; | |
} | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
cur_p->data[i].p /= cum_sum; | |
} | |
} | |
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { | |
// TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast | |
// if (k >= (int32_t)cur_p->size) { | |
// return; | |
// } | |
if (k <= 0) { | |
k = cur_p->size; | |
} | |
k = std::min(k, (int) cur_p->size); | |
// Sort scores in descending order | |
if (!cur_p->sorted) { | |
auto comp = [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}; | |
if (k <= 128) { | |
std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp); | |
} else { | |
constexpr int nbuckets = 128; | |
constexpr float bucket_low = -10.0f; | |
constexpr float bucket_high = 10.0f; | |
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); | |
constexpr float bucket_inter = -bucket_low * bucket_scale; | |
std::vector<int> bucket_idx(cur_p->size); | |
std::vector<int> histo(nbuckets, 0); | |
for (int i = 0; i < (int)cur_p->size; ++i) { | |
const float val = cur_p->data[i].logit; | |
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); | |
ib = std::max(0, std::min(nbuckets-1, ib)); | |
bucket_idx[i] = ib; | |
++histo[ib]; | |
} | |
int nhave = 0; | |
int ib = nbuckets - 1; | |
for ( ; ib >= 0; --ib) { | |
nhave += histo[ib]; | |
if (nhave >= k) { | |
break; | |
} | |
} | |
std::vector<llama_token_data> tmp_tokens(nhave); | |
auto * ptr = tmp_tokens.data(); | |
std::vector<llama_token_data*> bucket_ptrs; | |
bucket_ptrs.reserve(nbuckets - ib); | |
for (int j = nbuckets - 1; j >= ib; --j) { | |
bucket_ptrs.push_back(ptr); | |
ptr += histo[j]; | |
} | |
for (int i = 0; i < (int)cur_p->size; ++i) { | |
int j = bucket_idx[i]; | |
if (j >= ib) { | |
*bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i]; | |
} | |
} | |
ptr = tmp_tokens.data(); | |
int ndone = 0; | |
for (int j = nbuckets-1; j > ib; --j) { | |
std::sort(ptr, ptr + histo[j], comp); | |
ptr += histo[j]; | |
ndone += histo[j]; | |
} | |
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); | |
std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data)); | |
} | |
cur_p->sorted = true; | |
} | |
cur_p->size = k; | |
} | |
static uint32_t get_rng_seed(uint32_t seed) { | |
if (seed == LLAMA_DEFAULT_SEED) { | |
// use system clock if std::random_device is not a true RNG | |
static bool is_rd_prng = std::random_device().entropy() == 0; | |
if (is_rd_prng) { | |
return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count(); | |
} | |
std::random_device rd; | |
return rd(); | |
} | |
return seed; | |
} | |
// llama_sampler API | |
const char * llama_sampler_name(const struct llama_sampler * smpl) { | |
if (!smpl->iface) { | |
return "(null)"; | |
} | |
return smpl->iface->name(smpl); | |
} | |
void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) { | |
if (smpl->iface->accept) { | |
smpl->iface->accept(smpl, token); | |
} | |
} | |
void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) { | |
GGML_ASSERT(smpl->iface->apply); | |
smpl->iface->apply(smpl, cur_p); | |
} | |
void llama_sampler_reset(struct llama_sampler * smpl) { | |
if (smpl->iface->reset) { | |
smpl->iface->reset(smpl); | |
} | |
} | |
struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) { | |
if (smpl->iface->clone) { | |
return smpl->iface->clone(smpl); | |
} | |
if (smpl->ctx == nullptr) { | |
return new llama_sampler { | |
/* .iface = */ smpl->iface, | |
/* .ctx = */ nullptr, | |
}; | |
} | |
GGML_ABORT("the sampler does not support cloning"); | |
} | |
void llama_sampler_free(struct llama_sampler * smpl) { | |
if (smpl == nullptr) { | |
return; | |
} | |
if (smpl->iface->free) { | |
smpl->iface->free(smpl); | |
} | |
delete smpl; | |
} | |
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { | |
const auto * logits = llama_get_logits_ith(ctx, idx); | |
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); | |
// TODO: do not allocate each time | |
std::vector<llama_token_data> cur; | |
cur.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
} | |
llama_token_data_array cur_p = { | |
/* .data = */ cur.data(), | |
/* .size = */ cur.size(), | |
/* .selected = */ -1, | |
/* .sorted = */ false, | |
}; | |
llama_sampler_apply(smpl, &cur_p); | |
GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size); | |
auto token = cur_p.data[cur_p.selected].id; | |
llama_sampler_accept(smpl, token); | |
return token; | |
} | |
// sampler chain | |
static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) { | |
return "chain"; | |
} | |
static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) { | |
auto * chain = (llama_sampler_chain *) smpl->ctx; | |
time_meas tm(chain->t_sample_us, chain->params.no_perf); | |
for (auto * smpl : chain->samplers) { | |
llama_sampler_accept(smpl, token); | |
} | |
chain->n_sample++; | |
} | |
static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * chain = (llama_sampler_chain *) smpl->ctx; | |
time_meas tm(chain->t_sample_us, chain->params.no_perf); | |
for (auto * smpl : chain->samplers) { | |
llama_sampler_apply(smpl, cur_p); | |
} | |
} | |
static void llama_sampler_chain_reset(struct llama_sampler * smpl) { | |
auto * chain = (llama_sampler_chain *) smpl->ctx; | |
for (auto * smpl : chain->samplers) { | |
llama_sampler_reset(smpl); | |
} | |
chain->t_sample_us = 0; | |
chain->n_sample = 0; | |
} | |
static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) { | |
const auto * chain_src = (const llama_sampler_chain *) smpl->ctx; | |
auto * result = llama_sampler_chain_init(chain_src->params); | |
for (auto * smpl : chain_src->samplers) { | |
llama_sampler_chain_add(result, llama_sampler_clone(smpl)); | |
} | |
return result; | |
} | |
static void llama_sampler_chain_free(struct llama_sampler * smpl) { | |
auto * chain = (llama_sampler_chain *) smpl->ctx; | |
for (auto * smpl : chain->samplers) { | |
llama_sampler_free(smpl); | |
} | |
delete chain; | |
} | |
static struct llama_sampler_i llama_sampler_chain_i = { | |
/* .name = */ llama_sampler_chain_name, | |
/* .accept = */ llama_sampler_chain_accept, | |
/* .apply = */ llama_sampler_chain_apply, | |
/* .reset = */ llama_sampler_chain_reset, | |
/* .clone = */ llama_sampler_chain_clone, | |
/* .free = */ llama_sampler_chain_free, | |
}; | |
struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_chain_i, | |
/* .ctx = */ new llama_sampler_chain { | |
/* .params = */ params, | |
/* .samplers = */ {}, | |
/* .t_sample_us = */ 0, | |
/* .n_sample = */ 0, | |
}, | |
}; | |
} | |
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) { | |
auto * p = (llama_sampler_chain *) chain->ctx; | |
p->samplers.push_back(smpl); | |
} | |
struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) { | |
const auto * p = (const llama_sampler_chain *) chain->ctx; | |
if (i < 0 || (size_t) i >= p->samplers.size()) { | |
return nullptr; | |
} | |
return p->samplers[i]; | |
} | |
struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) { | |
auto * p = (llama_sampler_chain *) chain->ctx; | |
if (i < 0 || (size_t) i >= p->samplers.size()) { | |
return nullptr; | |
} | |
auto * result = p->samplers[i]; | |
p->samplers.erase(p->samplers.begin() + i); | |
return result; | |
} | |
int llama_sampler_chain_n(const struct llama_sampler * chain) { | |
const auto * p = (const llama_sampler_chain *) chain->ctx; | |
return p->samplers.size(); | |
} | |
// | |
// samplers | |
// | |
// greedy | |
static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) { | |
return "greedy"; | |
} | |
static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { | |
cur_p->selected = 0; | |
for (size_t i = 1; i < cur_p->size; ++i) { | |
if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) { | |
cur_p->selected = i; | |
} | |
} | |
} | |
static struct llama_sampler_i llama_sampler_greedy_i = { | |
/* .name = */ llama_sampler_greedy_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_greedy_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ nullptr, | |
/* .free = */ nullptr, | |
}; | |
struct llama_sampler * llama_sampler_init_greedy() { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_greedy_i, | |
/* .ctx = */ nullptr, | |
}; | |
} | |
// dist | |
struct llama_sampler_dist { | |
const uint32_t seed; | |
uint32_t seed_cur; | |
std::mt19937 rng; | |
}; | |
static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) { | |
return "dist"; | |
} | |
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_dist *) smpl->ctx; | |
llama_sampler_softmax_impl(cur_p); | |
cur_p->selected = llama_sample_dist(cur_p, ctx->rng); | |
} | |
static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_dist *) smpl->ctx; | |
auto * result = llama_sampler_init_dist(ctx->seed); | |
// copy the state | |
{ | |
auto * result_ctx = (llama_sampler_dist *) result->ctx; | |
result_ctx->rng = ctx->rng; | |
} | |
return result; | |
} | |
static void llama_sampler_dist_reset(struct llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_dist *) smpl->ctx; | |
ctx->seed_cur = get_rng_seed(ctx->seed); | |
ctx->rng.seed(ctx->seed_cur); | |
} | |
static void llama_sampler_dist_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_dist *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_dist_i = { | |
/* .name = */ llama_sampler_dist_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_dist_apply, | |
/* .reset = */ llama_sampler_dist_reset, | |
/* .clone = */ llama_sampler_dist_clone, | |
/* .free = */ llama_sampler_dist_free, | |
}; | |
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { | |
auto seed_cur = get_rng_seed(seed); | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_dist_i, | |
/* .ctx = */ new llama_sampler_dist { | |
/* .seed = */ seed, | |
/* .seed_cur = */ seed_cur, | |
/* .rng = */ std::mt19937(seed_cur), | |
}, | |
}; | |
} | |
// softmax | |
static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) { | |
return "softmax"; | |
} | |
static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { | |
llama_sampler_softmax_impl(cur_p); | |
} | |
static struct llama_sampler_i llama_sampler_softmax_i = { | |
/* .name = */ llama_sampler_softmax_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_softmax_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ nullptr, | |
/* .free = */ nullptr, | |
}; | |
struct llama_sampler * llama_sampler_init_softmax() { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_softmax_i, | |
/* .ctx = */ nullptr, | |
}; | |
} | |
// top-k | |
struct llama_sampler_top_k { | |
const int32_t k; | |
}; | |
static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) { | |
return "top-k"; | |
} | |
static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
const auto * ctx = (llama_sampler_top_k *) smpl->ctx; | |
llama_sampler_top_k_impl(cur_p, ctx->k); | |
} | |
static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_top_k *) smpl->ctx; | |
return llama_sampler_init_top_k(ctx->k); | |
} | |
static void llama_sampler_top_k_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_top_k *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_top_k_i = { | |
/* .name = */ llama_sampler_top_k_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_top_k_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_top_k_clone, | |
/* .free = */ llama_sampler_top_k_free, | |
}; | |
struct llama_sampler * llama_sampler_init_top_k(int32_t k) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_top_k_i, | |
/* .ctx = */ new llama_sampler_top_k { | |
/* .k = */ k, | |
}, | |
}; | |
} | |
// top-p | |
struct llama_sampler_top_p { | |
const float p; | |
const size_t min_keep; | |
}; | |
static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) { | |
return "top-p"; | |
} | |
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
const auto * ctx = (llama_sampler_top_p *) smpl->ctx; | |
if (ctx->p >= 1.0f) { | |
return; | |
} | |
llama_sampler_softmax_impl(cur_p); | |
// Compute the cumulative probabilities | |
float cum_sum = 0.0f; | |
size_t last_idx = cur_p->size; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
cum_sum += cur_p->data[i].p; | |
// Check if the running sum is at least p or if we have kept at least min_keep tokens | |
// we set the last index to i+1 to indicate that the current iterate should be included in the set | |
if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) { | |
last_idx = i + 1; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the top-p tokens | |
cur_p->size = last_idx; | |
} | |
static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_top_p *) smpl->ctx; | |
return llama_sampler_init_top_p(ctx->p, ctx->min_keep); | |
} | |
static void llama_sampler_top_p_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_top_p *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_top_p_i = { | |
/* .name = */ llama_sampler_top_p_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_top_p_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_top_p_clone, | |
/* .free = */ llama_sampler_top_p_free, | |
}; | |
struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_top_p_i, | |
/* .ctx = */ new llama_sampler_top_p { | |
/* .p = */ p, | |
/* .min_keep = */ min_keep, | |
}, | |
}; | |
} | |
// min-p | |
struct llama_sampler_min_p { | |
const float p; | |
const size_t min_keep; | |
}; | |
static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) { | |
return "min-p"; | |
} | |
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
const auto * ctx = (llama_sampler_min_p *) smpl->ctx; | |
if (ctx->p <= 0.0f || !cur_p->size) { | |
return; | |
} | |
bool min_p_applied = false; | |
// if the cur_p aren't sorted, try the unsorted implementation first | |
if (!cur_p->sorted) { | |
std::vector<llama_token_data> filtered_tokens; | |
float max_logit = -FLT_MAX; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
max_logit = std::max(max_logit, cur_p->data[i].logit); | |
} | |
const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
if (cur_p->data[i].logit >= min_logit) { | |
filtered_tokens.push_back(cur_p->data[i]); | |
} | |
} | |
// if we have enough values the operation was a success | |
if (filtered_tokens.size() >= ctx->min_keep) { | |
memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); | |
cur_p->size = filtered_tokens.size(); | |
min_p_applied = true; | |
} | |
} | |
// if the cur_p are sorted or the unsorted implementation failed, use this implementation | |
if (!min_p_applied) { | |
// Sort the logits in descending order | |
if (!cur_p->sorted) { | |
std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}); | |
cur_p->sorted = true; | |
} | |
const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max | |
size_t i = 1; // first token always matches | |
for (; i < cur_p->size; ++i) { | |
if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) { | |
break; // prob too small | |
} | |
} | |
// Resize the output vector to keep only the matching tokens | |
cur_p->size = i; | |
} | |
} | |
static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_min_p *) smpl->ctx; | |
return llama_sampler_init_min_p(ctx->p, ctx->min_keep); | |
} | |
static void llama_sampler_min_p_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_min_p *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_min_p_i = { | |
/* .name = */ llama_sampler_min_p_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_min_p_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_min_p_clone, | |
/* .free = */ llama_sampler_min_p_free, | |
}; | |
struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_min_p_i, | |
/* .ctx = */ new llama_sampler_min_p { | |
/* .p = */ p, | |
/* .min_keep = */ min_keep, | |
}, | |
}; | |
} | |
// typical | |
struct llama_sampler_typical { | |
const float p; | |
const size_t min_keep; | |
}; | |
static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) { | |
return "typical"; | |
} | |
static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
const auto * ctx = (llama_sampler_typical *) smpl->ctx; | |
// Reference implementation: | |
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr | |
if (ctx->p >= 1.0f) { | |
return; | |
} | |
// Compute the softmax of logits and calculate entropy | |
llama_sampler_softmax_impl(cur_p); | |
float entropy = 0.0f; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
entropy += -cur_p->data[i].p * logf(cur_p->data[i].p); | |
} | |
// Compute the absolute difference between negative log probability and entropy for each candidate | |
std::vector<float> shifted_scores; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy); | |
shifted_scores.push_back(shifted_score); | |
} | |
// Sort tokens based on the shifted_scores and their corresponding indices | |
std::vector<size_t> indices(cur_p->size); | |
std::iota(indices.begin(), indices.end(), 0); | |
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { | |
return shifted_scores[a] < shifted_scores[b]; | |
}); | |
// Compute the cumulative probabilities | |
float cum_sum = 0.0f; | |
size_t last_idx = indices.size(); | |
for (size_t i = 0; i < indices.size(); ++i) { | |
size_t idx = indices[i]; | |
cum_sum += cur_p->data[idx].p; | |
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens | |
if (cum_sum > ctx->p && i >= ctx->min_keep - 1) { | |
last_idx = i + 1; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the locally typical tokens | |
std::vector<llama_token_data> cur_p_new; | |
for (size_t i = 0; i < last_idx; ++i) { | |
size_t idx = indices[i]; | |
cur_p_new.push_back(cur_p->data[idx]); | |
} | |
// Replace the data in cur_p with the cur_p_new data | |
std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data); | |
cur_p->size = cur_p_new.size(); | |
cur_p->sorted = false; | |
} | |
static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_typical *) smpl->ctx; | |
return llama_sampler_init_typical(ctx->p, ctx->min_keep); | |
} | |
static void llama_sampler_typical_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_typical *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_typical_i = { | |
/* .name = */ llama_sampler_typical_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_typical_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_typical_clone, | |
/* .free = */ llama_sampler_typical_free, | |
}; | |
struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_typical_i, | |
/* .ctx = */ new llama_sampler_typical { | |
/* .p = */ p, | |
/* .min_keep = */ min_keep, | |
}, | |
}; | |
} | |
// temp | |
struct llama_sampler_temp { | |
const float temp; | |
}; | |
static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) { | |
return "temp"; | |
} | |
static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
const auto * ctx = (llama_sampler_temp *) smpl->ctx; | |
llama_sampler_temp_impl(cur_p, ctx->temp); | |
} | |
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_temp *) smpl->ctx; | |
return llama_sampler_init_temp(ctx->temp); | |
} | |
static void llama_sampler_temp_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_temp *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_temp_i = { | |
/* .name = */ llama_sampler_temp_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_temp_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_temp_clone, | |
/* .free = */ llama_sampler_temp_free, | |
}; | |
struct llama_sampler * llama_sampler_init_temp(float temp) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_temp_i, | |
/* .ctx = */ new llama_sampler_temp { | |
/*.temp = */ temp, | |
}, | |
}; | |
} | |
// temp-ext | |
struct llama_sampler_temp_ext { | |
const float temp; | |
const float delta; | |
const float exponent; | |
}; | |
static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) { | |
return "temp-ext"; | |
} | |
static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; | |
if (ctx->delta > 0) { | |
const float min_temp = std::max(0.0f, ctx->temp - ctx->delta); | |
const float max_temp = ctx->temp + ctx->delta; | |
float exponent_val = ctx->exponent; | |
// no need to do anything if there is only one (or zero) candidates | |
if (cur_p->size <= 1) { | |
return; | |
} | |
// Calculate maximum possible entropy | |
float max_entropy = -logf(1.0f / cur_p->size); | |
llama_sampler_softmax_impl(cur_p); | |
// Calculate entropy of the softmax probabilities | |
float entropy = 0.0f; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
float prob = cur_p->data[i].p; | |
if (prob > 0.0f) { // Ensure no log(0) | |
entropy -= prob * logf(prob); | |
} | |
} | |
// Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above) | |
float normalized_entropy = entropy / max_entropy; | |
// Map the normalized entropy to the desired temperature range using the power function | |
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); | |
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); | |
LLAMA_LOG_INFO("Entropy: %f\n", entropy); | |
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); | |
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); | |
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); | |
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); | |
// Apply the dynamically calculated temperature scaling | |
llama_sampler_temp_impl(cur_p, dyn_temp); | |
// Re-compute softmax probabilities after scaling logits with dynamic temperature | |
const double max_l_double = cur_p->data[0].logit; | |
double cum_sum_double = 0.0; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
double p = exp(cur_p->data[i].logit - max_l_double); | |
cur_p->data[i].p = p; // Store the scaled probability | |
cum_sum_double += p; | |
} | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities | |
} | |
// Print the updated top 25 probabilities after temperature scaling | |
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); | |
for (size_t i = 0; i < 25 && i < cur_p->size; ++i) { | |
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f); | |
} | |
} else { | |
llama_sampler_temp_impl(cur_p, ctx->temp); | |
} | |
} | |
static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx; | |
return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent); | |
} | |
static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_temp_ext *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_temp_ext_i = { | |
/* .name = */ llama_sampler_temp_ext_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_temp_ext_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_temp_ext_clone, | |
/* .free = */ llama_sampler_temp_ext_free, | |
}; | |
struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_temp_ext_i, | |
/* .ctx = */ new llama_sampler_temp_ext { | |
/* .temp = */ temp, | |
/* .delta = */ delta, | |
/* .exponent = */ exponent, | |
}, | |
}; | |
} | |
// xtc | |
struct llama_sampler_xtc { | |
const float probability; | |
const float threshold; | |
const size_t min_keep; | |
const uint32_t seed; | |
uint32_t seed_cur; | |
std::mt19937 rng; | |
}; | |
static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) { | |
return "xtc"; | |
} | |
static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_xtc *) smpl->ctx; | |
if (ctx->probability <= 0.0f | |
|| ctx->threshold > 0.5f | |
|| cur_p->size < 2) { | |
return; | |
} | |
std::uniform_real_distribution<float> distribution(0.0f, 1.0f); | |
float chance = distribution(ctx->rng); | |
if (chance > ctx->probability) return; | |
// in case it's not sorted/recalculated yet | |
llama_sampler_softmax_impl(cur_p); | |
int pos_last = 0; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
if (cur_p->data[i].p >= ctx->threshold) { | |
pos_last = i; | |
} else break; | |
} | |
if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) { | |
cur_p->data += pos_last; | |
cur_p->size -= pos_last; | |
} | |
} | |
static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_xtc *) smpl->ctx; | |
auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed); | |
// copy the state | |
{ | |
auto * result_ctx = (llama_sampler_xtc *) result->ctx; | |
result_ctx->rng = ctx->rng; | |
} | |
return result; | |
} | |
static void llama_sampler_xtc_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_xtc *) smpl->ctx; | |
} | |
static void llama_sampler_xtc_reset(struct llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_xtc *) smpl->ctx; | |
ctx->seed_cur = get_rng_seed(ctx->seed); | |
ctx->rng.seed(ctx->seed_cur); | |
} | |
static struct llama_sampler_i llama_sampler_xtc_i = { | |
/* .name = */ llama_sampler_xtc_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sample_xtc_apply, | |
/* .reset = */ llama_sampler_xtc_reset, | |
/* .clone = */ llama_sampler_xtc_clone, | |
/* .free = */ llama_sampler_xtc_free, | |
}; | |
struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) { | |
auto seed_cur = get_rng_seed(seed); | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_xtc_i, | |
/* .ctx = */ new llama_sampler_xtc { | |
/* .probability = */ p, | |
/* .threshold = */ t, | |
/* .min_keep = */ min_keep, | |
/* .seed = */ seed, | |
/* .seed_cur = */ seed_cur, | |
/* .rng = */ std::mt19937(seed_cur), | |
}, | |
}; | |
} | |
// mirostat | |
struct llama_sampler_mirostat { | |
const int32_t n_vocab; | |
const uint32_t seed; | |
uint32_t seed_cur; | |
const float tau; | |
const float eta; | |
const int32_t m; | |
float mu; | |
std::mt19937 rng; | |
}; | |
static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) { | |
return "mirostat"; | |
} | |
static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_mirostat *) smpl->ctx; | |
llama_sampler_softmax_impl(cur_p); | |
// Estimate s_hat using the most probable m tokens | |
float s_hat = 0.0; | |
float sum_ti_bi = 0.0; | |
float sum_ti_sq = 0.0; | |
for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) { | |
float t_i = logf(float(i + 2) / float(i + 1)); | |
float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p); | |
sum_ti_bi += t_i * b_i; | |
sum_ti_sq += t_i * t_i; | |
} | |
s_hat = sum_ti_bi / sum_ti_sq; | |
// Compute k from the estimated s_hat and target surprise value | |
float epsilon_hat = s_hat - 1; | |
float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat); | |
llama_sampler_top_k_impl(cur_p, std::max(int(k), 1)); | |
llama_sampler_softmax_impl(cur_p); | |
const int idx = llama_sample_dist(cur_p, ctx->rng); | |
cur_p->selected = idx; | |
float observed_surprise = -log2f(cur_p->data[idx].p); | |
float e = observed_surprise - ctx->tau; | |
// Update mu using the learning rate and error | |
ctx->mu = ctx->mu - ctx->eta * e; | |
} | |
static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx; | |
auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m); | |
// copy the state | |
{ | |
auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx; | |
result_ctx->mu = ctx->mu; | |
result_ctx->rng = ctx->rng; | |
} | |
return result; | |
} | |
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_mirostat *) smpl->ctx; | |
ctx->mu = 2.0f*ctx->tau; | |
ctx->seed_cur = get_rng_seed(ctx->seed); | |
ctx->rng.seed(ctx->seed_cur); | |
} | |
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_mirostat *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_mirostat_i = { | |
/* .name = */ llama_sampler_mirostat_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_mirostat_apply, | |
/* .reset = */ llama_sampler_mirostat_reset, | |
/* .clone = */ llama_sampler_mirostat_clone, | |
/* .free = */ llama_sampler_mirostat_free, | |
}; | |
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) { | |
auto seed_cur = get_rng_seed(seed); | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_mirostat_i, | |
/* .ctx = */ new llama_sampler_mirostat { | |
/* .n_vocab = */ n_vocab, | |
/* .seed = */ seed, | |
/* .seed_cur = */ seed_cur, | |
/* .tau = */ tau, | |
/* .eta = */ eta, | |
/* .m = */ m, | |
/* .mu = */ 2.0f*tau, | |
/* .rng = */ std::mt19937(seed_cur), | |
}, | |
}; | |
} | |
// mirostat v2 | |
struct llama_sampler_mirostat_v2 { | |
const uint32_t seed; | |
uint32_t seed_cur; | |
const float tau; | |
const float eta; | |
float mu; | |
std::mt19937 rng; | |
}; | |
static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) { | |
return "mirostat-v2"; | |
} | |
static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; | |
llama_sampler_softmax_impl(cur_p); | |
// Truncate the words with surprise values greater than mu | |
cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) { | |
return -log2f(candidate.p) > ctx->mu; | |
})); | |
if (cur_p->size == 0) { | |
cur_p->size = 1; | |
} | |
// Normalize the probabilities of the remaining words | |
llama_sampler_softmax_impl(cur_p); | |
const int idx = llama_sample_dist(cur_p, ctx->rng); | |
cur_p->selected = idx; | |
float observed_surprise = -log2f(cur_p->data[idx].p); | |
float e = observed_surprise - ctx->tau; | |
// Update mu using the learning rate and error | |
ctx->mu = ctx->mu - ctx->eta * e; | |
} | |
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; | |
ctx->mu = 2.0f*ctx->tau; | |
ctx->seed_cur = get_rng_seed(ctx->seed); | |
ctx->rng.seed(ctx->seed_cur); | |
} | |
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx; | |
auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta); | |
// copy the state | |
{ | |
auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx; | |
result_ctx->mu = ctx->mu; | |
result_ctx->rng = ctx->rng; | |
} | |
return result; | |
} | |
static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_mirostat_v2 *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_mirostat_v2_i = { | |
/* .name = */ llama_sampler_mirostat_v2_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_mirostat_v2_apply, | |
/* .reset = */ llama_sampler_mirostat_v2_reset, | |
/* .clone = */ llama_sampler_mirostat_v2_clone, | |
/* .free = */ llama_sampler_mirostat_v2_free, | |
}; | |
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) { | |
auto seed_cur = get_rng_seed(seed); | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_mirostat_v2_i, | |
/* .ctx = */ new llama_sampler_mirostat_v2 { | |
/* .seed = */ seed, | |
/* .seed_cur = */ seed_cur, | |
/* .tau = */ tau, | |
/* .eta = */ eta, | |
/* .mu = */ 2.0f*tau, | |
/* .rng = */ std::mt19937(seed_cur), | |
}, | |
}; | |
} | |
// grammar | |
struct llama_sampler_grammar { | |
const struct llama_vocab * vocab; | |
std::string grammar_str; | |
std::string grammar_root; | |
struct llama_grammar * grammar; | |
}; | |
static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) { | |
return "grammar"; | |
} | |
static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) { | |
auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
if (ctx->grammar) { | |
llama_grammar_accept_impl(*ctx->grammar, token); | |
} | |
} | |
static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
if (ctx->grammar) { | |
llama_grammar_apply_impl(*ctx->grammar, cur_p); | |
} | |
} | |
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
if (!ctx->grammar) { | |
return; | |
} | |
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str()); | |
llama_grammar_free_impl(ctx->grammar); | |
ctx->grammar = grammar_new; | |
} | |
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx; | |
auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr); | |
// copy the state | |
{ | |
auto * result_ctx = (llama_sampler_grammar *) result->ctx; | |
if (ctx->grammar) { | |
result_ctx->grammar_str = ctx->grammar_str; | |
result_ctx->grammar_root = ctx->grammar_root; | |
result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar); | |
} | |
} | |
return result; | |
} | |
static void llama_sampler_grammar_free(struct llama_sampler * smpl) { | |
const auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
if (ctx->grammar) { | |
llama_grammar_free_impl(ctx->grammar); | |
} | |
delete ctx; | |
} | |
static struct llama_sampler_i llama_sampler_grammar_i = { | |
/* .name = */ llama_sampler_grammar_name, | |
/* .accept = */ llama_sampler_grammar_accept_impl, | |
/* .apply = */ llama_sampler_grammar_apply, | |
/* .reset = */ llama_sampler_grammar_reset, | |
/* .clone = */ llama_sampler_grammar_clone, | |
/* .free = */ llama_sampler_grammar_free, | |
}; | |
struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) { | |
auto * ctx = new llama_sampler_grammar; | |
if (grammar_str != nullptr && grammar_str[0] != '\0') { | |
*ctx = { | |
/* .vocab = */ &vocab, | |
/* .grammar_str = */ grammar_str, | |
/* .grammar_root = */ grammar_root, | |
/* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root), | |
}; | |
} else { | |
*ctx = { | |
/* .vocab = */ &vocab, | |
/* .grammar_str = */ {}, | |
/* .grammar_root = */ {}, | |
/* .grammar = */ nullptr, | |
}; | |
} | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_grammar_i, | |
/* .ctx = */ ctx, | |
}; | |
} | |
// penalties | |
struct llama_sampler_penalties { | |
const int32_t n_vocab; | |
const llama_token special_eos_id; | |
const llama_token linefeed_id; | |
const int32_t penalty_last_n; | |
const float penalty_repeat; | |
const float penalty_freq; | |
const float penalty_present; | |
const bool penalize_nl; | |
const bool ignore_eos; | |
ring_buffer<llama_token> prev; | |
}; | |
static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) { | |
return "penalties"; | |
} | |
static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) { | |
auto * ctx = (llama_sampler_penalties *) smpl->ctx; | |
if (ctx->penalty_last_n == 0) { | |
return; | |
} | |
ctx->prev.push_back(token); | |
} | |
static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_penalties *) smpl->ctx; | |
if (ctx->ignore_eos) { | |
assert(ctx->special_eos_id >= 0); | |
// optimistically check if the candidates are not yet sorted/shuffled/truncated | |
if (cur_p->size > (size_t) ctx->special_eos_id && cur_p->data[ctx->special_eos_id].id == ctx->special_eos_id) { | |
cur_p->data[ctx->special_eos_id].logit = -INFINITY; | |
} else { | |
// else, search for the special EOS token | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
if (cur_p->data[i].id == ctx->special_eos_id) { | |
cur_p->data[i].logit = -INFINITY; | |
break; | |
} | |
} | |
} | |
} | |
if ((ctx->penalty_last_n == 0) || | |
(ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { | |
return; | |
} | |
bool nl_found = false; | |
size_t nl_idx = 0; | |
float nl_logit = -INFINITY; | |
if (!ctx->penalize_nl) { | |
assert(ctx->linefeed_id >= 0); | |
// optimistically check if the candidates are not yet sorted/shuffled/truncated | |
if (cur_p->size > (size_t) ctx->linefeed_id && cur_p->data[ctx->linefeed_id].id == ctx->linefeed_id) { | |
nl_found = true; | |
nl_idx = ctx->linefeed_id; | |
nl_logit = cur_p->data[ctx->linefeed_id].logit; | |
} else { | |
// else, search for the linefeed token | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
if (cur_p->data[i].id == ctx->linefeed_id) { | |
nl_found = true; | |
nl_idx = i; | |
nl_logit = cur_p->data[i].logit; | |
break; | |
} | |
} | |
} | |
} | |
// Create a frequency map to count occurrences of each token in last_tokens | |
// TODO: optimize this by maintaining the token count in the sampler context | |
using llama_token_cnt = std::unordered_map<llama_token, int>; | |
llama_token_cnt token_count; | |
for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) { | |
token_count[ctx->prev.rat(i)]++; | |
} | |
// Apply frequency and presence penalties to the cur_p | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
const auto token_iter = token_count.find(cur_p->data[i].id); | |
if (token_iter == token_count.end()) { | |
continue; | |
} | |
const int count = token_iter->second; | |
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. | |
// This is common fix for this problem, which is to multiply by the penalty instead of dividing. | |
if (cur_p->data[i].logit <= 0) { | |
cur_p->data[i].logit *= ctx->penalty_repeat; | |
} else { | |
cur_p->data[i].logit /= ctx->penalty_repeat; | |
} | |
cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present; | |
} | |
cur_p->sorted = false; | |
if (!ctx->penalize_nl && nl_found) { | |
// restore the logit of the newline token if it was penalized | |
cur_p->data[nl_idx].logit = nl_logit; | |
} | |
} | |
static void llama_sampler_penalties_reset(struct llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_penalties *) smpl->ctx; | |
ctx->prev.clear(); | |
} | |
static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_penalties *) smpl->ctx; | |
auto * result = llama_sampler_init_penalties( | |
ctx->n_vocab, | |
ctx->special_eos_id, | |
ctx->linefeed_id, | |
ctx->penalty_last_n, | |
ctx->penalty_repeat, | |
ctx->penalty_freq, | |
ctx->penalty_present, | |
ctx->penalize_nl, | |
ctx->ignore_eos); | |
// copy the state | |
{ | |
auto * result_ctx = (llama_sampler_penalties *) result->ctx; | |
result_ctx->prev = ctx->prev; | |
} | |
return result; | |
} | |
static void llama_sampler_penalties_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_penalties *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_penalties_i = { | |
/* .name = */ llama_sampler_penalties_name, | |
/* .accept = */ llama_sampler_penalties_accept, | |
/* .apply = */ llama_sampler_penalties_apply, | |
/* .reset = */ llama_sampler_penalties_reset, | |
/* .clone = */ llama_sampler_penalties_clone, | |
/* .free = */ llama_sampler_penalties_free, | |
}; | |
struct llama_sampler * llama_sampler_init_penalties( | |
int32_t n_vocab, | |
llama_token special_eos_id, | |
llama_token linefeed_id, | |
int32_t penalty_last_n, | |
float penalty_repeat, | |
float penalty_freq, | |
float penalty_present, | |
bool penalize_nl, | |
bool ignore_eos) { | |
if (linefeed_id == LLAMA_TOKEN_NULL) { | |
penalize_nl = true; | |
} | |
if (special_eos_id == LLAMA_TOKEN_NULL) { | |
ignore_eos = false; | |
} | |
penalty_last_n = std::max(penalty_last_n, 0); | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_penalties_i, | |
/* .ctx = */ new llama_sampler_penalties { | |
/* .n_vocab = */ n_vocab, | |
/* .special_eos_id = */ special_eos_id, | |
/* .linefeed_id = */ linefeed_id, | |
/* .penalty_last_n = */ penalty_last_n, | |
/* .penalty_repeat = */ penalty_repeat, | |
/* .penalty_freq = */ penalty_freq, | |
/* .penalty_present = */ penalty_present, | |
/* .penalize_nl = */ penalize_nl, | |
/* .ignore_eos = */ ignore_eos, | |
/* .prev = */ ring_buffer<llama_token>(penalty_last_n), | |
}, | |
}; | |
} | |
// DRY | |
struct llama_sampler_dry { | |
int32_t total_context_size; | |
const float dry_multiplier; | |
const float dry_base; | |
const int32_t dry_allowed_length; | |
const int32_t dry_penalty_last_n; | |
std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers; | |
std::vector<int> dry_repeat_count; | |
std::unordered_map<llama_token, int> dry_max_token_repeat; | |
ring_buffer<llama_token> last_tokens; | |
}; | |
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) | |
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) { | |
for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) { | |
std::string word = llama_detokenize(vocab, {token_id}, true); | |
if (word.find(str) != std::string::npos) { | |
token_sequences.emplace(token_id, std::vector<llama_token>()); | |
} else { | |
size_t word_len = word.size(), str_len = str.size(); | |
size_t pos = -1; | |
while ((pos = word.find(str[0], pos + 1)) != std::string::npos) { | |
bool match = true; | |
size_t i; | |
for (i = 1; i < str_len && i + pos < word_len; ++i) { | |
if (word[pos + i] != str[i]) { | |
match = false; | |
break; | |
} | |
} | |
if (match) { | |
std::vector<llama_token> tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false); | |
if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) { | |
tokenization.resize(max_tail_len); | |
} | |
// Ensure we don't already have a duplicate matching tokenization | |
auto its = token_sequences.equal_range(token_id); | |
bool found = false; | |
for (auto it = its.first; it != its.second; ++it) { | |
if (tokenization == it->second) { | |
found = true; | |
break; | |
} | |
} | |
if (!found) { | |
token_sequences.emplace(token_id, tokenization); | |
} | |
} | |
} | |
} | |
} | |
} | |
static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) { | |
return "dry"; | |
} | |
static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) { | |
auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { | |
return; | |
} | |
ctx->last_tokens.push_back(token); | |
} | |
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) | |
static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { | |
return; | |
} | |
int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0); | |
int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size); | |
if (last_n_repeat <= ctx->dry_allowed_length) { | |
return; | |
} | |
ctx->dry_repeat_count.assign(last_n_repeat, 0); | |
ctx->dry_max_token_repeat.clear(); | |
// Step 1: Look for restart sequences to limit the maximum repetition length. | |
// Work backwards through the context looking for any token that begins a restart sequence. | |
// | |
// The collection `restart_sequences` is a mapping from a "head" token to all "tail" | |
// sequences that together comprise a restart sequence. This allows us to quickly check | |
// whether each token is the head of a complete sequence. Most restart sequences are actually | |
// a single token, and for these the "tail" is an empty vector. | |
// | |
// If the token is a "head", test all restart sequences that begin with this token | |
// (there will often only be one sequence for each token, but if sequences like 'aaaq1' and | |
// 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The | |
// longest matching sequence (if any) is used to limit the maximum repetition length. | |
// | |
// Note that in the case case of a short sequence contained in a longer one, this might fail to | |
// find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as | |
// restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress | |
// 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare. | |
// | |
// This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we | |
// have already clamped the maximum tail sequence length when generating `restart_sequences`. | |
// With clamping, this scan is O(N) in the context length. | |
int rep_limit = last_n_repeat; | |
for (int i = 0; i < last_n_repeat; ++i) { | |
llama_token token = ctx->last_tokens.rat(i); | |
auto its = ctx->dry_processed_breakers.equal_range(token); | |
if (its.first == ctx->dry_processed_breakers.end()) { | |
continue; | |
} | |
int longest_match = -1; | |
for (auto it = its.first; it != its.second; ++it) { | |
// Note that (*it) does not contain the head character, so seq_len will be | |
// the restart sequence length minus 1. | |
// In the common case of a single-token restart sequence, (*it) will be empty | |
// and we will trivially match. | |
int seq_len = (int)it->second.size(); | |
if (seq_len > longest_match && seq_len <= (int)i) { | |
bool match = true; | |
for (int offset = 0; offset < seq_len; ++offset) { | |
// The -1 when indexing `last_tokens` is because we already matched the head. | |
if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) { | |
match = false; | |
break; | |
} | |
} | |
if (match) { | |
longest_match = seq_len; | |
} | |
} | |
} | |
if (longest_match >= 0) { | |
// We found a restart sequence starting `i` tokens from the end and continuing for | |
// `longest_match` tokens. | |
rep_limit = i - longest_match; | |
break; | |
} | |
} | |
if (rep_limit < ctx->dry_allowed_length) { | |
return; | |
} | |
// Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in | |
// the reverse direction) to efficiently compute the positions and lengths of suffixes appearing | |
// elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences. | |
// | |
// This algorithm is not currently documented on Wikipedia, but there is a clear description here: | |
// https://ivanyu.me/blog/2014/10/15/z-algorithm/ | |
// | |
// The code below is adapted from the public domain implementation by the same author here: | |
// https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py | |
// | |
// Example: | |
// Last N tokens: a b c c b c y a b c | |
// Repeat counts: 0 0 3 1 0 2 0 0 0 0 | |
// ^ | |
// This `3` means that the last three tokens of the context (a b c) also appear here. | |
// | |
// This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested | |
// for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each | |
// repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables | |
// ensure that the inner while loops only examine each token in the context once as the outer | |
// for loop iterates over the context. | |
{ | |
const int last = last_n_repeat - 1; | |
int rt = 0, lt = 0; | |
for (int k = 1; k < last_n_repeat; ++k) { | |
if (k > rt) { | |
// If k is outside the current Z-box, do naive computation. | |
int n = 0; | |
while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) { | |
++n; | |
} | |
ctx->dry_repeat_count[last - k] = std::min(n, rep_limit); | |
if (n > 0) { | |
lt = k; | |
rt = k+n-1; | |
} | |
} else { | |
// If k is inside the current Z-box, consider two cases. | |
int p = k - lt; // Pair index. | |
int right_part_len = rt - k + 1; | |
if (ctx->dry_repeat_count[last - p] < right_part_len) { | |
int n = std::min(ctx->dry_repeat_count[last - p], rep_limit); | |
ctx->dry_repeat_count[last - k] = n; | |
} else { | |
int i = rt + 1; | |
while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) { | |
i += 1; | |
} | |
int n = std::min(i - k, rep_limit); | |
ctx->dry_repeat_count[last - k] = n; | |
lt = k; | |
rt = i - 1; | |
} | |
} | |
} | |
} | |
// Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length | |
// that would be generated by emitting each new token that would extend a sequence. | |
// | |
// Following the same example as above: | |
// Last N tokens: a b c c b c y a b c | |
// Repeat counts: 0 0 3 1 0 2 0 0 0 0 | |
// | |
// For each non-zero, look ahead one token. This token, if emitted, would extend the repetition. | |
// c: 3 -> 4 (from `a b c` to `a b c c`) | |
// b: 1 -> 2 (from `c` to `c b`) | |
// y: 2 -> 3 (from `b c` to `b c y`) | |
for (int i = 0; i < last_n_repeat - 1; ++i) { | |
int repeat_len = ctx->dry_repeat_count[i]; | |
if (repeat_len >= ctx->dry_allowed_length) { | |
// This token ends a repeat, so the next token would continue one. | |
// By convention, the value of `repeat_len` only includes the tokens currently | |
// in the context, not the new token that would be added. | |
llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i); | |
// Track the maximum sequence ending in this token. | |
const auto& it = ctx->dry_max_token_repeat.find(token); | |
if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) { | |
ctx->dry_max_token_repeat[token] = repeat_len; | |
} | |
} | |
} | |
// Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens. | |
// Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`. | |
// Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()` | |
const float FLOAT_MAX_LOG = 88.7228391f; | |
int max_exponent = 0; | |
if (ctx->dry_base > 1.000001f) { | |
max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base); | |
} | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id); | |
if (af_kvp != ctx->dry_max_token_repeat.end()) { | |
// Check all sequence breakers starting with this token | |
auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id); | |
bool is_single_token_breaker = false; | |
for (auto it = range.first; it != range.second; ++it) { | |
if (it->second.empty()) { | |
is_single_token_breaker = true; | |
break; | |
} | |
} | |
// Apply penalty only if it's not a single-token sequence breaker | |
if (!is_single_token_breaker) { | |
int repeat_exp = af_kvp->second - ctx->dry_allowed_length; | |
if (max_exponent > 0 && repeat_exp > max_exponent) { | |
repeat_exp = max_exponent; | |
} | |
float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp); | |
cur_p->data[i].logit -= penalty; | |
} | |
} | |
} | |
cur_p->sorted = false; | |
} | |
static void llama_sampler_dry_reset(struct llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
ctx->last_tokens.clear(); | |
ctx->dry_repeat_count.clear(); | |
ctx->dry_max_token_repeat.clear(); | |
} | |
static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
// nullptr is passed as vocab because it is only needed for raw sequence breaker processing, which we have already done and will be copying | |
auto * result = llama_sampler_init_dry(nullptr, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0); | |
// Copy the state, including the processed breakers | |
{ | |
auto * result_ctx = (llama_sampler_dry *) result->ctx; | |
result_ctx->dry_processed_breakers = ctx->dry_processed_breakers; | |
result_ctx->dry_repeat_count = ctx->dry_repeat_count; | |
result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat; | |
result_ctx->last_tokens = ctx->last_tokens; | |
} | |
return result; | |
} | |
static void llama_sampler_dry_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_dry *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_dry_i = { | |
/* .name = */ llama_sampler_dry_name, | |
/* .accept = */ llama_sampler_dry_accept, | |
/* .apply = */ llama_sampler_dry_apply, | |
/* .reset = */ llama_sampler_dry_reset, | |
/* .clone = */ llama_sampler_dry_clone, | |
/* .free = */ llama_sampler_dry_free, | |
}; | |
struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { | |
int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0); | |
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers; | |
const int MAX_CHAR_LEN = 40; | |
const int MAX_SEQ_LEN = 20; | |
const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0); | |
if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) { | |
// Process sequence breakers | |
for (size_t i = 0; i < num_breakers; ++i) { | |
if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) { | |
LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i); | |
continue; | |
} | |
std::string sequence_break(seq_breakers[i]); | |
if (sequence_break.empty()) { | |
LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n"); | |
continue; | |
} | |
if (sequence_break.size() > MAX_CHAR_LEN) { | |
LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN); | |
sequence_break.resize(MAX_CHAR_LEN); | |
} | |
get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN); | |
} | |
} | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_dry_i, | |
/* .ctx = */ new llama_sampler_dry { | |
/* .total_context_size = */ context_size, | |
/* .dry_multiplier = */ dry_multiplier, | |
/* .dry_base = */ dry_base, | |
/* .dry_allowed_length = */ dry_allowed_length, | |
/* .dry_penalty_last_n = */ dry_penalty_last_n, | |
/* .dry_processed_breakers = */ std::move(processed_breakers), | |
/* .dry_repeat_count = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{}, | |
/* .dry_max_token_repeat = */ {}, | |
/* .last_tokens = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0), | |
}, | |
}; | |
} | |
// wrapper for test-sampling.cpp | |
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) { | |
llama_vocab dummy_vocab; | |
auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0); | |
auto * ctx = (llama_sampler_dry *) result->ctx; | |
// Process the token-based sequence breakers | |
ctx->dry_processed_breakers.clear(); | |
if (seq_breakers.empty()) { | |
LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n"); | |
} else { | |
for (const auto& breaker : seq_breakers) { | |
if (breaker.empty()) { | |
LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n"); | |
continue; | |
} | |
llama_token head_token = breaker[0]; | |
std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end()); | |
ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens)); | |
} | |
if (ctx->dry_processed_breakers.empty()) { | |
LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n"); | |
} | |
} | |
return result; | |
} | |
// logit-bias | |
struct llama_sampler_logit_bias { | |
const int32_t n_vocab; | |
const std::vector<llama_logit_bias> logit_bias; | |
std::vector<llama_logit_bias> to_search; | |
}; | |
static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) { | |
return "logit-bias"; | |
} | |
static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_logit_bias *) smpl->ctx; | |
if (ctx->logit_bias.empty()) { | |
return; | |
} | |
ctx->to_search.clear(); | |
// update the candidates that have not been shuffled in the vocabulary (i.e. idx == id) | |
for (const auto & lb : ctx->logit_bias) { | |
if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) { | |
cur_p->data[lb.token].logit += lb.bias; | |
} else { | |
ctx->to_search.push_back(lb); | |
} | |
} | |
if (ctx->to_search.empty()) { | |
return; | |
} | |
// search for the remaining candidates that were not found in the previous step | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
for (const auto & lb : ctx->to_search) { | |
if (cur_p->data[i].id == lb.token) { | |
cur_p->data[i].logit += lb.bias; | |
break; | |
} | |
} | |
} | |
} | |
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx; | |
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data()); | |
} | |
static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_logit_bias *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_logit_bias_i = { | |
/* .name = */ llama_sampler_logit_bias_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_logit_bias_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_logit_bias_clone, | |
/* .free = */ llama_sampler_logit_bias_free, | |
}; | |
struct llama_sampler * llama_sampler_init_logit_bias( | |
int32_t n_vocab, | |
int32_t n_logit_bias, | |
const llama_logit_bias * logit_bias) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_logit_bias_i, | |
/* .ctx = */ new llama_sampler_logit_bias { | |
/* .n_vocab = */ n_vocab, | |
/* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias), | |
/* .to_search = */ {}, | |
}, | |
}; | |
} | |
// infill | |
//#define GGML_DEBUG_SAMPLER_INFILL | |
struct llama_sampler_infill { | |
const struct llama_vocab * vocab; | |
std::vector<char> buf0; | |
std::vector<char> buf1; | |
}; | |
static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) { | |
return "infill"; | |
} | |
static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_infill *) smpl->ctx; | |
llama_sampler_softmax_impl(cur_p); | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); | |
} | |
float p_txt_sum = 0.0f; | |
float p_eog_sum = 0.0f; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) { | |
p_eog_sum += cur_p->data[i].p; | |
} else { | |
p_txt_sum += cur_p->data[i].p; | |
} | |
} | |
const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat); | |
LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size); | |
if (3*p_eog_sum*cur_p->size > p_txt_sum) { | |
LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum); | |
// keep just the EOG tokens | |
const auto size_org = cur_p->size; | |
cur_p->size = 0; | |
float p_sum = 0.0f; | |
for (size_t i = 0; i < size_org; ++i) { | |
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) { | |
p_sum += cur_p->data[i].p; | |
cur_p->data[cur_p->size++] = cur_p->data[i]; | |
} | |
} | |
// normalize probs | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
cur_p->data[i].p /= p_sum; | |
} | |
return; | |
} | |
size_t n_combined = 0; GGML_UNUSED(n_combined); | |
// combine tokens with common prefix | |
for (size_t i0 = 0; i0 < cur_p->size; ++i0) { | |
for (size_t i1 = 0; i1 < cur_p->size; ++i1) { | |
if (cur_p->data[i0].logit == -INFINITY) { | |
break; | |
} | |
if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) { | |
continue; | |
} | |
int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); | |
if (len0 < 0) { | |
ctx->buf0.resize(len0); | |
len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); | |
assert(len0 > 0); | |
} | |
int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); | |
if (len1 < 0) { | |
ctx->buf1.resize(len1); | |
len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); | |
assert(len1 > 0); | |
} | |
// token i0 is a prefix of token i1 | |
if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) { | |
int dst = i0; | |
int src = i1; | |
// merge into the token with higher probability | |
if (cur_p->data[i1].p > cur_p->data[i0].p) { | |
std::swap(dst, src); | |
} | |
cur_p->data[dst].p += cur_p->data[src].p; | |
cur_p->data[src].logit = -INFINITY; | |
cur_p->data[src].p = 0.0f; | |
n_combined++; | |
} | |
} | |
} | |
size_t n_non_eog = 0; | |
size_t size_org = cur_p->size; | |
float p_sum = 0.0f; | |
float thold = 0.2f; | |
cur_p->size = 0; | |
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold); | |
for (size_t i = 0; i < size_org; ++i) { | |
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id); | |
if (cur_p->data[i].p < thold && !is_eog) { | |
continue; | |
} | |
if (!is_eog) { | |
++n_non_eog; | |
} | |
p_sum += cur_p->data[i].p; | |
// keep this token | |
cur_p->data[cur_p->size++] = cur_p->data[i]; | |
} | |
LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog); | |
// if no non-EOG tokens are left -> reduce cur_p to single EOT token | |
if (n_non_eog == 0) { | |
cur_p->size = 1; | |
cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab); | |
cur_p->data[0].logit = 1.0f; | |
return; | |
} | |
// normalize probs | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
cur_p->data[i].p /= p_sum; | |
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); | |
} | |
size_org = cur_p->size; | |
p_sum = 0.0f; | |
thold = 1.0/(n_non_eog + 1); | |
cur_p->size = 0; | |
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold); | |
for (size_t i = 0; i < size_org; ++i) { | |
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id); | |
if (cur_p->data[i].p < thold && !is_eog) { | |
continue; | |
} | |
p_sum += cur_p->data[i].p; | |
cur_p->data[cur_p->size++] = cur_p->data[i]; | |
} | |
// normalize probs | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
cur_p->data[i].p /= p_sum; | |
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); | |
} | |
} | |
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_infill *) smpl->ctx; | |
return llama_sampler_init_infill_impl(*ctx->vocab); | |
} | |
static void llama_sampler_infill_free(struct llama_sampler * smpl) { | |
delete (llama_sampler_infill *) smpl->ctx; | |
} | |
static struct llama_sampler_i llama_sampler_infill_i = { | |
/* .name = */ llama_sampler_infill_name, | |
/* .accept = */ nullptr, | |
/* .apply = */ llama_sampler_infill_apply, | |
/* .reset = */ nullptr, | |
/* .clone = */ llama_sampler_infill_clone, | |
/* .free = */ llama_sampler_infill_free, | |
}; | |
struct llama_sampler * llama_sampler_init_infill_impl( | |
const struct llama_vocab & vocab) { | |
return new llama_sampler { | |
/* .iface = */ &llama_sampler_infill_i, | |
/* .ctx = */ new llama_sampler_infill { | |
/* .vocab = */ &vocab, | |
/* .buf0 = */ std::vector<char>(512), | |
/* .buf1 = */ std::vector<char>(512), | |
}, | |
}; | |
} | |
// utils | |
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) { | |
if (smpl->iface == &llama_sampler_dist_i) { | |
return ((const llama_sampler_dist *) smpl->ctx)->seed_cur; | |
} | |
if (smpl->iface == &llama_sampler_mirostat_i) { | |
return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur; | |
} | |
if (smpl->iface == &llama_sampler_mirostat_v2_i) { | |
return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur; | |
} | |
if (smpl->iface == &llama_sampler_chain_i) { | |
const auto * ctx = (const llama_sampler_chain *) smpl->ctx; | |
for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) { | |
const uint32_t seed = llama_sampler_get_seed(*it); | |
if (seed != LLAMA_DEFAULT_SEED) { | |
return seed; | |
} | |
} | |
} | |
return LLAMA_DEFAULT_SEED; | |
} | |
// perf | |
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) { | |
struct llama_perf_sampler_data data = {}; | |
if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { | |
GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); | |
} | |
const auto * ctx = (const struct llama_sampler_chain *) chain->ctx; | |
data.t_sample_ms = 1e-3 * ctx->t_sample_us; | |
data.n_sample = std::max(0, ctx->n_sample); | |
return data; | |
} | |
void llama_perf_sampler_print(const struct llama_sampler * chain) { | |
const auto data = llama_perf_sampler(chain); | |
LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", | |
__func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample); | |
} | |
void llama_perf_sampler_reset(struct llama_sampler * chain) { | |
if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { | |
GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); | |
} | |
auto * ctx = (struct llama_sampler_chain *) chain->ctx; | |
ctx->t_sample_us = ctx->n_sample = 0; | |
} | |