#include "llama-sampling.h" #include "llama-vocab.h" #include "llama-grammar.h" #include #include #include #include #include #include #include #include #include #include #include static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) { // iterator for the probabilities #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-local-typedefs" #endif struct probs_iterator { typedef std::input_iterator_tag iterator_category; typedef float value_type; typedef float * pointer; typedef float & reference; typedef ptrdiff_t difference_type; const llama_token_data * data; bool operator==(const probs_iterator & other) const { return data == other.data; } bool operator!=(const probs_iterator & other) const { return data != other.data; } const float & operator*() const { return data->p; } probs_iterator & operator++() { ++data; return *this; } probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; } }; #ifdef __GNUC__ #pragma GCC diagnostic pop #endif std::discrete_distribution dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size}); return dist(rng); } /* static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } */ static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) { if (temp <= 0.0f) { // find the token with the highest logit and set the rest to -inf size_t max_i = 0; float max_l = cur_p->data[0].logit; for (size_t i = 1; i < cur_p->size; ++i) { if (cur_p->data[i ].logit > max_l) { cur_p->data[max_i].logit = -INFINITY; max_i = i; max_l = cur_p->data[i].logit; } else { cur_p->data[i].logit = -INFINITY; } } return; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].logit /= temp; } } static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { GGML_ASSERT(cur_p->size > 0); // Sort the logits in descending order if (!cur_p->sorted) { std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); cur_p->sorted = true; } float max_l = cur_p->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { float p = expf(cur_p->data[i].logit - max_l); cur_p->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= cum_sum; } } static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast // if (k >= (int32_t)cur_p->size) { // return; // } if (k <= 0) { k = cur_p->size; } k = std::min(k, (int) cur_p->size); // Sort scores in descending order if (!cur_p->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k <= 128) { std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp); } else { constexpr int nbuckets = 128; constexpr float bucket_low = -10.0f; constexpr float bucket_high = 10.0f; constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); constexpr float bucket_inter = -bucket_low * bucket_scale; std::vector bucket_idx(cur_p->size); std::vector histo(nbuckets, 0); for (int i = 0; i < (int)cur_p->size; ++i) { const float val = cur_p->data[i].logit; int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); ib = std::max(0, std::min(nbuckets-1, ib)); bucket_idx[i] = ib; ++histo[ib]; } int nhave = 0; int ib = nbuckets - 1; for ( ; ib >= 0; --ib) { nhave += histo[ib]; if (nhave >= k) { break; } } std::vector tmp_tokens(nhave); auto * ptr = tmp_tokens.data(); std::vector bucket_ptrs; bucket_ptrs.reserve(nbuckets - ib); for (int j = nbuckets - 1; j >= ib; --j) { bucket_ptrs.push_back(ptr); ptr += histo[j]; } for (int i = 0; i < (int)cur_p->size; ++i) { int j = bucket_idx[i]; if (j >= ib) { *bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i]; } } ptr = tmp_tokens.data(); int ndone = 0; for (int j = nbuckets-1; j > ib; --j) { std::sort(ptr, ptr + histo[j], comp); ptr += histo[j]; ndone += histo[j]; } std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data)); } cur_p->sorted = true; } cur_p->size = k; } static uint32_t get_rng_seed(uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { // use system clock if std::random_device is not a true RNG static bool is_rd_prng = std::random_device().entropy() == 0; if (is_rd_prng) { return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count(); } std::random_device rd; return rd(); } return seed; } // llama_sampler API const char * llama_sampler_name(const struct llama_sampler * smpl) { if (!smpl->iface) { return "(null)"; } return smpl->iface->name(smpl); } void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) { if (smpl->iface->accept) { smpl->iface->accept(smpl, token); } } void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) { GGML_ASSERT(smpl->iface->apply); smpl->iface->apply(smpl, cur_p); } void llama_sampler_reset(struct llama_sampler * smpl) { if (smpl->iface->reset) { smpl->iface->reset(smpl); } } struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) { if (smpl->iface->clone) { return smpl->iface->clone(smpl); } if (smpl->ctx == nullptr) { return new llama_sampler { /* .iface = */ smpl->iface, /* .ctx = */ nullptr, }; } GGML_ABORT("the sampler does not support cloning"); } void llama_sampler_free(struct llama_sampler * smpl) { if (smpl == nullptr) { return; } if (smpl->iface->free) { smpl->iface->free(smpl); } delete smpl; } llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { const auto * logits = llama_get_logits_ith(ctx, idx); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); // TODO: do not allocate each time std::vector cur; cur.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array cur_p = { /* .data = */ cur.data(), /* .size = */ cur.size(), /* .selected = */ -1, /* .sorted = */ false, }; llama_sampler_apply(smpl, &cur_p); GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size); auto token = cur_p.data[cur_p.selected].id; llama_sampler_accept(smpl, token); return token; } // sampler chain static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) { return "chain"; } static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) { auto * chain = (llama_sampler_chain *) smpl->ctx; time_meas tm(chain->t_sample_us, chain->params.no_perf); for (auto * smpl : chain->samplers) { llama_sampler_accept(smpl, token); } chain->n_sample++; } static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * chain = (llama_sampler_chain *) smpl->ctx; time_meas tm(chain->t_sample_us, chain->params.no_perf); for (auto * smpl : chain->samplers) { llama_sampler_apply(smpl, cur_p); } } static void llama_sampler_chain_reset(struct llama_sampler * smpl) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto * smpl : chain->samplers) { llama_sampler_reset(smpl); } chain->t_sample_us = 0; chain->n_sample = 0; } static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) { const auto * chain_src = (const llama_sampler_chain *) smpl->ctx; auto * result = llama_sampler_chain_init(chain_src->params); for (auto * smpl : chain_src->samplers) { llama_sampler_chain_add(result, llama_sampler_clone(smpl)); } return result; } static void llama_sampler_chain_free(struct llama_sampler * smpl) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto * smpl : chain->samplers) { llama_sampler_free(smpl); } delete chain; } static struct llama_sampler_i llama_sampler_chain_i = { /* .name = */ llama_sampler_chain_name, /* .accept = */ llama_sampler_chain_accept, /* .apply = */ llama_sampler_chain_apply, /* .reset = */ llama_sampler_chain_reset, /* .clone = */ llama_sampler_chain_clone, /* .free = */ llama_sampler_chain_free, }; struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) { return new llama_sampler { /* .iface = */ &llama_sampler_chain_i, /* .ctx = */ new llama_sampler_chain { /* .params = */ params, /* .samplers = */ {}, /* .t_sample_us = */ 0, /* .n_sample = */ 0, }, }; } void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) { auto * p = (llama_sampler_chain *) chain->ctx; p->samplers.push_back(smpl); } struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) { const auto * p = (const llama_sampler_chain *) chain->ctx; if (i < 0 || (size_t) i >= p->samplers.size()) { return nullptr; } return p->samplers[i]; } struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) { auto * p = (llama_sampler_chain *) chain->ctx; if (i < 0 || (size_t) i >= p->samplers.size()) { return nullptr; } auto * result = p->samplers[i]; p->samplers.erase(p->samplers.begin() + i); return result; } int llama_sampler_chain_n(const struct llama_sampler * chain) { const auto * p = (const llama_sampler_chain *) chain->ctx; return p->samplers.size(); } // // samplers // // greedy static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) { return "greedy"; } static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { cur_p->selected = 0; for (size_t i = 1; i < cur_p->size; ++i) { if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) { cur_p->selected = i; } } } static struct llama_sampler_i llama_sampler_greedy_i = { /* .name = */ llama_sampler_greedy_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_greedy_apply, /* .reset = */ nullptr, /* .clone = */ nullptr, /* .free = */ nullptr, }; struct llama_sampler * llama_sampler_init_greedy() { return new llama_sampler { /* .iface = */ &llama_sampler_greedy_i, /* .ctx = */ nullptr, }; } // dist struct llama_sampler_dist { const uint32_t seed; uint32_t seed_cur; std::mt19937 rng; }; static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) { return "dist"; } static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_dist *) smpl->ctx; llama_sampler_softmax_impl(cur_p); cur_p->selected = llama_sample_dist(cur_p, ctx->rng); } static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_dist *) smpl->ctx; auto * result = llama_sampler_init_dist(ctx->seed); // copy the state { auto * result_ctx = (llama_sampler_dist *) result->ctx; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_dist_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_dist *) smpl->ctx; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static void llama_sampler_dist_free(struct llama_sampler * smpl) { delete (llama_sampler_dist *) smpl->ctx; } static struct llama_sampler_i llama_sampler_dist_i = { /* .name = */ llama_sampler_dist_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_dist_apply, /* .reset = */ llama_sampler_dist_reset, /* .clone = */ llama_sampler_dist_clone, /* .free = */ llama_sampler_dist_free, }; struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { auto seed_cur = get_rng_seed(seed); return new llama_sampler { /* .iface = */ &llama_sampler_dist_i, /* .ctx = */ new llama_sampler_dist { /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .rng = */ std::mt19937(seed_cur), }, }; } // softmax static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) { return "softmax"; } static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { llama_sampler_softmax_impl(cur_p); } static struct llama_sampler_i llama_sampler_softmax_i = { /* .name = */ llama_sampler_softmax_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_softmax_apply, /* .reset = */ nullptr, /* .clone = */ nullptr, /* .free = */ nullptr, }; struct llama_sampler * llama_sampler_init_softmax() { return new llama_sampler { /* .iface = */ &llama_sampler_softmax_i, /* .ctx = */ nullptr, }; } // top-k struct llama_sampler_top_k { const int32_t k; }; static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) { return "top-k"; } static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_top_k *) smpl->ctx; llama_sampler_top_k_impl(cur_p, ctx->k); } static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_top_k *) smpl->ctx; return llama_sampler_init_top_k(ctx->k); } static void llama_sampler_top_k_free(struct llama_sampler * smpl) { delete (llama_sampler_top_k *) smpl->ctx; } static struct llama_sampler_i llama_sampler_top_k_i = { /* .name = */ llama_sampler_top_k_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_top_k_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_top_k_clone, /* .free = */ llama_sampler_top_k_free, }; struct llama_sampler * llama_sampler_init_top_k(int32_t k) { return new llama_sampler { /* .iface = */ &llama_sampler_top_k_i, /* .ctx = */ new llama_sampler_top_k { /* .k = */ k, }, }; } // top-p struct llama_sampler_top_p { const float p; const size_t min_keep; }; static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) { return "top-p"; } static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_top_p *) smpl->ctx; if (ctx->p >= 1.0f) { return; } llama_sampler_softmax_impl(cur_p); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = cur_p->size; for (size_t i = 0; i < cur_p->size; ++i) { cum_sum += cur_p->data[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) { last_idx = i + 1; break; } } // Resize the output vector to keep only the top-p tokens cur_p->size = last_idx; } static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_top_p *) smpl->ctx; return llama_sampler_init_top_p(ctx->p, ctx->min_keep); } static void llama_sampler_top_p_free(struct llama_sampler * smpl) { delete (llama_sampler_top_p *) smpl->ctx; } static struct llama_sampler_i llama_sampler_top_p_i = { /* .name = */ llama_sampler_top_p_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_top_p_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_top_p_clone, /* .free = */ llama_sampler_top_p_free, }; struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) { return new llama_sampler { /* .iface = */ &llama_sampler_top_p_i, /* .ctx = */ new llama_sampler_top_p { /* .p = */ p, /* .min_keep = */ min_keep, }, }; } // min-p struct llama_sampler_min_p { const float p; const size_t min_keep; }; static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) { return "min-p"; } static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_min_p *) smpl->ctx; if (ctx->p <= 0.0f || !cur_p->size) { return; } bool min_p_applied = false; // if the cur_p aren't sorted, try the unsorted implementation first if (!cur_p->sorted) { std::vector filtered_tokens; float max_logit = -FLT_MAX; for (size_t i = 0; i < cur_p->size; ++i) { max_logit = std::max(max_logit, cur_p->data[i].logit); } const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].logit >= min_logit) { filtered_tokens.push_back(cur_p->data[i]); } } // if we have enough values the operation was a success if (filtered_tokens.size() >= ctx->min_keep) { memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); cur_p->size = filtered_tokens.size(); min_p_applied = true; } } // if the cur_p are sorted or the unsorted implementation failed, use this implementation if (!min_p_applied) { // Sort the logits in descending order if (!cur_p->sorted) { std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); cur_p->sorted = true; } const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max size_t i = 1; // first token always matches for (; i < cur_p->size; ++i) { if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) { break; // prob too small } } // Resize the output vector to keep only the matching tokens cur_p->size = i; } } static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_min_p *) smpl->ctx; return llama_sampler_init_min_p(ctx->p, ctx->min_keep); } static void llama_sampler_min_p_free(struct llama_sampler * smpl) { delete (llama_sampler_min_p *) smpl->ctx; } static struct llama_sampler_i llama_sampler_min_p_i = { /* .name = */ llama_sampler_min_p_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_min_p_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_min_p_clone, /* .free = */ llama_sampler_min_p_free, }; struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) { return new llama_sampler { /* .iface = */ &llama_sampler_min_p_i, /* .ctx = */ new llama_sampler_min_p { /* .p = */ p, /* .min_keep = */ min_keep, }, }; } // typical struct llama_sampler_typical { const float p; const size_t min_keep; }; static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) { return "typical"; } static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_typical *) smpl->ctx; // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (ctx->p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sampler_softmax_impl(cur_p); float entropy = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { entropy += -cur_p->data[i].p * logf(cur_p->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < cur_p->size; ++i) { float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(cur_p->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += cur_p->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > ctx->p && i >= ctx->min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector cur_p_new; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; cur_p_new.push_back(cur_p->data[idx]); } // Replace the data in cur_p with the cur_p_new data std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data); cur_p->size = cur_p_new.size(); cur_p->sorted = false; } static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_typical *) smpl->ctx; return llama_sampler_init_typical(ctx->p, ctx->min_keep); } static void llama_sampler_typical_free(struct llama_sampler * smpl) { delete (llama_sampler_typical *) smpl->ctx; } static struct llama_sampler_i llama_sampler_typical_i = { /* .name = */ llama_sampler_typical_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_typical_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_typical_clone, /* .free = */ llama_sampler_typical_free, }; struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) { return new llama_sampler { /* .iface = */ &llama_sampler_typical_i, /* .ctx = */ new llama_sampler_typical { /* .p = */ p, /* .min_keep = */ min_keep, }, }; } // temp struct llama_sampler_temp { const float temp; }; static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) { return "temp"; } static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_temp *) smpl->ctx; llama_sampler_temp_impl(cur_p, ctx->temp); } static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_temp *) smpl->ctx; return llama_sampler_init_temp(ctx->temp); } static void llama_sampler_temp_free(struct llama_sampler * smpl) { delete (llama_sampler_temp *) smpl->ctx; } static struct llama_sampler_i llama_sampler_temp_i = { /* .name = */ llama_sampler_temp_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_temp_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_temp_clone, /* .free = */ llama_sampler_temp_free, }; struct llama_sampler * llama_sampler_init_temp(float temp) { return new llama_sampler { /* .iface = */ &llama_sampler_temp_i, /* .ctx = */ new llama_sampler_temp { /*.temp = */ temp, }, }; } // temp-ext struct llama_sampler_temp_ext { const float temp; const float delta; const float exponent; }; static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) { return "temp-ext"; } static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; if (ctx->delta > 0) { const float min_temp = std::max(0.0f, ctx->temp - ctx->delta); const float max_temp = ctx->temp + ctx->delta; float exponent_val = ctx->exponent; // no need to do anything if there is only one (or zero) candidates if (cur_p->size <= 1) { return; } // Calculate maximum possible entropy float max_entropy = -logf(1.0f / cur_p->size); llama_sampler_softmax_impl(cur_p); // Calculate entropy of the softmax probabilities float entropy = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { float prob = cur_p->data[i].p; if (prob > 0.0f) { // Ensure no log(0) entropy -= prob * logf(prob); } } // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above) float normalized_entropy = entropy / max_entropy; // Map the normalized entropy to the desired temperature range using the power function float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); #ifdef DEBUG LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); LLAMA_LOG_INFO("Entropy: %f\n", entropy); LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); #endif // Apply the dynamically calculated temperature scaling llama_sampler_temp_impl(cur_p, dyn_temp); // Re-compute softmax probabilities after scaling logits with dynamic temperature const double max_l_double = cur_p->data[0].logit; double cum_sum_double = 0.0; for (size_t i = 0; i < cur_p->size; ++i) { double p = exp(cur_p->data[i].logit - max_l_double); cur_p->data[i].p = p; // Store the scaled probability cum_sum_double += p; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities } #ifdef DEBUG // Print the updated top 25 probabilities after temperature scaling LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); for (size_t i = 0; i < 25 && i < cur_p->size; ++i) { LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f); } #endif } else { llama_sampler_temp_impl(cur_p, ctx->temp); } } static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx; return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent); } static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) { delete (llama_sampler_temp_ext *) smpl->ctx; } static struct llama_sampler_i llama_sampler_temp_ext_i = { /* .name = */ llama_sampler_temp_ext_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_temp_ext_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_temp_ext_clone, /* .free = */ llama_sampler_temp_ext_free, }; struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) { return new llama_sampler { /* .iface = */ &llama_sampler_temp_ext_i, /* .ctx = */ new llama_sampler_temp_ext { /* .temp = */ temp, /* .delta = */ delta, /* .exponent = */ exponent, }, }; } // xtc struct llama_sampler_xtc { const float probability; const float threshold; const size_t min_keep; const uint32_t seed; uint32_t seed_cur; std::mt19937 rng; }; static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) { return "xtc"; } static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_xtc *) smpl->ctx; if (ctx->probability <= 0.0f || ctx->threshold > 0.5f || cur_p->size < 2) { return; } std::uniform_real_distribution distribution(0.0f, 1.0f); float chance = distribution(ctx->rng); if (chance > ctx->probability) return; // in case it's not sorted/recalculated yet llama_sampler_softmax_impl(cur_p); int pos_last = 0; for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].p >= ctx->threshold) { pos_last = i; } else break; } if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) { cur_p->data += pos_last; cur_p->size -= pos_last; } } static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_xtc *) smpl->ctx; auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed); // copy the state { auto * result_ctx = (llama_sampler_xtc *) result->ctx; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_xtc_free(struct llama_sampler * smpl) { delete (llama_sampler_xtc *) smpl->ctx; } static void llama_sampler_xtc_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_xtc *) smpl->ctx; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static struct llama_sampler_i llama_sampler_xtc_i = { /* .name = */ llama_sampler_xtc_name, /* .accept = */ nullptr, /* .apply = */ llama_sample_xtc_apply, /* .reset = */ llama_sampler_xtc_reset, /* .clone = */ llama_sampler_xtc_clone, /* .free = */ llama_sampler_xtc_free, }; struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) { auto seed_cur = get_rng_seed(seed); return new llama_sampler { /* .iface = */ &llama_sampler_xtc_i, /* .ctx = */ new llama_sampler_xtc { /* .probability = */ p, /* .threshold = */ t, /* .min_keep = */ min_keep, /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .rng = */ std::mt19937(seed_cur), }, }; } // mirostat struct llama_sampler_mirostat { const int32_t n_vocab; const uint32_t seed; uint32_t seed_cur; const float tau; const float eta; const int32_t m; float mu; std::mt19937 rng; }; static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) { return "mirostat"; } static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat *) smpl->ctx; llama_sampler_softmax_impl(cur_p); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat); llama_sampler_top_k_impl(cur_p, std::max(int(k), 1)); llama_sampler_softmax_impl(cur_p); const int idx = llama_sample_dist(cur_p, ctx->rng); cur_p->selected = idx; float observed_surprise = -log2f(cur_p->data[idx].p); float e = observed_surprise - ctx->tau; // Update mu using the learning rate and error ctx->mu = ctx->mu - ctx->eta * e; } static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx; auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m); // copy the state { auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx; result_ctx->mu = ctx->mu; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_mirostat *) smpl->ctx; ctx->mu = 2.0f*ctx->tau; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static void llama_sampler_mirostat_free(struct llama_sampler * smpl) { delete (llama_sampler_mirostat *) smpl->ctx; } static struct llama_sampler_i llama_sampler_mirostat_i = { /* .name = */ llama_sampler_mirostat_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_mirostat_apply, /* .reset = */ llama_sampler_mirostat_reset, /* .clone = */ llama_sampler_mirostat_clone, /* .free = */ llama_sampler_mirostat_free, }; struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) { auto seed_cur = get_rng_seed(seed); return new llama_sampler { /* .iface = */ &llama_sampler_mirostat_i, /* .ctx = */ new llama_sampler_mirostat { /* .n_vocab = */ n_vocab, /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .tau = */ tau, /* .eta = */ eta, /* .m = */ m, /* .mu = */ 2.0f*tau, /* .rng = */ std::mt19937(seed_cur), }, }; } // mirostat v2 struct llama_sampler_mirostat_v2 { const uint32_t seed; uint32_t seed_cur; const float tau; const float eta; float mu; std::mt19937 rng; }; static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) { return "mirostat-v2"; } static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; llama_sampler_softmax_impl(cur_p); // Truncate the words with surprise values greater than mu cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > ctx->mu; })); if (cur_p->size == 0) { cur_p->size = 1; } // Normalize the probabilities of the remaining words llama_sampler_softmax_impl(cur_p); const int idx = llama_sample_dist(cur_p, ctx->rng); cur_p->selected = idx; float observed_surprise = -log2f(cur_p->data[idx].p); float e = observed_surprise - ctx->tau; // Update mu using the learning rate and error ctx->mu = ctx->mu - ctx->eta * e; } static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; ctx->mu = 2.0f*ctx->tau; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx; auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta); // copy the state { auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx; result_ctx->mu = ctx->mu; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) { delete (llama_sampler_mirostat_v2 *) smpl->ctx; } static struct llama_sampler_i llama_sampler_mirostat_v2_i = { /* .name = */ llama_sampler_mirostat_v2_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_mirostat_v2_apply, /* .reset = */ llama_sampler_mirostat_v2_reset, /* .clone = */ llama_sampler_mirostat_v2_clone, /* .free = */ llama_sampler_mirostat_v2_free, }; struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) { auto seed_cur = get_rng_seed(seed); return new llama_sampler { /* .iface = */ &llama_sampler_mirostat_v2_i, /* .ctx = */ new llama_sampler_mirostat_v2 { /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .tau = */ tau, /* .eta = */ eta, /* .mu = */ 2.0f*tau, /* .rng = */ std::mt19937(seed_cur), }, }; } // grammar struct llama_sampler_grammar { const struct llama_vocab * vocab; std::string grammar_str; std::string grammar_root; struct llama_grammar * grammar; }; static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) { return "grammar"; } static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) { auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_accept_impl(*ctx->grammar, token); } } static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_apply_impl(*ctx->grammar, cur_p); } } static void llama_sampler_grammar_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (!ctx->grammar) { return; } auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str()); llama_grammar_free_impl(ctx->grammar); ctx->grammar = grammar_new; } static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_grammar *) smpl->ctx; auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr); // copy the state { auto * result_ctx = (llama_sampler_grammar *) result->ctx; if (ctx->grammar) { result_ctx->grammar_str = ctx->grammar_str; result_ctx->grammar_root = ctx->grammar_root; result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar); } } return result; } static void llama_sampler_grammar_free(struct llama_sampler * smpl) { const auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_free_impl(ctx->grammar); } delete ctx; } static struct llama_sampler_i llama_sampler_grammar_i = { /* .name = */ llama_sampler_grammar_name, /* .accept = */ llama_sampler_grammar_accept_impl, /* .apply = */ llama_sampler_grammar_apply, /* .reset = */ llama_sampler_grammar_reset, /* .clone = */ llama_sampler_grammar_clone, /* .free = */ llama_sampler_grammar_free, }; struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) { auto * ctx = new llama_sampler_grammar; if (grammar_str != nullptr && grammar_str[0] != '\0') { *ctx = { /* .vocab = */ &vocab, /* .grammar_str = */ grammar_str, /* .grammar_root = */ grammar_root, /* .grammar = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root), }; } else { *ctx = { /* .vocab = */ &vocab, /* .grammar_str = */ {}, /* .grammar_root = */ {}, /* .grammar = */ nullptr, }; } return new llama_sampler { /* .iface = */ &llama_sampler_grammar_i, /* .ctx = */ ctx, }; } // penalties struct llama_sampler_penalties { const int32_t n_vocab; const llama_token special_eos_id; const llama_token linefeed_id; const int32_t penalty_last_n; const float penalty_repeat; const float penalty_freq; const float penalty_present; const bool penalize_nl; const bool ignore_eos; ring_buffer prev; }; static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) { return "penalties"; } static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; if (ctx->penalty_last_n == 0) { return; } ctx->prev.push_back(token); } static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; if (ctx->ignore_eos) { assert(ctx->special_eos_id >= 0); // optimistically check if the candidates are not yet sorted/shuffled/truncated if (cur_p->size > (size_t) ctx->special_eos_id && cur_p->data[ctx->special_eos_id].id == ctx->special_eos_id) { cur_p->data[ctx->special_eos_id].logit = -INFINITY; } else { // else, search for the special EOS token for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].id == ctx->special_eos_id) { cur_p->data[i].logit = -INFINITY; break; } } } } if ((ctx->penalty_last_n == 0) || (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { return; } bool nl_found = false; size_t nl_idx = 0; float nl_logit = -INFINITY; if (!ctx->penalize_nl) { assert(ctx->linefeed_id >= 0); // optimistically check if the candidates are not yet sorted/shuffled/truncated if (cur_p->size > (size_t) ctx->linefeed_id && cur_p->data[ctx->linefeed_id].id == ctx->linefeed_id) { nl_found = true; nl_idx = ctx->linefeed_id; nl_logit = cur_p->data[ctx->linefeed_id].logit; } else { // else, search for the linefeed token for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].id == ctx->linefeed_id) { nl_found = true; nl_idx = i; nl_logit = cur_p->data[i].logit; break; } } } } // Create a frequency map to count occurrences of each token in last_tokens // TODO: optimize this by maintaining the token count in the sampler context using llama_token_cnt = std::unordered_map; llama_token_cnt token_count; for (int i = 0; i < std::min(ctx->penalty_last_n, ctx->prev.size()); ++i) { token_count[ctx->prev.rat(i)]++; } // Apply frequency and presence penalties to the cur_p for (size_t i = 0; i < cur_p->size; ++i) { const auto token_iter = token_count.find(cur_p->data[i].id); if (token_iter == token_count.end()) { continue; } const int count = token_iter->second; // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (cur_p->data[i].logit <= 0) { cur_p->data[i].logit *= ctx->penalty_repeat; } else { cur_p->data[i].logit /= ctx->penalty_repeat; } cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present; } cur_p->sorted = false; if (!ctx->penalize_nl && nl_found) { // restore the logit of the newline token if it was penalized cur_p->data[nl_idx].logit = nl_logit; } } static void llama_sampler_penalties_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; ctx->prev.clear(); } static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_penalties *) smpl->ctx; auto * result = llama_sampler_init_penalties( ctx->n_vocab, ctx->special_eos_id, ctx->linefeed_id, ctx->penalty_last_n, ctx->penalty_repeat, ctx->penalty_freq, ctx->penalty_present, ctx->penalize_nl, ctx->ignore_eos); // copy the state { auto * result_ctx = (llama_sampler_penalties *) result->ctx; result_ctx->prev = ctx->prev; } return result; } static void llama_sampler_penalties_free(struct llama_sampler * smpl) { delete (llama_sampler_penalties *) smpl->ctx; } static struct llama_sampler_i llama_sampler_penalties_i = { /* .name = */ llama_sampler_penalties_name, /* .accept = */ llama_sampler_penalties_accept, /* .apply = */ llama_sampler_penalties_apply, /* .reset = */ llama_sampler_penalties_reset, /* .clone = */ llama_sampler_penalties_clone, /* .free = */ llama_sampler_penalties_free, }; struct llama_sampler * llama_sampler_init_penalties( int32_t n_vocab, llama_token special_eos_id, llama_token linefeed_id, int32_t penalty_last_n, float penalty_repeat, float penalty_freq, float penalty_present, bool penalize_nl, bool ignore_eos) { if (linefeed_id == LLAMA_TOKEN_NULL) { penalize_nl = true; } if (special_eos_id == LLAMA_TOKEN_NULL) { ignore_eos = false; } penalty_last_n = std::max(penalty_last_n, 0); return new llama_sampler { /* .iface = */ &llama_sampler_penalties_i, /* .ctx = */ new llama_sampler_penalties { /* .n_vocab = */ n_vocab, /* .special_eos_id = */ special_eos_id, /* .linefeed_id = */ linefeed_id, /* .penalty_last_n = */ penalty_last_n, /* .penalty_repeat = */ penalty_repeat, /* .penalty_freq = */ penalty_freq, /* .penalty_present = */ penalty_present, /* .penalize_nl = */ penalize_nl, /* .ignore_eos = */ ignore_eos, /* .prev = */ ring_buffer(penalty_last_n), }, }; } // DRY struct llama_sampler_dry { int32_t total_context_size; const float dry_multiplier; const float dry_base; const int32_t dry_allowed_length; const int32_t dry_penalty_last_n; std::unordered_multimap> dry_processed_breakers; std::vector dry_repeat_count; std::unordered_map dry_max_token_repeat; ring_buffer last_tokens; }; // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap>& token_sequences, int max_tail_len = -1) { for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) { std::string word = llama_detokenize(vocab, {token_id}, true); if (word.find(str) != std::string::npos) { token_sequences.emplace(token_id, std::vector()); } else { size_t word_len = word.size(), str_len = str.size(); size_t pos = -1; while ((pos = word.find(str[0], pos + 1)) != std::string::npos) { bool match = true; size_t i; for (i = 1; i < str_len && i + pos < word_len; ++i) { if (word[pos + i] != str[i]) { match = false; break; } } if (match) { std::vector tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false); if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) { tokenization.resize(max_tail_len); } // Ensure we don't already have a duplicate matching tokenization auto its = token_sequences.equal_range(token_id); bool found = false; for (auto it = its.first; it != its.second; ++it) { if (tokenization == it->second) { found = true; break; } } if (!found) { token_sequences.emplace(token_id, tokenization); } } } } } } static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) { return "dry"; } static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) { auto * ctx = (llama_sampler_dry *) smpl->ctx; if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { return; } ctx->last_tokens.push_back(token); } // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_dry *) smpl->ctx; if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { return; } int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0); int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size); if (last_n_repeat <= ctx->dry_allowed_length) { return; } ctx->dry_repeat_count.assign(last_n_repeat, 0); ctx->dry_max_token_repeat.clear(); // Step 1: Look for restart sequences to limit the maximum repetition length. // Work backwards through the context looking for any token that begins a restart sequence. // // The collection `restart_sequences` is a mapping from a "head" token to all "tail" // sequences that together comprise a restart sequence. This allows us to quickly check // whether each token is the head of a complete sequence. Most restart sequences are actually // a single token, and for these the "tail" is an empty vector. // // If the token is a "head", test all restart sequences that begin with this token // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The // longest matching sequence (if any) is used to limit the maximum repetition length. // // Note that in the case case of a short sequence contained in a longer one, this might fail to // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare. // // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we // have already clamped the maximum tail sequence length when generating `restart_sequences`. // With clamping, this scan is O(N) in the context length. int rep_limit = last_n_repeat; for (int i = 0; i < last_n_repeat; ++i) { llama_token token = ctx->last_tokens.rat(i); auto its = ctx->dry_processed_breakers.equal_range(token); if (its.first == ctx->dry_processed_breakers.end()) { continue; } int longest_match = -1; for (auto it = its.first; it != its.second; ++it) { // Note that (*it) does not contain the head character, so seq_len will be // the restart sequence length minus 1. // In the common case of a single-token restart sequence, (*it) will be empty // and we will trivially match. int seq_len = (int)it->second.size(); if (seq_len > longest_match && seq_len <= (int)i) { bool match = true; for (int offset = 0; offset < seq_len; ++offset) { // The -1 when indexing `last_tokens` is because we already matched the head. if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) { match = false; break; } } if (match) { longest_match = seq_len; } } } if (longest_match >= 0) { // We found a restart sequence starting `i` tokens from the end and continuing for // `longest_match` tokens. rep_limit = i - longest_match; break; } } if (rep_limit < ctx->dry_allowed_length) { return; } // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences. // // This algorithm is not currently documented on Wikipedia, but there is a clear description here: // https://ivanyu.me/blog/2014/10/15/z-algorithm/ // // The code below is adapted from the public domain implementation by the same author here: // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py // // Example: // Last N tokens: a b c c b c y a b c // Repeat counts: 0 0 3 1 0 2 0 0 0 0 // ^ // This `3` means that the last three tokens of the context (a b c) also appear here. // // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables // ensure that the inner while loops only examine each token in the context once as the outer // for loop iterates over the context. { const int last = last_n_repeat - 1; int rt = 0, lt = 0; for (int k = 1; k < last_n_repeat; ++k) { if (k > rt) { // If k is outside the current Z-box, do naive computation. int n = 0; while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) { ++n; } ctx->dry_repeat_count[last - k] = std::min(n, rep_limit); if (n > 0) { lt = k; rt = k+n-1; } } else { // If k is inside the current Z-box, consider two cases. int p = k - lt; // Pair index. int right_part_len = rt - k + 1; if (ctx->dry_repeat_count[last - p] < right_part_len) { int n = std::min(ctx->dry_repeat_count[last - p], rep_limit); ctx->dry_repeat_count[last - k] = n; } else { int i = rt + 1; while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) { i += 1; } int n = std::min(i - k, rep_limit); ctx->dry_repeat_count[last - k] = n; lt = k; rt = i - 1; } } } } // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length // that would be generated by emitting each new token that would extend a sequence. // // Following the same example as above: // Last N tokens: a b c c b c y a b c // Repeat counts: 0 0 3 1 0 2 0 0 0 0 // // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition. // c: 3 -> 4 (from `a b c` to `a b c c`) // b: 1 -> 2 (from `c` to `c b`) // y: 2 -> 3 (from `b c` to `b c y`) for (int i = 0; i < last_n_repeat - 1; ++i) { int repeat_len = ctx->dry_repeat_count[i]; if (repeat_len >= ctx->dry_allowed_length) { // This token ends a repeat, so the next token would continue one. // By convention, the value of `repeat_len` only includes the tokens currently // in the context, not the new token that would be added. llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i); // Track the maximum sequence ending in this token. const auto& it = ctx->dry_max_token_repeat.find(token); if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) { ctx->dry_max_token_repeat[token] = repeat_len; } } } // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens. // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`. // Compute it from `penalty_base` and the approximate log of `std::numeric_limits::max()` const float FLOAT_MAX_LOG = 88.7228391f; int max_exponent = 0; if (ctx->dry_base > 1.000001f) { max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base); } for (size_t i = 0; i < cur_p->size; ++i) { const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id); if (af_kvp != ctx->dry_max_token_repeat.end()) { // Check all sequence breakers starting with this token auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id); bool is_single_token_breaker = false; for (auto it = range.first; it != range.second; ++it) { if (it->second.empty()) { is_single_token_breaker = true; break; } } // Apply penalty only if it's not a single-token sequence breaker if (!is_single_token_breaker) { int repeat_exp = af_kvp->second - ctx->dry_allowed_length; if (max_exponent > 0 && repeat_exp > max_exponent) { repeat_exp = max_exponent; } float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp); cur_p->data[i].logit -= penalty; } } } cur_p->sorted = false; } static void llama_sampler_dry_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_dry *) smpl->ctx; ctx->last_tokens.clear(); ctx->dry_repeat_count.clear(); ctx->dry_max_token_repeat.clear(); } static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) { const auto * ctx = (llama_sampler_dry *) smpl->ctx; // nullptr is passed as vocab because it is only needed for raw sequence breaker processing, which we have already done and will be copying auto * result = llama_sampler_init_dry(nullptr, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0); // Copy the state, including the processed breakers { auto * result_ctx = (llama_sampler_dry *) result->ctx; result_ctx->dry_processed_breakers = ctx->dry_processed_breakers; result_ctx->dry_repeat_count = ctx->dry_repeat_count; result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat; result_ctx->last_tokens = ctx->last_tokens; } return result; } static void llama_sampler_dry_free(struct llama_sampler * smpl) { delete (llama_sampler_dry *) smpl->ctx; } static struct llama_sampler_i llama_sampler_dry_i = { /* .name = */ llama_sampler_dry_name, /* .accept = */ llama_sampler_dry_accept, /* .apply = */ llama_sampler_dry_apply, /* .reset = */ llama_sampler_dry_reset, /* .clone = */ llama_sampler_dry_clone, /* .free = */ llama_sampler_dry_free, }; struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0); std::unordered_multimap> processed_breakers; const int MAX_CHAR_LEN = 40; const int MAX_SEQ_LEN = 20; const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0); if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) { // Process sequence breakers for (size_t i = 0; i < num_breakers; ++i) { if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) { LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i); continue; } std::string sequence_break(seq_breakers[i]); if (sequence_break.empty()) { LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n"); continue; } if (sequence_break.size() > MAX_CHAR_LEN) { LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN); sequence_break.resize(MAX_CHAR_LEN); } get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN); } } return new llama_sampler { /* .iface = */ &llama_sampler_dry_i, /* .ctx = */ new llama_sampler_dry { /* .total_context_size = */ context_size, /* .dry_multiplier = */ dry_multiplier, /* .dry_base = */ dry_base, /* .dry_allowed_length = */ dry_allowed_length, /* .dry_penalty_last_n = */ dry_penalty_last_n, /* .dry_processed_breakers = */ std::move(processed_breakers), /* .dry_repeat_count = */ dry_enabled ? std::vector(effective_dry_penalty_last_n, 0) : std::vector{}, /* .dry_max_token_repeat = */ {}, /* .last_tokens = */ dry_enabled ? ring_buffer(effective_dry_penalty_last_n) : ring_buffer(0), }, }; } // wrapper for test-sampling.cpp struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector>& seq_breakers) { llama_vocab dummy_vocab; auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0); auto * ctx = (llama_sampler_dry *) result->ctx; // Process the token-based sequence breakers ctx->dry_processed_breakers.clear(); if (seq_breakers.empty()) { LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n"); } else { for (const auto& breaker : seq_breakers) { if (breaker.empty()) { LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n"); continue; } llama_token head_token = breaker[0]; std::vector tail_tokens(breaker.begin() + 1, breaker.end()); ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens)); } if (ctx->dry_processed_breakers.empty()) { LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n"); } } return result; } // logit-bias struct llama_sampler_logit_bias { const int32_t n_vocab; const std::vector logit_bias; std::vector to_search; }; static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) { return "logit-bias"; } static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_logit_bias *) smpl->ctx; if (ctx->logit_bias.empty()) { return; } ctx->to_search.clear(); // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id) for (const auto & lb : ctx->logit_bias) { if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) { cur_p->data[lb.token].logit += lb.bias; } else { ctx->to_search.push_back(lb); } } if (ctx->to_search.empty()) { return; } // search for the remaining candidates that were not found in the previous step for (size_t i = 0; i < cur_p->size; ++i) { for (const auto & lb : ctx->to_search) { if (cur_p->data[i].id == lb.token) { cur_p->data[i].logit += lb.bias; break; } } } } static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx; return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data()); } static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) { delete (llama_sampler_logit_bias *) smpl->ctx; } static struct llama_sampler_i llama_sampler_logit_bias_i = { /* .name = */ llama_sampler_logit_bias_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_logit_bias_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_logit_bias_clone, /* .free = */ llama_sampler_logit_bias_free, }; struct llama_sampler * llama_sampler_init_logit_bias( int32_t n_vocab, int32_t n_logit_bias, const llama_logit_bias * logit_bias) { return new llama_sampler { /* .iface = */ &llama_sampler_logit_bias_i, /* .ctx = */ new llama_sampler_logit_bias { /* .n_vocab = */ n_vocab, /* .logit_bias = */ std::vector(logit_bias, logit_bias + n_logit_bias), /* .to_search = */ {}, }, }; } // infill //#define GGML_DEBUG_SAMPLER_INFILL struct llama_sampler_infill { const struct llama_vocab * vocab; std::vector buf0; std::vector buf1; }; static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) { return "infill"; } static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_infill *) smpl->ctx; llama_sampler_softmax_impl(cur_p); #if defined(GGML_DEBUG_SAMPLER_INFILL) #define LOG_DBG_CUR LLAMA_LOG_DEBUG #else #define LOG_DBG_CUR(...) #endif for (size_t i = 0; i < cur_p->size; ++i) { LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); } float p_txt_sum = 0.0f; float p_eog_sum = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) { p_eog_sum += cur_p->data[i].p; } else { p_txt_sum += cur_p->data[i].p; } } const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat); LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size); if (3*p_eog_sum*cur_p->size > p_txt_sum) { LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum); // keep just the EOG tokens const auto size_org = cur_p->size; cur_p->size = 0; float p_sum = 0.0f; for (size_t i = 0; i < size_org; ++i) { if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) { p_sum += cur_p->data[i].p; cur_p->data[cur_p->size++] = cur_p->data[i]; } } // normalize probs for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= p_sum; } return; } size_t n_combined = 0; GGML_UNUSED(n_combined); // combine tokens with common prefix for (size_t i0 = 0; i0 < cur_p->size; ++i0) { for (size_t i1 = 0; i1 < cur_p->size; ++i1) { if (cur_p->data[i0].logit == -INFINITY) { break; } if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) { continue; } int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); if (len0 < 0) { ctx->buf0.resize(len0); len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); assert(len0 > 0); } int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); if (len1 < 0) { ctx->buf1.resize(len1); len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); assert(len1 > 0); } // token i0 is a prefix of token i1 if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) { int dst = i0; int src = i1; // merge into the token with higher probability if (cur_p->data[i1].p > cur_p->data[i0].p) { std::swap(dst, src); } cur_p->data[dst].p += cur_p->data[src].p; cur_p->data[src].logit = -INFINITY; cur_p->data[src].p = 0.0f; n_combined++; } } } size_t n_non_eog = 0; size_t size_org = cur_p->size; float p_sum = 0.0f; float thold = 0.2f; cur_p->size = 0; LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold); for (size_t i = 0; i < size_org; ++i) { const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id); if (cur_p->data[i].p < thold && !is_eog) { continue; } if (!is_eog) { ++n_non_eog; } p_sum += cur_p->data[i].p; // keep this token cur_p->data[cur_p->size++] = cur_p->data[i]; } LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog); // if no non-EOG tokens are left -> reduce cur_p to single EOT token if (n_non_eog == 0) { cur_p->size = 1; cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab); cur_p->data[0].logit = 1.0f; return; } // normalize probs for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= p_sum; LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); } size_org = cur_p->size; p_sum = 0.0f; thold = 1.0/(n_non_eog + 1); cur_p->size = 0; LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold); for (size_t i = 0; i < size_org; ++i) { const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id); if (cur_p->data[i].p < thold && !is_eog) { continue; } p_sum += cur_p->data[i].p; cur_p->data[cur_p->size++] = cur_p->data[i]; } // normalize probs for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= p_sum; LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); } #undef LOG_DBG_CUR } static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_infill *) smpl->ctx; return llama_sampler_init_infill_impl(*ctx->vocab); } static void llama_sampler_infill_free(struct llama_sampler * smpl) { delete (llama_sampler_infill *) smpl->ctx; } static struct llama_sampler_i llama_sampler_infill_i = { /* .name = */ llama_sampler_infill_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_infill_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_infill_clone, /* .free = */ llama_sampler_infill_free, }; struct llama_sampler * llama_sampler_init_infill_impl( const struct llama_vocab & vocab) { return new llama_sampler { /* .iface = */ &llama_sampler_infill_i, /* .ctx = */ new llama_sampler_infill { /* .vocab = */ &vocab, /* .buf0 = */ std::vector(512), /* .buf1 = */ std::vector(512), }, }; } // utils uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) { if (smpl->iface == &llama_sampler_dist_i) { return ((const llama_sampler_dist *) smpl->ctx)->seed_cur; } if (smpl->iface == &llama_sampler_mirostat_i) { return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur; } if (smpl->iface == &llama_sampler_mirostat_v2_i) { return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur; } if (smpl->iface == &llama_sampler_chain_i) { const auto * ctx = (const llama_sampler_chain *) smpl->ctx; for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) { const uint32_t seed = llama_sampler_get_seed(*it); if (seed != LLAMA_DEFAULT_SEED) { return seed; } } } return LLAMA_DEFAULT_SEED; } // perf struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) { struct llama_perf_sampler_data data = {}; if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); } const auto * ctx = (const struct llama_sampler_chain *) chain->ctx; data.t_sample_ms = 1e-3 * ctx->t_sample_us; data.n_sample = std::max(0, ctx->n_sample); return data; } void llama_perf_sampler_print(const struct llama_sampler * chain) { const auto data = llama_perf_sampler(chain); LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample); } void llama_perf_sampler_reset(struct llama_sampler * chain) { if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); } auto * ctx = (struct llama_sampler_chain *) chain->ctx; ctx->t_sample_us = ctx->n_sample = 0; }