Spaces:
Runtime error
Runtime error
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) { | |
int N = (int) tokens.size(); | |
for (int i = 0; i < N; i += n_batch) { | |
int n_eval = (int) tokens.size() - i; | |
if (n_eval > n_batch) { | |
n_eval = n_batch; | |
} | |
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) { | |
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); | |
return false; | |
} | |
*n_past += n_eval; | |
} | |
return true; | |
} | |
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) { | |
std::vector<llama_token> tokens; | |
tokens.push_back(id); | |
return eval_tokens(ctx_llama, tokens, 1, n_past); | |
} | |
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){ | |
std::string str2 = str; | |
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true); | |
eval_tokens(ctx_llama, embd_inp, n_batch, n_past); | |
return true; | |
} | |
static const char * sample(struct common_sampler * smpl, | |
struct llama_context * ctx_llama, | |
int * n_past) { | |
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1); | |
common_sampler_accept(smpl, id, true); | |
static std::string ret; | |
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) { | |
ret = "</s>"; | |
} else { | |
ret = common_token_to_piece(ctx_llama, id); | |
} | |
eval_id(ctx_llama, id, n_past); | |
return ret.c_str(); | |
} | |
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,"; | |
static const char* IMG_BASE64_TAG_END = "\">"; | |
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { | |
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); | |
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); | |
} | |
static bool prompt_contains_image(const std::string& prompt) { | |
size_t begin, end; | |
find_image_tag_in_prompt(prompt, begin, end); | |
return (begin != std::string::npos); | |
} | |
// replaces the base64 image tag in the prompt with `replacement` | |
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) { | |
size_t img_base64_str_start, img_base64_str_end; | |
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); | |
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { | |
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); | |
return NULL; | |
} | |
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN); | |
auto base64_bytes_count = img_base64_str_end - base64_bytes_start; | |
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count ); | |
auto required_bytes = base64::required_encode_size(base64_str.size()); | |
auto img_bytes = std::vector<unsigned char>(required_bytes); | |
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); | |
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); | |
if (!embed) { | |
LOG_ERR("%s: could not load image from base64 string.\n", __func__); | |
return NULL; | |
} | |
return embed; | |
} | |
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { | |
size_t begin, end; | |
find_image_tag_in_prompt(prompt, begin, end); | |
if (begin == std::string::npos || end == std::string::npos) { | |
return prompt; | |
} | |
auto pre = prompt.substr(0, begin); | |
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END)); | |
return pre + replacement + post; | |
} | |
struct llava_context { | |
struct clip_ctx * ctx_clip = NULL; | |
struct llama_context * ctx_llama = NULL; | |
struct llama_model * model = NULL; | |
}; | |
static void print_usage(int, char ** argv) { | |
LOG("\n example usage:\n"); | |
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); | |
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); | |
} | |
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) { | |
// load and preprocess the image | |
llava_image_embed * embed = NULL; | |
auto prompt = params->prompt; | |
if (prompt_contains_image(prompt)) { | |
if (!params->image.empty()) { | |
LOG_INF("using base64 encoded image instead of command line image path\n"); | |
} | |
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt); | |
if (!embed) { | |
LOG_ERR("%s: can't load image from prompt\n", __func__); | |
return NULL; | |
} | |
params->prompt = remove_image_from_prompt(prompt); | |
} else { | |
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str()); | |
if (!embed) { | |
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); | |
return NULL; | |
} | |
} | |
return embed; | |
} | |
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) { | |
int n_past = 0; | |
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; | |
std::string system_prompt, user_prompt; | |
size_t image_pos = prompt.find("<image>"); | |
if (image_pos != std::string::npos) { | |
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image | |
system_prompt = prompt.substr(0, image_pos); | |
user_prompt = prompt.substr(image_pos + std::string("<image>").length()); | |
LOG_INF("system_prompt: %s\n", system_prompt.c_str()); | |
if (params->verbose_prompt) { | |
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | |
} | |
} | |
LOG_INF("user_prompt: %s\n", user_prompt.c_str()); | |
if (params->verbose_prompt) { | |
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | |
} | |
} | |
} else { | |
// llava-1.5 native mode | |
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:"; | |
user_prompt = prompt + "\nASSISTANT:"; | |
if (params->verbose_prompt) { | |
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | |
} | |
} | |
} | |
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true); | |
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past); | |
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false); | |
// generate the response | |
LOG("\n"); | |
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams); | |
if (!smpl) { | |
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); | |
exit(1); | |
} | |
std::string response = ""; | |
for (int i = 0; i < max_tgt_len; i++) { | |
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past); | |
response += tmp; | |
if (strcmp(tmp, "</s>") == 0) break; | |
if (strstr(tmp, "###")) break; // Yi-VL behavior | |
LOG("%s", tmp); | |
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works) | |
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6 | |
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6 | |
fflush(stdout); | |
} | |
common_sampler_free(smpl); | |
LOG("\n"); | |
} | |
static struct llama_model * llava_init(common_params * params) { | |
llama_backend_init(); | |
llama_numa_init(params->numa); | |
llama_model_params model_params = common_model_params_to_llama(*params); | |
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params); | |
if (model == NULL) { | |
LOG_ERR("%s: unable to load model\n" , __func__); | |
return NULL; | |
} | |
return model; | |
} | |
static struct llava_context * llava_init_context(common_params * params, llama_model * model) { | |
const char * clip_path = params->mmproj.c_str(); | |
auto prompt = params->prompt; | |
if (prompt.empty()) { | |
prompt = "describe the image in detail."; | |
} | |
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); | |
llama_context_params ctx_params = common_context_params_to_llama(*params); | |
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings | |
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params); | |
if (ctx_llama == NULL) { | |
LOG_ERR("%s: failed to create the llama_context\n" , __func__); | |
return NULL; | |
} | |
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); | |
ctx_llava->ctx_llama = ctx_llama; | |
ctx_llava->ctx_clip = ctx_clip; | |
ctx_llava->model = model; | |
return ctx_llava; | |
} | |
static void llava_free(struct llava_context * ctx_llava) { | |
if (ctx_llava->ctx_clip) { | |
clip_free(ctx_llava->ctx_clip); | |
ctx_llava->ctx_clip = NULL; | |
} | |
llama_free(ctx_llava->ctx_llama); | |
llama_free_model(ctx_llava->model); | |
llama_backend_free(); | |
} | |
int main(int argc, char ** argv) { | |
ggml_time_init(); | |
common_params params; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) { | |
return 1; | |
} | |
common_init(); | |
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { | |
print_usage(argc, argv); | |
return 1; | |
} | |
auto * model = llava_init(¶ms); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: failed to init llava model\n", __func__); | |
return 1; | |
} | |
if (prompt_contains_image(params.prompt)) { | |
auto * ctx_llava = llava_init_context(¶ms, model); | |
auto * image_embed = load_image(ctx_llava, ¶ms, ""); | |
// process the prompt | |
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); | |
llama_perf_context_print(ctx_llava->ctx_llama); | |
llava_image_embed_free(image_embed); | |
ctx_llava->model = NULL; | |
llava_free(ctx_llava); | |
} else { | |
for (auto & image : params.image) { | |
auto * ctx_llava = llava_init_context(¶ms, model); | |
auto * image_embed = load_image(ctx_llava, ¶ms, image); | |
if (!image_embed) { | |
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str()); | |
return 1; | |
} | |
// process the prompt | |
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); | |
llama_perf_context_print(ctx_llava->ctx_llama); | |
llava_image_embed_free(image_embed); | |
ctx_llava->model = NULL; | |
llava_free(ctx_llava); | |
} | |
} | |
llama_free_model(model); | |
return 0; | |
} | |