Spaces:
Runtime error
Runtime error
static void print_usage(int, char ** argv) { | |
LOG("\nexample usage:\n"); | |
LOG("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]); | |
LOG("\n"); | |
} | |
int main(int argc, char ** argv) { | |
common_params params; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) { | |
return 1; | |
} | |
common_init(); | |
int is_pp_shared = params.is_pp_shared; | |
std::vector<int> n_pp = params.n_pp; | |
std::vector<int> n_tg = params.n_tg; | |
std::vector<int> n_pl = params.n_pl; | |
// init LLM | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// initialize the model | |
llama_model_params model_params = common_model_params_to_llama(params); | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | |
if (model == NULL) { | |
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
llama_context_params ctx_params = common_context_params_to_llama(params); | |
// ensure enough sequences are available | |
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end()); | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
if (ctx == NULL) { | |
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
const int32_t n_kv_max = llama_n_ctx(ctx); | |
llama_batch batch = llama_batch_init(n_kv_max, 0, 1); | |
// decode in batches of ctx_params.n_batch tokens | |
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { | |
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { | |
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); | |
llama_batch batch_view = { | |
n_tokens, | |
batch.token + i, | |
nullptr, | |
batch.pos + i, | |
batch.n_seq_id + i, | |
batch.seq_id + i, | |
batch.logits + i, | |
}; | |
const int ret = llama_decode(ctx, batch_view); | |
if (ret != 0) { | |
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); | |
return false; | |
} | |
llama_synchronize(ctx); | |
} | |
return true; | |
}; | |
// warm up | |
{ | |
for (int i = 0; i < 16; ++i) { | |
common_batch_add(batch, 0, i, { 0 }, false); | |
} | |
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
} | |
if (!params.batched_bench_output_jsonl) { | |
LOG("\n"); | |
LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); | |
LOG("\n"); | |
LOG("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); | |
LOG("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); | |
} | |
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) { | |
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) { | |
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) { | |
const int pp = n_pp[i_pp]; | |
const int tg = n_tg[i_tg]; | |
const int pl = n_pl[i_pl]; | |
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg); | |
if (n_ctx_req > n_kv_max) { | |
continue; | |
} | |
common_batch_clear(batch); | |
for (int i = 0; i < pp; ++i) { | |
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) { | |
common_batch_add(batch, 0, i, { j }, false); | |
} | |
} | |
batch.logits[batch.n_tokens - 1] = true; | |
const auto t_pp_start = ggml_time_us(); | |
llama_kv_cache_clear(ctx); | |
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
if (is_pp_shared) { | |
for (int32_t i = 1; i < pl; ++i) { | |
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); | |
} | |
} | |
const auto t_pp_end = ggml_time_us(); | |
const auto t_tg_start = ggml_time_us(); | |
for (int i = 0; i < tg; ++i) { | |
common_batch_clear(batch); | |
for (int j = 0; j < pl; ++j) { | |
common_batch_add(batch, 0, pp + i, { j }, true); | |
} | |
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | |
LOG_ERR("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
} | |
const auto t_tg_end = ggml_time_us(); | |
const int32_t n_kv = n_ctx_req; | |
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; | |
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; | |
const float t = t_pp + t_tg; | |
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp; | |
const float speed_tg = pl*tg / t_tg; | |
const float speed = n_kv / t; | |
if(params.batched_bench_output_jsonl) { | |
LOG( | |
"{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " | |
"\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n", | |
n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, | |
pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed | |
); | |
} else { | |
LOG("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); | |
} | |
} | |
} | |
} | |
LOG("\n"); | |
llama_perf_context_print(ctx); | |
llama_batch_free(batch); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
LOG("\n\n"); | |
return 0; | |
} | |