Spaces:
Runtime error
Runtime error
using json = nlohmann::ordered_json; | |
common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) { | |
this->examples = std::move(examples); | |
return *this; | |
} | |
common_arg & common_arg::set_env(const char * env) { | |
help = help + "\n(env: " + env + ")"; | |
this->env = env; | |
return *this; | |
} | |
common_arg & common_arg::set_sparam() { | |
is_sparam = true; | |
return *this; | |
} | |
bool common_arg::in_example(enum llama_example ex) { | |
return examples.find(ex) != examples.end(); | |
} | |
bool common_arg::get_value_from_env(std::string & output) { | |
if (env == nullptr) return false; | |
char * value = std::getenv(env); | |
if (value) { | |
output = value; | |
return true; | |
} | |
return false; | |
} | |
bool common_arg::has_value_from_env() { | |
return env != nullptr && std::getenv(env); | |
} | |
static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) { | |
std::vector<std::string> result; | |
std::istringstream iss(input); | |
std::string line; | |
auto add_line = [&](const std::string& l) { | |
if (l.length() <= max_char_per_line) { | |
result.push_back(l); | |
} else { | |
std::istringstream line_stream(l); | |
std::string word, current_line; | |
while (line_stream >> word) { | |
if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) { | |
if (!current_line.empty()) result.push_back(current_line); | |
current_line = word; | |
} else { | |
current_line += (!current_line.empty() ? " " : "") + word; | |
} | |
} | |
if (!current_line.empty()) result.push_back(current_line); | |
} | |
}; | |
while (std::getline(iss, line)) { | |
add_line(line); | |
} | |
return result; | |
} | |
std::string common_arg::to_string() { | |
// params for printing to console | |
const static int n_leading_spaces = 40; | |
const static int n_char_per_line_help = 70; // TODO: detect this based on current console | |
std::string leading_spaces(n_leading_spaces, ' '); | |
std::ostringstream ss; | |
for (const auto arg : args) { | |
if (arg == args.front()) { | |
if (args.size() == 1) { | |
ss << arg; | |
} else { | |
// first arg is usually abbreviation, we need padding to make it more beautiful | |
auto tmp = std::string(arg) + ", "; | |
auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' '); | |
ss << tmp << spaces; | |
} | |
} else { | |
ss << arg << (arg != args.back() ? ", " : ""); | |
} | |
} | |
if (value_hint) ss << " " << value_hint; | |
if (value_hint_2) ss << " " << value_hint_2; | |
if (ss.tellp() > n_leading_spaces - 3) { | |
// current line is too long, add new line | |
ss << "\n" << leading_spaces; | |
} else { | |
// padding between arg and help, same line | |
ss << std::string(leading_spaces.size() - ss.tellp(), ' '); | |
} | |
const auto help_lines = break_str_into_lines(help, n_char_per_line_help); | |
for (const auto & line : help_lines) { | |
ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n"; | |
} | |
return ss.str(); | |
} | |
// | |
// utils | |
// | |
static void common_params_handle_model_default(common_params & params) { | |
if (!params.hf_repo.empty()) { | |
// short-hand to avoid specifying --hf-file -> default it to --model | |
if (params.hf_file.empty()) { | |
if (params.model.empty()) { | |
throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); | |
} | |
params.hf_file = params.model; | |
} else if (params.model.empty()) { | |
params.model = fs_get_cache_file(string_split<std::string>(params.hf_file, '/').back()); | |
} | |
} else if (!params.model_url.empty()) { | |
if (params.model.empty()) { | |
auto f = string_split<std::string>(params.model_url, '#').front(); | |
f = string_split<std::string>(f, '?').front(); | |
params.model = fs_get_cache_file(string_split<std::string>(f, '/').back()); | |
} | |
} else if (params.model.empty()) { | |
params.model = DEFAULT_MODEL_PATH; | |
} | |
} | |
// | |
// CLI argument parsing functions | |
// | |
static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) { | |
std::string arg; | |
const std::string arg_prefix = "--"; | |
common_params & params = ctx_arg.params; | |
std::unordered_map<std::string, common_arg *> arg_to_options; | |
for (auto & opt : ctx_arg.options) { | |
for (const auto & arg : opt.args) { | |
arg_to_options[arg] = &opt; | |
} | |
} | |
// handle environment variables | |
for (auto & opt : ctx_arg.options) { | |
std::string value; | |
if (opt.get_value_from_env(value)) { | |
try { | |
if (opt.handler_void && (value == "1" || value == "true")) { | |
opt.handler_void(params); | |
} | |
if (opt.handler_int) { | |
opt.handler_int(params, std::stoi(value)); | |
} | |
if (opt.handler_string) { | |
opt.handler_string(params, value); | |
continue; | |
} | |
} catch (std::exception & e) { | |
throw std::invalid_argument(string_format( | |
"error while handling environment variable \"%s\": %s\n\n", opt.env, e.what())); | |
} | |
} | |
} | |
// handle command line arguments | |
auto check_arg = [&](int i) { | |
if (i+1 >= argc) { | |
throw std::invalid_argument("expected value for argument"); | |
} | |
}; | |
for (int i = 1; i < argc; i++) { | |
const std::string arg_prefix = "--"; | |
std::string arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg_to_options.find(arg) == arg_to_options.end()) { | |
throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str())); | |
} | |
auto opt = *arg_to_options[arg]; | |
if (opt.has_value_from_env()) { | |
fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str()); | |
} | |
try { | |
if (opt.handler_void) { | |
opt.handler_void(params); | |
continue; | |
} | |
// arg with single value | |
check_arg(i); | |
std::string val = argv[++i]; | |
if (opt.handler_int) { | |
opt.handler_int(params, std::stoi(val)); | |
continue; | |
} | |
if (opt.handler_string) { | |
opt.handler_string(params, val); | |
continue; | |
} | |
// arg with 2 values | |
check_arg(i); | |
std::string val2 = argv[++i]; | |
if (opt.handler_str_str) { | |
opt.handler_str_str(params, val, val2); | |
continue; | |
} | |
} catch (std::exception & e) { | |
throw std::invalid_argument(string_format( | |
"error while handling argument \"%s\": %s\n\n" | |
"usage:\n%s\n\nto show complete usage, run with -h", | |
arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str())); | |
} | |
} | |
postprocess_cpu_params(params.cpuparams, nullptr); | |
postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams); | |
postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams); | |
postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch); | |
if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { | |
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); | |
} | |
common_params_handle_model_default(params); | |
if (params.escape) { | |
string_process_escapes(params.prompt); | |
string_process_escapes(params.input_prefix); | |
string_process_escapes(params.input_suffix); | |
for (auto & antiprompt : params.antiprompt) { | |
string_process_escapes(antiprompt); | |
} | |
for (auto & seq_breaker : params.sparams.dry_sequence_breakers) { | |
string_process_escapes(seq_breaker); | |
} | |
} | |
if (!params.kv_overrides.empty()) { | |
params.kv_overrides.emplace_back(); | |
params.kv_overrides.back().key[0] = 0; | |
} | |
if (params.reranking && params.embedding) { | |
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both"); | |
} | |
return true; | |
} | |
static void common_params_print_usage(common_params_context & ctx_arg) { | |
auto print_options = [](std::vector<common_arg *> & options) { | |
for (common_arg * opt : options) { | |
printf("%s", opt->to_string().c_str()); | |
} | |
}; | |
std::vector<common_arg *> common_options; | |
std::vector<common_arg *> sparam_options; | |
std::vector<common_arg *> specific_options; | |
for (auto & opt : ctx_arg.options) { | |
// in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example | |
if (opt.is_sparam) { | |
sparam_options.push_back(&opt); | |
} else if (opt.in_example(ctx_arg.ex)) { | |
specific_options.push_back(&opt); | |
} else { | |
common_options.push_back(&opt); | |
} | |
} | |
printf("----- common params -----\n\n"); | |
print_options(common_options); | |
printf("\n\n----- sampling params -----\n\n"); | |
print_options(sparam_options); | |
// TODO: maybe convert enum llama_example to string | |
printf("\n\n----- example-specific params -----\n\n"); | |
print_options(specific_options); | |
} | |
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) { | |
auto ctx_arg = common_params_parser_init(params, ex, print_usage); | |
const common_params params_org = ctx_arg.params; // the example can modify the default params | |
try { | |
if (!common_params_parse_ex(argc, argv, ctx_arg)) { | |
ctx_arg.params = params_org; | |
return false; | |
} | |
if (ctx_arg.params.usage) { | |
common_params_print_usage(ctx_arg); | |
if (ctx_arg.print_usage) { | |
ctx_arg.print_usage(argc, argv); | |
} | |
exit(0); | |
} | |
} catch (const std::invalid_argument & ex) { | |
fprintf(stderr, "%s\n", ex.what()); | |
ctx_arg.params = params_org; | |
return false; | |
} | |
return true; | |
} | |
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) { | |
common_params_context ctx_arg(params); | |
ctx_arg.print_usage = print_usage; | |
ctx_arg.ex = ex; | |
std::string sampler_type_chars; | |
std::string sampler_type_names; | |
for (const auto & sampler : params.sparams.samplers) { | |
sampler_type_chars += common_sampler_type_to_chr(sampler); | |
sampler_type_names += common_sampler_type_to_str(sampler) + ";"; | |
} | |
sampler_type_names.pop_back(); | |
/** | |
* filter options by example | |
* rules: | |
* - all examples inherit options from LLAMA_EXAMPLE_COMMON | |
* - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example | |
* - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example | |
*/ | |
auto add_opt = [&](common_arg arg) { | |
if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) { | |
ctx_arg.options.push_back(std::move(arg)); | |
} | |
}; | |
add_opt(common_arg( | |
{"-h", "--help", "--usage"}, | |
"print usage and exit", | |
[](common_params & params) { | |
params.usage = true; | |
} | |
)); | |
add_opt(common_arg( | |
{"--version"}, | |
"show version and build info", | |
[](common_params &) { | |
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); | |
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); | |
exit(0); | |
} | |
)); | |
add_opt(common_arg( | |
{"--verbose-prompt"}, | |
string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"), | |
[](common_params & params) { | |
params.verbose_prompt = true; | |
} | |
)); | |
add_opt(common_arg( | |
{"--no-display-prompt"}, | |
string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"), | |
[](common_params & params) { | |
params.display_prompt = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"-co", "--color"}, | |
string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"), | |
[](common_params & params) { | |
params.use_color = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); | |
add_opt(common_arg( | |
{"-t", "--threads"}, "N", | |
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads), | |
[](common_params & params, int value) { | |
params.cpuparams.n_threads = value; | |
if (params.cpuparams.n_threads <= 0) { | |
params.cpuparams.n_threads = std::thread::hardware_concurrency(); | |
} | |
} | |
).set_env("LLAMA_ARG_THREADS")); | |
add_opt(common_arg( | |
{"-tb", "--threads-batch"}, "N", | |
"number of threads to use during batch and prompt processing (default: same as --threads)", | |
[](common_params & params, int value) { | |
params.cpuparams_batch.n_threads = value; | |
if (params.cpuparams_batch.n_threads <= 0) { | |
params.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"-td", "--threads-draft"}, "N", | |
"number of threads to use during generation (default: same as --threads)", | |
[](common_params & params, int value) { | |
params.draft_cpuparams.n_threads = value; | |
if (params.draft_cpuparams.n_threads <= 0) { | |
params.draft_cpuparams.n_threads = std::thread::hardware_concurrency(); | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-tbd", "--threads-batch-draft"}, "N", | |
"number of threads to use during batch and prompt processing (default: same as --threads-draft)", | |
[](common_params & params, int value) { | |
params.draft_cpuparams_batch.n_threads = value; | |
if (params.draft_cpuparams_batch.n_threads <= 0) { | |
params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency(); | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-C", "--cpu-mask"}, "M", | |
"CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")", | |
[](common_params & params, const std::string & mask) { | |
params.cpuparams.mask_valid = true; | |
if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) { | |
throw std::invalid_argument("invalid cpumask"); | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"-Cr", "--cpu-range"}, "lo-hi", | |
"range of CPUs for affinity. Complements --cpu-mask", | |
[](common_params & params, const std::string & range) { | |
params.cpuparams.mask_valid = true; | |
if (!parse_cpu_range(range, params.cpuparams.cpumask)) { | |
throw std::invalid_argument("invalid range"); | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"--cpu-strict"}, "<0|1>", | |
string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu), | |
[](common_params & params, const std::string & value) { | |
params.cpuparams.strict_cpu = std::stoul(value); | |
} | |
)); | |
add_opt(common_arg( | |
{"--prio"}, "N", | |
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority), | |
[](common_params & params, int prio) { | |
if (prio < 0 || prio > 3) { | |
throw std::invalid_argument("invalid value"); | |
} | |
params.cpuparams.priority = (enum ggml_sched_priority) prio; | |
} | |
)); | |
add_opt(common_arg( | |
{"--poll"}, "<0...100>", | |
string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll), | |
[](common_params & params, const std::string & value) { | |
params.cpuparams.poll = std::stoul(value); | |
} | |
)); | |
add_opt(common_arg( | |
{"-Cb", "--cpu-mask-batch"}, "M", | |
"CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)", | |
[](common_params & params, const std::string & mask) { | |
params.cpuparams_batch.mask_valid = true; | |
if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) { | |
throw std::invalid_argument("invalid cpumask"); | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"-Crb", "--cpu-range-batch"}, "lo-hi", | |
"ranges of CPUs for affinity. Complements --cpu-mask-batch", | |
[](common_params & params, const std::string & range) { | |
params.cpuparams_batch.mask_valid = true; | |
if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) { | |
throw std::invalid_argument("invalid range"); | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"--cpu-strict-batch"}, "<0|1>", | |
"use strict CPU placement (default: same as --cpu-strict)", | |
[](common_params & params, int value) { | |
params.cpuparams_batch.strict_cpu = value; | |
} | |
)); | |
add_opt(common_arg( | |
{"--prio-batch"}, "N", | |
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority), | |
[](common_params & params, int prio) { | |
if (prio < 0 || prio > 3) { | |
throw std::invalid_argument("invalid value"); | |
} | |
params.cpuparams_batch.priority = (enum ggml_sched_priority) prio; | |
} | |
)); | |
add_opt(common_arg( | |
{"--poll-batch"}, "<0|1>", | |
"use polling to wait for work (default: same as --poll)", | |
[](common_params & params, int value) { | |
params.cpuparams_batch.poll = value; | |
} | |
)); | |
add_opt(common_arg( | |
{"-Cd", "--cpu-mask-draft"}, "M", | |
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", | |
[](common_params & params, const std::string & mask) { | |
params.draft_cpuparams.mask_valid = true; | |
if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) { | |
throw std::invalid_argument("invalid cpumask"); | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-Crd", "--cpu-range-draft"}, "lo-hi", | |
"Ranges of CPUs for affinity. Complements --cpu-mask-draft", | |
[](common_params & params, const std::string & range) { | |
params.draft_cpuparams.mask_valid = true; | |
if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) { | |
throw std::invalid_argument("invalid range"); | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"--cpu-strict-draft"}, "<0|1>", | |
"Use strict CPU placement for draft model (default: same as --cpu-strict)", | |
[](common_params & params, int value) { | |
params.draft_cpuparams.strict_cpu = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"--prio-draft"}, "N", | |
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams.priority), | |
[](common_params & params, int prio) { | |
if (prio < 0 || prio > 3) { | |
throw std::invalid_argument("invalid value"); | |
} | |
params.draft_cpuparams.priority = (enum ggml_sched_priority) prio; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"--poll-draft"}, "<0|1>", | |
"Use polling to wait for draft model work (default: same as --poll])", | |
[](common_params & params, int value) { | |
params.draft_cpuparams.poll = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-Cbd", "--cpu-mask-batch-draft"}, "M", | |
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", | |
[](common_params & params, const std::string & mask) { | |
params.draft_cpuparams_batch.mask_valid = true; | |
if (!parse_cpu_mask(mask, params.draft_cpuparams_batch.cpumask)) { | |
throw std::invalid_argument("invalid cpumask"); | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-Crbd", "--cpu-range-batch-draft"}, "lo-hi", | |
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)", | |
[](common_params & params, const std::string & range) { | |
params.draft_cpuparams_batch.mask_valid = true; | |
if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) { | |
throw std::invalid_argument("invalid cpumask"); | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"--cpu-strict-batch-draft"}, "<0|1>", | |
"Use strict CPU placement for draft model (default: --cpu-strict-draft)", | |
[](common_params & params, int value) { | |
params.draft_cpuparams_batch.strict_cpu = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"--prio-batch-draft"}, "N", | |
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams_batch.priority), | |
[](common_params & params, int prio) { | |
if (prio < 0 || prio > 3) { | |
throw std::invalid_argument("invalid value"); | |
} | |
params.draft_cpuparams_batch.priority = (enum ggml_sched_priority) prio; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"--poll-batch-draft"}, "<0|1>", | |
"Use polling to wait for draft model work (default: --poll-draft)", | |
[](common_params & params, int value) { | |
params.draft_cpuparams_batch.poll = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"--draft"}, "N", | |
string_format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft), | |
[](common_params & params, int value) { | |
params.n_draft = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); | |
add_opt(common_arg( | |
{"-ps", "--p-split"}, "N", | |
string_format("speculative decoding split probability (default: %.1f)", (double)params.p_split), | |
[](common_params & params, const std::string & value) { | |
params.p_split = std::stof(value); | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-lcs", "--lookup-cache-static"}, "FNAME", | |
"path to static lookup cache to use for lookup decoding (not updated by generation)", | |
[](common_params & params, const std::string & value) { | |
params.lookup_cache_static = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_LOOKUP})); | |
add_opt(common_arg( | |
{"-lcd", "--lookup-cache-dynamic"}, "FNAME", | |
"path to dynamic lookup cache to use for lookup decoding (updated by generation)", | |
[](common_params & params, const std::string & value) { | |
params.lookup_cache_dynamic = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_LOOKUP})); | |
add_opt(common_arg( | |
{"-c", "--ctx-size"}, "N", | |
string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx), | |
[](common_params & params, int value) { | |
params.n_ctx = value; | |
} | |
).set_env("LLAMA_ARG_CTX_SIZE")); | |
add_opt(common_arg( | |
{"-n", "--predict", "--n-predict"}, "N", | |
string_format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict), | |
[](common_params & params, int value) { | |
params.n_predict = value; | |
} | |
).set_env("LLAMA_ARG_N_PREDICT")); | |
add_opt(common_arg( | |
{"-b", "--batch-size"}, "N", | |
string_format("logical maximum batch size (default: %d)", params.n_batch), | |
[](common_params & params, int value) { | |
params.n_batch = value; | |
} | |
).set_env("LLAMA_ARG_BATCH")); | |
add_opt(common_arg( | |
{"-ub", "--ubatch-size"}, "N", | |
string_format("physical maximum batch size (default: %d)", params.n_ubatch), | |
[](common_params & params, int value) { | |
params.n_ubatch = value; | |
} | |
).set_env("LLAMA_ARG_UBATCH")); | |
add_opt(common_arg( | |
{"--keep"}, "N", | |
string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep), | |
[](common_params & params, int value) { | |
params.n_keep = value; | |
} | |
)); | |
add_opt(common_arg( | |
{"--no-context-shift"}, | |
string_format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"), | |
[](common_params & params) { | |
params.ctx_shift = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT")); | |
add_opt(common_arg( | |
{"--chunks"}, "N", | |
string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), | |
[](common_params & params, int value) { | |
params.n_chunks = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL})); | |
add_opt(common_arg( | |
{"-fa", "--flash-attn"}, | |
string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.flash_attn = true; | |
} | |
).set_env("LLAMA_ARG_FLASH_ATTN")); | |
add_opt(common_arg( | |
{"-p", "--prompt"}, "PROMPT", | |
ex == LLAMA_EXAMPLE_MAIN | |
? "prompt to start generation with\nif -cnv is set, this will be used as system prompt" | |
: "prompt to start generation with", | |
[](common_params & params, const std::string & value) { | |
params.prompt = value; | |
} | |
)); | |
add_opt(common_arg( | |
{"--no-perf"}, | |
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"), | |
[](common_params & params) { | |
params.no_perf = true; | |
params.sparams.no_perf = true; | |
} | |
).set_env("LLAMA_ARG_NO_PERF")); | |
add_opt(common_arg( | |
{"-f", "--file"}, "FNAME", | |
"a file containing the prompt (default: none)", | |
[](common_params & params, const std::string & value) { | |
std::ifstream file(value); | |
if (!file) { | |
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
} | |
// store the external file name in params | |
params.prompt_file = value; | |
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); | |
if (!params.prompt.empty() && params.prompt.back() == '\n') { | |
params.prompt.pop_back(); | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"--in-file"}, "FNAME", | |
"an input file (repeat to specify multiple files)", | |
[](common_params & params, const std::string & value) { | |
std::ifstream file(value); | |
if (!file) { | |
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
} | |
params.in_files.push_back(value); | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
add_opt(common_arg( | |
{"-bf", "--binary-file"}, "FNAME", | |
"binary file containing the prompt (default: none)", | |
[](common_params & params, const std::string & value) { | |
std::ifstream file(value, std::ios::binary); | |
if (!file) { | |
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
} | |
// store the external file name in params | |
params.prompt_file = value; | |
std::ostringstream ss; | |
ss << file.rdbuf(); | |
params.prompt = ss.str(); | |
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str()); | |
} | |
)); | |
add_opt(common_arg( | |
{"-e", "--escape"}, | |
string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"), | |
[](common_params & params) { | |
params.escape = true; | |
} | |
)); | |
add_opt(common_arg( | |
{"--no-escape"}, | |
"do not process escape sequences", | |
[](common_params & params) { | |
params.escape = false; | |
} | |
)); | |
add_opt(common_arg( | |
{"-ptc", "--print-token-count"}, "N", | |
string_format("print token count every N tokens (default: %d)", params.n_print), | |
[](common_params & params, int value) { | |
params.n_print = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"--prompt-cache"}, "FNAME", | |
"file to cache prompt state for faster startup (default: none)", | |
[](common_params & params, const std::string & value) { | |
params.path_prompt_cache = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"--prompt-cache-all"}, | |
"if specified, saves user input and generations to cache as well\n", | |
[](common_params & params) { | |
params.prompt_cache_all = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"--prompt-cache-ro"}, | |
"if specified, uses the prompt cache but does not update it", | |
[](common_params & params) { | |
params.prompt_cache_ro = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"-r", "--reverse-prompt"}, "PROMPT", | |
"halt generation at PROMPT, return control in interactive mode\n", | |
[](common_params & params, const std::string & value) { | |
params.antiprompt.emplace_back(value); | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"-sp", "--special"}, | |
string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"), | |
[](common_params & params) { | |
params.special = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); | |
add_opt(common_arg( | |
{"-cnv", "--conversation"}, | |
string_format( | |
"run in conversation mode:\n" | |
"- does not print special tokens and suffix/prefix\n" | |
"- interactive mode is also enabled\n" | |
"(default: %s)", | |
params.conversation ? "true" : "false" | |
), | |
[](common_params & params) { | |
params.conversation = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"-i", "--interactive"}, | |
string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"), | |
[](common_params & params) { | |
params.interactive = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"-if", "--interactive-first"}, | |
string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"), | |
[](common_params & params) { | |
params.interactive_first = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"-mli", "--multiline-input"}, | |
"allows you to write or paste multiple lines without ending each in '\\'", | |
[](common_params & params) { | |
params.multiline_input = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"--in-prefix-bos"}, | |
"prefix BOS to user inputs, preceding the `--in-prefix` string", | |
[](common_params & params) { | |
params.input_prefix_bos = true; | |
params.enable_chat_template = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"--in-prefix"}, "STRING", | |
"string to prefix user inputs with (default: empty)", | |
[](common_params & params, const std::string & value) { | |
params.input_prefix = value; | |
params.enable_chat_template = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); | |
add_opt(common_arg( | |
{"--in-suffix"}, "STRING", | |
"string to suffix after user inputs with (default: empty)", | |
[](common_params & params, const std::string & value) { | |
params.input_suffix = value; | |
params.enable_chat_template = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); | |
add_opt(common_arg( | |
{"--no-warmup"}, | |
"skip warming up the model with an empty run", | |
[](common_params & params) { | |
params.warmup = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"--spm-infill"}, | |
string_format( | |
"use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", | |
params.spm_infill ? "enabled" : "disabled" | |
), | |
[](common_params & params) { | |
params.spm_infill = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL})); | |
add_opt(common_arg( | |
{"--samplers"}, "SAMPLERS", | |
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()), | |
[](common_params & params, const std::string & value) { | |
const auto sampler_names = string_split<std::string>(value, ';'); | |
params.sparams.samplers = common_sampler_types_from_names(sampler_names, true); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"-s", "--seed"}, "SEED", | |
string_format("RNG seed (default: %d, use random seed for %d)", params.sparams.seed, LLAMA_DEFAULT_SEED), | |
[](common_params & params, const std::string & value) { | |
params.sparams.seed = std::stoul(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--sampling-seq"}, "SEQUENCE", | |
string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.sparams.samplers = common_sampler_types_from_chars(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--ignore-eos"}, | |
"ignore end of stream token and continue generating (implies --logit-bias EOS-inf)", | |
[](common_params & params) { | |
params.sparams.ignore_eos = true; | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--penalize-nl"}, | |
string_format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"), | |
[](common_params & params) { | |
params.sparams.penalize_nl = true; | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--temp"}, "N", | |
string_format("temperature (default: %.1f)", (double)params.sparams.temp), | |
[](common_params & params, const std::string & value) { | |
params.sparams.temp = std::stof(value); | |
params.sparams.temp = std::max(params.sparams.temp, 0.0f); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--top-k"}, "N", | |
string_format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k), | |
[](common_params & params, int value) { | |
params.sparams.top_k = value; | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--top-p"}, "N", | |
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p), | |
[](common_params & params, const std::string & value) { | |
params.sparams.top_p = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--min-p"}, "N", | |
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p), | |
[](common_params & params, const std::string & value) { | |
params.sparams.min_p = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--xtc-probability"}, "N", | |
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sparams.xtc_probability), | |
[](common_params & params, const std::string & value) { | |
params.sparams.xtc_probability = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--xtc-threshold"}, "N", | |
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sparams.xtc_threshold), | |
[](common_params & params, const std::string & value) { | |
params.sparams.xtc_threshold = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--typical"}, "N", | |
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p), | |
[](common_params & params, const std::string & value) { | |
params.sparams.typ_p = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--repeat-last-n"}, "N", | |
string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n), | |
[](common_params & params, int value) { | |
params.sparams.penalty_last_n = value; | |
params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--repeat-penalty"}, "N", | |
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat), | |
[](common_params & params, const std::string & value) { | |
params.sparams.penalty_repeat = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--presence-penalty"}, "N", | |
string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present), | |
[](common_params & params, const std::string & value) { | |
params.sparams.penalty_present = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--frequency-penalty"}, "N", | |
string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq), | |
[](common_params & params, const std::string & value) { | |
params.sparams.penalty_freq = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--dry-multiplier"}, "N", | |
string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sparams.dry_multiplier), | |
[](common_params & params, const std::string & value) { | |
params.sparams.dry_multiplier = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--dry-base"}, "N", | |
string_format("set DRY sampling base value (default: %.2f)", (double)params.sparams.dry_base), | |
[](common_params & params, const std::string & value) { | |
float potential_base = std::stof(value); | |
if (potential_base >= 1.0f) | |
{ | |
params.sparams.dry_base = potential_base; | |
} | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--dry-allowed-length"}, "N", | |
string_format("set allowed length for DRY sampling (default: %d)", params.sparams.dry_allowed_length), | |
[](common_params & params, int value) { | |
params.sparams.dry_allowed_length = value; | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--dry-penalty-last-n"}, "N", | |
string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sparams.dry_penalty_last_n), | |
[](common_params & params, int value) { | |
params.sparams.dry_penalty_last_n = value; | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--dry-sequence-breaker"}, "STRING", | |
string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n", | |
params.sparams.dry_sequence_breakers.empty() ? "none" : | |
std::accumulate(std::next(params.sparams.dry_sequence_breakers.begin()), | |
params.sparams.dry_sequence_breakers.end(), | |
std::string("'") + (params.sparams.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sparams.dry_sequence_breakers[0]) + "'", | |
[](const std::string& a, const std::string& b) { | |
std::string formatted_b = (b == "\n") ? "\\n" : b; | |
return a + ", '" + formatted_b + "'"; | |
}).c_str()), | |
[](common_params & params, const std::string & value) { | |
static bool defaults_cleared = false; | |
if (!defaults_cleared) { | |
params.sparams.dry_sequence_breakers.clear(); | |
defaults_cleared = true; | |
} | |
if (value == "none") { | |
params.sparams.dry_sequence_breakers.clear(); | |
} else { | |
params.sparams.dry_sequence_breakers.emplace_back(value); | |
} | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--dynatemp-range"}, "N", | |
string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range), | |
[](common_params & params, const std::string & value) { | |
params.sparams.dynatemp_range = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--dynatemp-exp"}, "N", | |
string_format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent), | |
[](common_params & params, const std::string & value) { | |
params.sparams.dynatemp_exponent = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--mirostat"}, "N", | |
string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n" | |
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat), | |
[](common_params & params, int value) { | |
params.sparams.mirostat = value; | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--mirostat-lr"}, "N", | |
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta), | |
[](common_params & params, const std::string & value) { | |
params.sparams.mirostat_eta = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--mirostat-ent"}, "N", | |
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau), | |
[](common_params & params, const std::string & value) { | |
params.sparams.mirostat_tau = std::stof(value); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS", | |
"modifies the likelihood of token appearing in the completion,\n" | |
"i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" | |
"or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'", | |
[](common_params & params, const std::string & value) { | |
std::stringstream ss(value); | |
llama_token key; | |
char sign; | |
std::string value_str; | |
try { | |
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { | |
const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); | |
params.sparams.logit_bias.push_back({key, bias}); | |
} else { | |
throw std::invalid_argument("invalid input format"); | |
} | |
} catch (const std::exception&) { | |
throw std::invalid_argument("invalid input format"); | |
} | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--grammar"}, "GRAMMAR", | |
string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.sparams.grammar = value; | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--grammar-file"}, "FNAME", | |
"file to read grammar from", | |
[](common_params & params, const std::string & value) { | |
std::ifstream file(value); | |
if (!file) { | |
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
} | |
std::copy( | |
std::istreambuf_iterator<char>(file), | |
std::istreambuf_iterator<char>(), | |
std::back_inserter(params.sparams.grammar) | |
); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"-j", "--json-schema"}, "SCHEMA", | |
"JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", | |
[](common_params & params, const std::string & value) { | |
params.sparams.grammar = json_schema_to_grammar(json::parse(value)); | |
} | |
).set_sparam()); | |
add_opt(common_arg( | |
{"--pooling"}, "{none,mean,cls,last,rank}", | |
"pooling type for embeddings, use model default if unspecified", | |
[](common_params & params, const std::string & value) { | |
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } | |
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } | |
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } | |
else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } | |
else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; } | |
else { throw std::invalid_argument("invalid value"); } | |
} | |
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING")); | |
add_opt(common_arg( | |
{"--attention"}, "{causal,non-causal}", | |
"attention type for embeddings, use model default if unspecified", | |
[](common_params & params, const std::string & value) { | |
/**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; } | |
else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; } | |
else { throw std::invalid_argument("invalid value"); } | |
} | |
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
add_opt(common_arg( | |
{"--rope-scaling"}, "{none,linear,yarn}", | |
"RoPE frequency scaling method, defaults to linear unless specified by the model", | |
[](common_params & params, const std::string & value) { | |
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } | |
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } | |
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } | |
else { throw std::invalid_argument("invalid value"); } | |
} | |
).set_env("LLAMA_ARG_ROPE_SCALING_TYPE")); | |
add_opt(common_arg( | |
{"--rope-scale"}, "N", | |
"RoPE context scaling factor, expands context by a factor of N", | |
[](common_params & params, const std::string & value) { | |
params.rope_freq_scale = 1.0f / std::stof(value); | |
} | |
).set_env("LLAMA_ARG_ROPE_SCALE")); | |
add_opt(common_arg( | |
{"--rope-freq-base"}, "N", | |
"RoPE base frequency, used by NTK-aware scaling (default: loaded from model)", | |
[](common_params & params, const std::string & value) { | |
params.rope_freq_base = std::stof(value); | |
} | |
).set_env("LLAMA_ARG_ROPE_FREQ_BASE")); | |
add_opt(common_arg( | |
{"--rope-freq-scale"}, "N", | |
"RoPE frequency scaling factor, expands context by a factor of 1/N", | |
[](common_params & params, const std::string & value) { | |
params.rope_freq_scale = std::stof(value); | |
} | |
).set_env("LLAMA_ARG_ROPE_FREQ_SCALE")); | |
add_opt(common_arg( | |
{"--yarn-orig-ctx"}, "N", | |
string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx), | |
[](common_params & params, int value) { | |
params.yarn_orig_ctx = value; | |
} | |
).set_env("LLAMA_ARG_YARN_ORIG_CTX")); | |
add_opt(common_arg( | |
{"--yarn-ext-factor"}, "N", | |
string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor), | |
[](common_params & params, const std::string & value) { | |
params.yarn_ext_factor = std::stof(value); | |
} | |
).set_env("LLAMA_ARG_YARN_EXT_FACTOR")); | |
add_opt(common_arg( | |
{"--yarn-attn-factor"}, "N", | |
string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor), | |
[](common_params & params, const std::string & value) { | |
params.yarn_attn_factor = std::stof(value); | |
} | |
).set_env("LLAMA_ARG_YARN_ATTN_FACTOR")); | |
add_opt(common_arg( | |
{"--yarn-beta-slow"}, "N", | |
string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow), | |
[](common_params & params, const std::string & value) { | |
params.yarn_beta_slow = std::stof(value); | |
} | |
).set_env("LLAMA_ARG_YARN_BETA_SLOW")); | |
add_opt(common_arg( | |
{"--yarn-beta-fast"}, "N", | |
string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast), | |
[](common_params & params, const std::string & value) { | |
params.yarn_beta_fast = std::stof(value); | |
} | |
).set_env("LLAMA_ARG_YARN_BETA_FAST")); | |
add_opt(common_arg( | |
{"-gan", "--grp-attn-n"}, "N", | |
string_format("group-attention factor (default: %d)", params.grp_attn_n), | |
[](common_params & params, int value) { | |
params.grp_attn_n = value; | |
} | |
).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY})); | |
add_opt(common_arg( | |
{"-gaw", "--grp-attn-w"}, "N", | |
string_format("group-attention width (default: %d)", params.grp_attn_w), | |
[](common_params & params, int value) { | |
params.grp_attn_w = value; | |
} | |
).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN})); | |
add_opt(common_arg( | |
{"-dkvc", "--dump-kv-cache"}, | |
"verbose print of the KV cache", | |
[](common_params & params) { | |
params.dump_kv_cache = true; | |
} | |
)); | |
add_opt(common_arg( | |
{"-nkvo", "--no-kv-offload"}, | |
"disable KV offload", | |
[](common_params & params) { | |
params.no_kv_offload = true; | |
} | |
).set_env("LLAMA_ARG_NO_KV_OFFLOAD")); | |
add_opt(common_arg( | |
{"-ctk", "--cache-type-k"}, "TYPE", | |
string_format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()), | |
[](common_params & params, const std::string & value) { | |
// TODO: get the type right here | |
params.cache_type_k = value; | |
} | |
).set_env("LLAMA_ARG_CACHE_TYPE_K")); | |
add_opt(common_arg( | |
{"-ctv", "--cache-type-v"}, "TYPE", | |
string_format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()), | |
[](common_params & params, const std::string & value) { | |
// TODO: get the type right here | |
params.cache_type_v = value; | |
} | |
).set_env("LLAMA_ARG_CACHE_TYPE_V")); | |
add_opt(common_arg( | |
{"--perplexity", "--all-logits"}, | |
string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"), | |
[](common_params & params) { | |
params.logits_all = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--hellaswag"}, | |
"compute HellaSwag score over random tasks from datafile supplied with -f", | |
[](common_params & params) { | |
params.hellaswag = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--hellaswag-tasks"}, "N", | |
string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks), | |
[](common_params & params, int value) { | |
params.hellaswag_tasks = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--winogrande"}, | |
"compute Winogrande score over random tasks from datafile supplied with -f", | |
[](common_params & params) { | |
params.winogrande = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--winogrande-tasks"}, "N", | |
string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks), | |
[](common_params & params, int value) { | |
params.winogrande_tasks = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--multiple-choice"}, | |
"compute multiple choice score over random tasks from datafile supplied with -f", | |
[](common_params & params) { | |
params.multiple_choice = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--multiple-choice-tasks"}, "N", | |
string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks), | |
[](common_params & params, int value) { | |
params.multiple_choice_tasks = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--kl-divergence"}, | |
"computes KL-divergence to logits provided via --kl-divergence-base", | |
[](common_params & params) { | |
params.kl_divergence = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--save-all-logits", "--kl-divergence-base"}, "FNAME", | |
"set logits file", | |
[](common_params & params, const std::string & value) { | |
params.logits_file = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--ppl-stride"}, "N", | |
string_format("stride for perplexity calculation (default: %d)", params.ppl_stride), | |
[](common_params & params, int value) { | |
params.ppl_stride = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"--ppl-output-type"}, "<0|1>", | |
string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type), | |
[](common_params & params, int value) { | |
params.ppl_output_type = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); | |
add_opt(common_arg( | |
{"-dt", "--defrag-thold"}, "N", | |
string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold), | |
[](common_params & params, const std::string & value) { | |
params.defrag_thold = std::stof(value); | |
} | |
).set_env("LLAMA_ARG_DEFRAG_THOLD")); | |
add_opt(common_arg( | |
{"-np", "--parallel"}, "N", | |
string_format("number of parallel sequences to decode (default: %d)", params.n_parallel), | |
[](common_params & params, int value) { | |
params.n_parallel = value; | |
} | |
).set_env("LLAMA_ARG_N_PARALLEL")); | |
add_opt(common_arg( | |
{"-ns", "--sequences"}, "N", | |
string_format("number of sequences to decode (default: %d)", params.n_sequences), | |
[](common_params & params, int value) { | |
params.n_sequences = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PARALLEL})); | |
add_opt(common_arg( | |
{"-cb", "--cont-batching"}, | |
string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.cont_batching = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING")); | |
add_opt(common_arg( | |
{"-nocb", "--no-cont-batching"}, | |
"disable continuous batching", | |
[](common_params & params) { | |
params.cont_batching = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING")); | |
add_opt(common_arg( | |
{"--mmproj"}, "FILE", | |
"path to a multimodal projector file for LLaVA. see examples/llava/README.md", | |
[](common_params & params, const std::string & value) { | |
params.mmproj = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_LLAVA})); | |
add_opt(common_arg( | |
{"--image"}, "FILE", | |
"path to an image file. use with multimodal models. Specify multiple times for batching", | |
[](common_params & params, const std::string & value) { | |
params.image.emplace_back(value); | |
} | |
).set_examples({LLAMA_EXAMPLE_LLAVA})); | |
if (llama_supports_rpc()) { | |
add_opt(common_arg( | |
{"--rpc"}, "SERVERS", | |
"comma separated list of RPC servers", | |
[](common_params & params, const std::string & value) { | |
params.rpc_servers = value; | |
} | |
).set_env("LLAMA_ARG_RPC")); | |
} | |
add_opt(common_arg( | |
{"--mlock"}, | |
"force system to keep model in RAM rather than swapping or compressing", | |
[](common_params & params) { | |
params.use_mlock = true; | |
} | |
).set_env("LLAMA_ARG_MLOCK")); | |
add_opt(common_arg( | |
{"--no-mmap"}, | |
"do not memory-map model (slower load but may reduce pageouts if not using mlock)", | |
[](common_params & params) { | |
params.use_mmap = false; | |
} | |
).set_env("LLAMA_ARG_NO_MMAP")); | |
add_opt(common_arg( | |
{"--numa"}, "TYPE", | |
"attempt optimizations that help on some NUMA systems\n" | |
"- distribute: spread execution evenly over all nodes\n" | |
"- isolate: only spawn threads on CPUs on the node that execution started on\n" | |
"- numactl: use the CPU map provided by numactl\n" | |
"if run without this previously, it is recommended to drop the system page cache before using this\n" | |
"see https://github.com/ggerganov/llama.cpp/issues/1437", | |
[](common_params & params, const std::string & value) { | |
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } | |
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } | |
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } | |
else { throw std::invalid_argument("invalid value"); } | |
} | |
).set_env("LLAMA_ARG_NUMA")); | |
add_opt(common_arg( | |
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", | |
"number of layers to store in VRAM", | |
[](common_params & params, int value) { | |
params.n_gpu_layers = value; | |
if (!llama_supports_gpu_offload()) { | |
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n"); | |
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); | |
} | |
} | |
).set_env("LLAMA_ARG_N_GPU_LAYERS")); | |
add_opt(common_arg( | |
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N", | |
"number of layers to store in VRAM for the draft model", | |
[](common_params & params, int value) { | |
params.n_gpu_layers_draft = value; | |
if (!llama_supports_gpu_offload()) { | |
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n"); | |
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-sm", "--split-mode"}, "{none,layer,row}", | |
"how to split the model across multiple GPUs, one of:\n" | |
"- none: use one GPU only\n" | |
"- layer (default): split layers and KV across GPUs\n" | |
"- row: split rows across GPUs", | |
[](common_params & params, const std::string & value) { | |
std::string arg_next = value; | |
if (arg_next == "none") { | |
params.split_mode = LLAMA_SPLIT_MODE_NONE; | |
} else if (arg_next == "layer") { | |
params.split_mode = LLAMA_SPLIT_MODE_LAYER; | |
} else if (arg_next == "row") { | |
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n"); | |
exit(1); | |
params.split_mode = LLAMA_SPLIT_MODE_ROW; | |
} else { | |
throw std::invalid_argument("invalid value"); | |
} | |
if (!llama_supports_gpu_offload()) { | |
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n"); | |
} | |
} | |
).set_env("LLAMA_ARG_SPLIT_MODE")); | |
add_opt(common_arg( | |
{"-ts", "--tensor-split"}, "N0,N1,N2,...", | |
"fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1", | |
[](common_params & params, const std::string & value) { | |
std::string arg_next = value; | |
// split string by , and / | |
const std::regex regex{ R"([,/]+)" }; | |
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; | |
std::vector<std::string> split_arg{ it, {} }; | |
if (split_arg.size() >= llama_max_devices()) { | |
throw std::invalid_argument( | |
string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices()) | |
); | |
} | |
for (size_t i = 0; i < llama_max_devices(); ++i) { | |
if (i < split_arg.size()) { | |
params.tensor_split[i] = std::stof(split_arg[i]); | |
} else { | |
params.tensor_split[i] = 0.0f; | |
} | |
} | |
if (!llama_supports_gpu_offload()) { | |
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n"); | |
} | |
} | |
).set_env("LLAMA_ARG_TENSOR_SPLIT")); | |
add_opt(common_arg( | |
{"-mg", "--main-gpu"}, "INDEX", | |
string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu), | |
[](common_params & params, int value) { | |
params.main_gpu = value; | |
if (!llama_supports_gpu_offload()) { | |
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n"); | |
} | |
} | |
).set_env("LLAMA_ARG_MAIN_GPU")); | |
add_opt(common_arg( | |
{"--check-tensors"}, | |
string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"), | |
[](common_params & params) { | |
params.check_tensors = true; | |
} | |
)); | |
add_opt(common_arg( | |
{"--override-kv"}, "KEY=TYPE:VALUE", | |
"advanced option to override model metadata by key. may be specified multiple times.\n" | |
"types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false", | |
[](common_params & params, const std::string & value) { | |
if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) { | |
throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str())); | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"--lora"}, "FNAME", | |
"path to LoRA adapter (can be repeated to use multiple adapters)", | |
[](common_params & params, const std::string & value) { | |
params.lora_adapters.push_back({ std::string(value), 1.0 }); | |
} | |
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg | |
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); | |
add_opt(common_arg( | |
{"--lora-scaled"}, "FNAME", "SCALE", | |
"path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)", | |
[](common_params & params, const std::string & fname, const std::string & scale) { | |
params.lora_adapters.push_back({ fname, std::stof(scale) }); | |
} | |
// we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg | |
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); | |
add_opt(common_arg( | |
{"--control-vector"}, "FNAME", | |
"add a control vector\nnote: this argument can be repeated to add multiple control vectors", | |
[](common_params & params, const std::string & value) { | |
params.control_vectors.push_back({ 1.0f, value, }); | |
} | |
)); | |
add_opt(common_arg( | |
{"--control-vector-scaled"}, "FNAME", "SCALE", | |
"add a control vector with user defined scaling SCALE\n" | |
"note: this argument can be repeated to add multiple scaled control vectors", | |
[](common_params & params, const std::string & fname, const std::string & scale) { | |
params.control_vectors.push_back({ std::stof(scale), fname }); | |
} | |
)); | |
add_opt(common_arg( | |
{"--control-vector-layer-range"}, "START", "END", | |
"layer range to apply the control vector(s) to, start and end inclusive", | |
[](common_params & params, const std::string & start, const std::string & end) { | |
params.control_vector_layer_start = std::stoi(start); | |
params.control_vector_layer_end = std::stoi(end); | |
} | |
)); | |
add_opt(common_arg( | |
{"-a", "--alias"}, "STRING", | |
"set alias for model name (to be used by REST API)", | |
[](common_params & params, const std::string & value) { | |
params.model_alias = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS")); | |
add_opt(common_arg( | |
{"-m", "--model"}, "FNAME", | |
ex == LLAMA_EXAMPLE_EXPORT_LORA | |
? std::string("model path from which to load base model") | |
: string_format( | |
"model path (default: `models/$filename` with filename from `--hf-file` " | |
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH | |
), | |
[](common_params & params, const std::string & value) { | |
params.model = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL")); | |
add_opt(common_arg( | |
{"-md", "--model-draft"}, "FNAME", | |
"draft model for speculative decoding (default: unused)", | |
[](common_params & params, const std::string & value) { | |
params.model_draft = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); | |
add_opt(common_arg( | |
{"-mu", "--model-url"}, "MODEL_URL", | |
"model download url (default: unused)", | |
[](common_params & params, const std::string & value) { | |
params.model_url = value; | |
} | |
).set_env("LLAMA_ARG_MODEL_URL")); | |
add_opt(common_arg( | |
{"-hfr", "--hf-repo"}, "REPO", | |
"Hugging Face model repository (default: unused)", | |
[](common_params & params, const std::string & value) { | |
params.hf_repo = value; | |
} | |
).set_env("LLAMA_ARG_HF_REPO")); | |
add_opt(common_arg( | |
{"-hff", "--hf-file"}, "FILE", | |
"Hugging Face model file (default: unused)", | |
[](common_params & params, const std::string & value) { | |
params.hf_file = value; | |
} | |
).set_env("LLAMA_ARG_HF_FILE")); | |
add_opt(common_arg( | |
{"-hft", "--hf-token"}, "TOKEN", | |
"Hugging Face access token (default: value from HF_TOKEN environment variable)", | |
[](common_params & params, const std::string & value) { | |
params.hf_token = value; | |
} | |
).set_env("HF_TOKEN")); | |
add_opt(common_arg( | |
{"--context-file"}, "FNAME", | |
"file to load context from (repeat to specify multiple files)", | |
[](common_params & params, const std::string & value) { | |
std::ifstream file(value, std::ios::binary); | |
if (!file) { | |
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
} | |
params.context_files.push_back(value); | |
} | |
).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); | |
add_opt(common_arg( | |
{"--chunk-size"}, "N", | |
string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size), | |
[](common_params & params, int value) { | |
params.chunk_size = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); | |
add_opt(common_arg( | |
{"--chunk-separator"}, "STRING", | |
string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.chunk_separator = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); | |
add_opt(common_arg( | |
{"--junk"}, "N", | |
string_format("number of times to repeat the junk text (default: %d)", params.n_junk), | |
[](common_params & params, int value) { | |
params.n_junk = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PASSKEY})); | |
add_opt(common_arg( | |
{"--pos"}, "N", | |
string_format("position of the passkey in the junk text (default: %d)", params.i_pos), | |
[](common_params & params, int value) { | |
params.i_pos = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_PASSKEY})); | |
add_opt(common_arg( | |
{"-o", "--output", "--output-file"}, "FNAME", | |
string_format("output file (default: '%s')", | |
ex == LLAMA_EXAMPLE_EXPORT_LORA | |
? params.lora_outfile.c_str() | |
: ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR | |
? params.cvector_outfile.c_str() | |
: params.out_file.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.out_file = value; | |
params.cvector_outfile = value; | |
params.lora_outfile = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA})); | |
add_opt(common_arg( | |
{"-ofreq", "--output-frequency"}, "N", | |
string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq), | |
[](common_params & params, int value) { | |
params.n_out_freq = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
add_opt(common_arg( | |
{"--save-frequency"}, "N", | |
string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq), | |
[](common_params & params, int value) { | |
params.n_save_freq = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
add_opt(common_arg( | |
{"--process-output"}, | |
string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"), | |
[](common_params & params) { | |
params.process_output = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
add_opt(common_arg( | |
{"--no-ppl"}, | |
string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"), | |
[](common_params & params) { | |
params.compute_ppl = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
add_opt(common_arg( | |
{"--chunk", "--from-chunk"}, "N", | |
string_format("start processing the input from chunk N (default: %d)", params.i_chunk), | |
[](common_params & params, int value) { | |
params.i_chunk = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_IMATRIX})); | |
add_opt(common_arg( | |
{"-pps"}, | |
string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"), | |
[](common_params & params) { | |
params.is_pp_shared = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_BENCH})); | |
add_opt(common_arg( | |
{"-npp"}, "n0,n1,...", | |
"number of prompt tokens", | |
[](common_params & params, const std::string & value) { | |
auto p = string_split<int>(value, ','); | |
params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); | |
} | |
).set_examples({LLAMA_EXAMPLE_BENCH})); | |
add_opt(common_arg( | |
{"-ntg"}, "n0,n1,...", | |
"number of text generation tokens", | |
[](common_params & params, const std::string & value) { | |
auto p = string_split<int>(value, ','); | |
params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); | |
} | |
).set_examples({LLAMA_EXAMPLE_BENCH})); | |
add_opt(common_arg( | |
{"-npl"}, "n0,n1,...", | |
"number of parallel prompts", | |
[](common_params & params, const std::string & value) { | |
auto p = string_split<int>(value, ','); | |
params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); | |
} | |
).set_examples({LLAMA_EXAMPLE_BENCH})); | |
add_opt(common_arg( | |
{"--embd-normalize"}, "N", | |
string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize), | |
[](common_params & params, int value) { | |
params.embd_normalize = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
add_opt(common_arg( | |
{"--embd-output-format"}, "FORMAT", | |
"empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix", | |
[](common_params & params, const std::string & value) { | |
params.embd_out = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
add_opt(common_arg( | |
{"--embd-separator"}, "STRING", | |
"separator of embeddings (default \\n) for example \"<#sep#>\"", | |
[](common_params & params, const std::string & value) { | |
params.embd_sep = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_EMBEDDING})); | |
add_opt(common_arg( | |
{"--host"}, "HOST", | |
string_format("ip address to listen (default: %s)", params.hostname.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.hostname = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST")); | |
add_opt(common_arg( | |
{"--port"}, "PORT", | |
string_format("port to listen (default: %d)", params.port), | |
[](common_params & params, int value) { | |
params.port = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT")); | |
add_opt(common_arg( | |
{"--path"}, "PATH", | |
string_format("path to serve static files from (default: %s)", params.public_path.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.public_path = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH")); | |
add_opt(common_arg( | |
{"--embedding", "--embeddings"}, | |
string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.embedding = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS")); | |
add_opt(common_arg( | |
{"--reranking", "--rerank"}, | |
string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.reranking = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING")); | |
add_opt(common_arg( | |
{"--api-key"}, "KEY", | |
"API key to use for authentication (default: none)", | |
[](common_params & params, const std::string & value) { | |
params.api_keys.push_back(value); | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY")); | |
add_opt(common_arg( | |
{"--api-key-file"}, "FNAME", | |
"path to file containing API keys (default: none)", | |
[](common_params & params, const std::string & value) { | |
std::ifstream key_file(value); | |
if (!key_file) { | |
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str())); | |
} | |
std::string key; | |
while (std::getline(key_file, key)) { | |
if (!key.empty()) { | |
params.api_keys.push_back(key); | |
} | |
} | |
key_file.close(); | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER})); | |
add_opt(common_arg( | |
{"--ssl-key-file"}, "FNAME", | |
"path to file a PEM-encoded SSL private key", | |
[](common_params & params, const std::string & value) { | |
params.ssl_file_key = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE")); | |
add_opt(common_arg( | |
{"--ssl-cert-file"}, "FNAME", | |
"path to file a PEM-encoded SSL certificate", | |
[](common_params & params, const std::string & value) { | |
params.ssl_file_cert = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE")); | |
add_opt(common_arg( | |
{"-to", "--timeout"}, "N", | |
string_format("server read/write timeout in seconds (default: %d)", params.timeout_read), | |
[](common_params & params, int value) { | |
params.timeout_read = value; | |
params.timeout_write = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT")); | |
add_opt(common_arg( | |
{"--threads-http"}, "N", | |
string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http), | |
[](common_params & params, int value) { | |
params.n_threads_http = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP")); | |
add_opt(common_arg( | |
{"--cache-reuse"}, "N", | |
string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse), | |
[](common_params & params, int value) { | |
params.n_cache_reuse = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE")); | |
add_opt(common_arg( | |
{"--metrics"}, | |
string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.endpoint_metrics = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); | |
add_opt(common_arg( | |
{"--slots"}, | |
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.endpoint_slots = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS")); | |
add_opt(common_arg( | |
{"--props"}, | |
string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.endpoint_props = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS")); | |
add_opt(common_arg( | |
{"--no-slots"}, | |
"disables slots monitoring endpoint", | |
[](common_params & params) { | |
params.endpoint_slots = false; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS")); | |
add_opt(common_arg( | |
{"--slot-save-path"}, "PATH", | |
"path to save slot kv cache (default: disabled)", | |
[](common_params & params, const std::string & value) { | |
params.slot_save_path = value; | |
// if doesn't end with DIRECTORY_SEPARATOR, add it | |
if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { | |
params.slot_save_path += DIRECTORY_SEPARATOR; | |
} | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER})); | |
add_opt(common_arg( | |
{"--chat-template"}, "JINJA_TEMPLATE", | |
"set custom jinja chat template (default: template taken from model's metadata)\n" | |
"if suffix/prefix are specified, template will be disabled\n" | |
"only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template", | |
[](common_params & params, const std::string & value) { | |
if (!common_chat_verify_template(value)) { | |
throw std::runtime_error(string_format( | |
"error: the supplied chat template is not supported: %s\n" | |
"note: llama.cpp does not use jinja parser, we only support commonly used templates\n", | |
value.c_str() | |
)); | |
} | |
params.chat_template = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE")); | |
add_opt(common_arg( | |
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY", | |
string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity), | |
[](common_params & params, const std::string & value) { | |
params.slot_prompt_similarity = std::stof(value); | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER})); | |
add_opt(common_arg( | |
{"--lora-init-without-apply"}, | |
string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"), | |
[](common_params & params) { | |
params.lora_init_without_apply = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_SERVER})); | |
add_opt(common_arg( | |
{"--simple-io"}, | |
"use basic IO for better compatibility in subprocesses and limited consoles", | |
[](common_params & params) { | |
params.simple_io = true; | |
} | |
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); | |
add_opt(common_arg( | |
{"-ld", "--logdir"}, "LOGDIR", | |
"path under which to save YAML logs (no logging if unset)", | |
[](common_params & params, const std::string & value) { | |
params.logdir = value; | |
if (params.logdir.back() != DIRECTORY_SEPARATOR) { | |
params.logdir += DIRECTORY_SEPARATOR; | |
} | |
} | |
)); | |
add_opt(common_arg( | |
{"--positive-file"}, "FNAME", | |
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.cvector_positive_file = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
add_opt(common_arg( | |
{"--negative-file"}, "FNAME", | |
string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()), | |
[](common_params & params, const std::string & value) { | |
params.cvector_negative_file = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
add_opt(common_arg( | |
{"--pca-batch"}, "N", | |
string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch), | |
[](common_params & params, int value) { | |
params.n_pca_batch = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
add_opt(common_arg( | |
{"--pca-iter"}, "N", | |
string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations), | |
[](common_params & params, int value) { | |
params.n_pca_iterations = value; | |
} | |
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
add_opt(common_arg( | |
{"--method"}, "{pca, mean}", | |
"dimensionality reduction method to be used (default: pca)", | |
[](common_params & params, const std::string & value) { | |
/**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; } | |
else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; } | |
else { throw std::invalid_argument("invalid value"); } | |
} | |
).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); | |
add_opt(common_arg( | |
{"--output-format"}, "{md,jsonl}", | |
"output format for batched-bench results (default: md)", | |
[](common_params & params, const std::string & value) { | |
/**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; } | |
else if (value == "md") { params.batched_bench_output_jsonl = false; } | |
else { std::invalid_argument("invalid value"); } | |
} | |
).set_examples({LLAMA_EXAMPLE_BENCH})); | |
add_opt(common_arg( | |
{"--log-disable"}, | |
"Log disable", | |
[](common_params &) { | |
common_log_pause(common_log_main()); | |
} | |
)); | |
add_opt(common_arg( | |
{"--log-file"}, "FNAME", | |
"Log to file", | |
[](common_params &, const std::string & value) { | |
common_log_set_file(common_log_main(), value.c_str()); | |
} | |
)); | |
add_opt(common_arg( | |
{"--log-colors"}, | |
"Enable colored logging", | |
[](common_params &) { | |
common_log_set_colors(common_log_main(), true); | |
} | |
).set_env("LLAMA_LOG_COLORS")); | |
add_opt(common_arg( | |
{"-v", "--verbose", "--log-verbose"}, | |
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)", | |
[](common_params & params) { | |
params.verbosity = INT_MAX; | |
common_log_set_verbosity_thold(INT_MAX); | |
} | |
)); | |
add_opt(common_arg( | |
{"-lv", "--verbosity", "--log-verbosity"}, "N", | |
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.", | |
[](common_params & params, int value) { | |
params.verbosity = value; | |
common_log_set_verbosity_thold(value); | |
} | |
).set_env("LLAMA_LOG_VERBOSITY")); | |
add_opt(common_arg( | |
{"--log-prefix"}, | |
"Enable prefx in log messages", | |
[](common_params &) { | |
common_log_set_prefix(common_log_main(), true); | |
} | |
).set_env("LLAMA_LOG_PREFIX")); | |
add_opt(common_arg( | |
{"--log-timestamps"}, | |
"Enable timestamps in log messages", | |
[](common_params &) { | |
common_log_set_timestamps(common_log_main(), true); | |
} | |
).set_env("LLAMA_LOG_TIMESTAMPS")); | |
return ctx_arg; | |
} | |