File size: 89,771 Bytes
57e3690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
#include "arg.h"

#include "log.h"
#include "sampling.h"

#include <algorithm>
#include <climits>
#include <cstdarg>
#include <fstream>
#include <regex>
#include <set>
#include <string>
#include <thread>
#include <vector>

#include "json-schema-to-grammar.h"

using json = nlohmann::ordered_json;

common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
    this->examples = std::move(examples);
    return *this;
}

common_arg & common_arg::set_env(const char * env) {
    help = help + "\n(env: " + env + ")";
    this->env = env;
    return *this;
}

common_arg & common_arg::set_sparam() {
    is_sparam = true;
    return *this;
}

bool common_arg::in_example(enum llama_example ex) {
    return examples.find(ex) != examples.end();
}

bool common_arg::get_value_from_env(std::string & output) {
    if (env == nullptr) return false;
    char * value = std::getenv(env);
    if (value) {
        output = value;
        return true;
    }
    return false;
}

bool common_arg::has_value_from_env() {
    return env != nullptr && std::getenv(env);
}

static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
    std::vector<std::string> result;
    std::istringstream iss(input);
    std::string line;
    auto add_line = [&](const std::string& l) {
        if (l.length() <= max_char_per_line) {
            result.push_back(l);
        } else {
            std::istringstream line_stream(l);
            std::string word, current_line;
            while (line_stream >> word) {
                if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
                    if (!current_line.empty()) result.push_back(current_line);
                    current_line = word;
                } else {
                    current_line += (!current_line.empty() ? " " : "") + word;
                }
            }
            if (!current_line.empty()) result.push_back(current_line);
        }
    };
    while (std::getline(iss, line)) {
        add_line(line);
    }
    return result;
}

std::string common_arg::to_string() {
    // params for printing to console
    const static int n_leading_spaces = 40;
    const static int n_char_per_line_help = 70; // TODO: detect this based on current console
    std::string leading_spaces(n_leading_spaces, ' ');

    std::ostringstream ss;
    for (const auto arg : args) {
        if (arg == args.front()) {
            if (args.size() == 1) {
                ss << arg;
            } else {
                // first arg is usually abbreviation, we need padding to make it more beautiful
                auto tmp = std::string(arg) + ", ";
                auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
                ss << tmp << spaces;
            }
        } else {
            ss << arg << (arg != args.back() ? ", " : "");
        }
    }
    if (value_hint) ss << " " << value_hint;
    if (value_hint_2) ss << " " << value_hint_2;
    if (ss.tellp() > n_leading_spaces - 3) {
        // current line is too long, add new line
        ss << "\n" << leading_spaces;
    } else {
        // padding between arg and help, same line
        ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
    }
    const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
    for (const auto & line : help_lines) {
        ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
    }
    return ss.str();
}

//
// utils
//

static void common_params_handle_model_default(common_params & params) {
    if (!params.hf_repo.empty()) {
        // short-hand to avoid specifying --hf-file -> default it to --model
        if (params.hf_file.empty()) {
            if (params.model.empty()) {
                throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
            }
            params.hf_file = params.model;
        } else if (params.model.empty()) {
            params.model = fs_get_cache_file(string_split<std::string>(params.hf_file, '/').back());
        }
    } else if (!params.model_url.empty()) {
        if (params.model.empty()) {
            auto f = string_split<std::string>(params.model_url, '#').front();
            f = string_split<std::string>(f, '?').front();
            params.model = fs_get_cache_file(string_split<std::string>(f, '/').back());
        }
    } else if (params.model.empty()) {
        params.model = DEFAULT_MODEL_PATH;
    }
}

//
// CLI argument parsing functions
//

static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
    std::string arg;
    const std::string arg_prefix = "--";
    common_params & params = ctx_arg.params;

    std::unordered_map<std::string, common_arg *> arg_to_options;
    for (auto & opt : ctx_arg.options) {
        for (const auto & arg : opt.args) {
            arg_to_options[arg] = &opt;
        }
    }

    // handle environment variables
    for (auto & opt : ctx_arg.options) {
        std::string value;
        if (opt.get_value_from_env(value)) {
            try {
                if (opt.handler_void && (value == "1" || value == "true")) {
                    opt.handler_void(params);
                }
                if (opt.handler_int) {
                    opt.handler_int(params, std::stoi(value));
                }
                if (opt.handler_string) {
                    opt.handler_string(params, value);
                    continue;
                }
            } catch (std::exception & e) {
                throw std::invalid_argument(string_format(
                    "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
            }
        }
    }

    // handle command line arguments
    auto check_arg = [&](int i) {
        if (i+1 >= argc) {
            throw std::invalid_argument("expected value for argument");
        }
    };

    for (int i = 1; i < argc; i++) {
        const std::string arg_prefix = "--";

        std::string arg = argv[i];
        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
            std::replace(arg.begin(), arg.end(), '_', '-');
        }
        if (arg_to_options.find(arg) == arg_to_options.end()) {
            throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
        }
        auto opt = *arg_to_options[arg];
        if (opt.has_value_from_env()) {
            fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
        }
        try {
            if (opt.handler_void) {
                opt.handler_void(params);
                continue;
            }

            // arg with single value
            check_arg(i);
            std::string val = argv[++i];
            if (opt.handler_int) {
                opt.handler_int(params, std::stoi(val));
                continue;
            }
            if (opt.handler_string) {
                opt.handler_string(params, val);
                continue;
            }

            // arg with 2 values
            check_arg(i);
            std::string val2 = argv[++i];
            if (opt.handler_str_str) {
                opt.handler_str_str(params, val, val2);
                continue;
            }
        } catch (std::exception & e) {
            throw std::invalid_argument(string_format(
                "error while handling argument \"%s\": %s\n\n"
                "usage:\n%s\n\nto show complete usage, run with -h",
                arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
        }
    }

    postprocess_cpu_params(params.cpuparams, nullptr);
    postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
    postprocess_cpu_params(params.draft_cpuparams, &params.cpuparams);
    postprocess_cpu_params(params.draft_cpuparams_batch, &params.cpuparams_batch);

    if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
        throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
    }

    common_params_handle_model_default(params);

    if (params.escape) {
        string_process_escapes(params.prompt);
        string_process_escapes(params.input_prefix);
        string_process_escapes(params.input_suffix);
        for (auto & antiprompt : params.antiprompt) {
            string_process_escapes(antiprompt);
        }
        for (auto & seq_breaker : params.sparams.dry_sequence_breakers) {
            string_process_escapes(seq_breaker);
        }
    }

    if (!params.kv_overrides.empty()) {
        params.kv_overrides.emplace_back();
        params.kv_overrides.back().key[0] = 0;
    }

    if (params.reranking && params.embedding) {
        throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
    }

    return true;
}

static void common_params_print_usage(common_params_context & ctx_arg) {
    auto print_options = [](std::vector<common_arg *> & options) {
        for (common_arg * opt : options) {
            printf("%s", opt->to_string().c_str());
        }
    };

    std::vector<common_arg *> common_options;
    std::vector<common_arg *> sparam_options;
    std::vector<common_arg *> specific_options;
    for (auto & opt : ctx_arg.options) {
        // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
        if (opt.is_sparam) {
            sparam_options.push_back(&opt);
        } else if (opt.in_example(ctx_arg.ex)) {
            specific_options.push_back(&opt);
        } else {
            common_options.push_back(&opt);
        }
    }
    printf("----- common params -----\n\n");
    print_options(common_options);
    printf("\n\n----- sampling params -----\n\n");
    print_options(sparam_options);
    // TODO: maybe convert enum llama_example to string
    printf("\n\n----- example-specific params -----\n\n");
    print_options(specific_options);
}

bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
    auto ctx_arg = common_params_parser_init(params, ex, print_usage);
    const common_params params_org = ctx_arg.params; // the example can modify the default params

    try {
        if (!common_params_parse_ex(argc, argv, ctx_arg)) {
            ctx_arg.params = params_org;
            return false;
        }
        if (ctx_arg.params.usage) {
            common_params_print_usage(ctx_arg);
            if (ctx_arg.print_usage) {
                ctx_arg.print_usage(argc, argv);
            }
            exit(0);
        }
    } catch (const std::invalid_argument & ex) {
        fprintf(stderr, "%s\n", ex.what());
        ctx_arg.params = params_org;
        return false;
    }

    return true;
}

common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
    common_params_context ctx_arg(params);
    ctx_arg.print_usage = print_usage;
    ctx_arg.ex          = ex;

    std::string sampler_type_chars;
    std::string sampler_type_names;
    for (const auto & sampler : params.sparams.samplers) {
        sampler_type_chars += common_sampler_type_to_chr(sampler);
        sampler_type_names += common_sampler_type_to_str(sampler) + ";";
    }
    sampler_type_names.pop_back();


    /**
     * filter options by example
     * rules:
     * - all examples inherit options from LLAMA_EXAMPLE_COMMON
     * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
     * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
     */
    auto add_opt = [&](common_arg arg) {
        if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) {
            ctx_arg.options.push_back(std::move(arg));
        }
    };


    add_opt(common_arg(
        {"-h", "--help", "--usage"},
        "print usage and exit",
        [](common_params & params) {
            params.usage = true;
        }
    ));
    add_opt(common_arg(
        {"--version"},
        "show version and build info",
        [](common_params &) {
            fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
            fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
            exit(0);
        }
    ));
    add_opt(common_arg(
        {"--verbose-prompt"},
        string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
        [](common_params & params) {
            params.verbose_prompt = true;
        }
    ));
    add_opt(common_arg(
        {"--no-display-prompt"},
        string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
        [](common_params & params) {
            params.display_prompt = false;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"-co", "--color"},
        string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
        [](common_params & params) {
            params.use_color = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
    add_opt(common_arg(
        {"-t", "--threads"}, "N",
        string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
        [](common_params & params, int value) {
            params.cpuparams.n_threads = value;
            if (params.cpuparams.n_threads <= 0) {
                params.cpuparams.n_threads = std::thread::hardware_concurrency();
            }
        }
    ).set_env("LLAMA_ARG_THREADS"));
    add_opt(common_arg(
        {"-tb", "--threads-batch"}, "N",
        "number of threads to use during batch and prompt processing (default: same as --threads)",
        [](common_params & params, int value) {
            params.cpuparams_batch.n_threads = value;
            if (params.cpuparams_batch.n_threads <= 0) {
                params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
            }
        }
    ));
    add_opt(common_arg(
        {"-td", "--threads-draft"}, "N",
        "number of threads to use during generation (default: same as --threads)",
        [](common_params & params, int value) {
            params.draft_cpuparams.n_threads = value;
            if (params.draft_cpuparams.n_threads <= 0) {
                params.draft_cpuparams.n_threads = std::thread::hardware_concurrency();
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-tbd", "--threads-batch-draft"}, "N",
        "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
        [](common_params & params, int value) {
            params.draft_cpuparams_batch.n_threads = value;
            if (params.draft_cpuparams_batch.n_threads <= 0) {
                params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency();
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-C", "--cpu-mask"}, "M",
        "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
        [](common_params & params, const std::string & mask) {
            params.cpuparams.mask_valid = true;
            if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
                throw std::invalid_argument("invalid cpumask");
            }
        }
    ));
    add_opt(common_arg(
        {"-Cr", "--cpu-range"}, "lo-hi",
        "range of CPUs for affinity. Complements --cpu-mask",
        [](common_params & params, const std::string & range) {
            params.cpuparams.mask_valid = true;
            if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
                throw std::invalid_argument("invalid range");
            }
        }
    ));
    add_opt(common_arg(
        {"--cpu-strict"}, "<0|1>",
        string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
        [](common_params & params, const std::string & value) {
            params.cpuparams.strict_cpu = std::stoul(value);
        }
    ));
    add_opt(common_arg(
        {"--prio"}, "N",
        string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
        [](common_params & params, int prio) {
            if (prio < 0 || prio > 3) {
                throw std::invalid_argument("invalid value");
            }
            params.cpuparams.priority = (enum ggml_sched_priority) prio;
        }
    ));
    add_opt(common_arg(
        {"--poll"}, "<0...100>",
        string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
        [](common_params & params, const std::string & value) {
            params.cpuparams.poll = std::stoul(value);
        }
    ));
    add_opt(common_arg(
        {"-Cb", "--cpu-mask-batch"}, "M",
        "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
        [](common_params & params, const std::string & mask) {
            params.cpuparams_batch.mask_valid = true;
            if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
                throw std::invalid_argument("invalid cpumask");
            }
        }
    ));
    add_opt(common_arg(
        {"-Crb", "--cpu-range-batch"}, "lo-hi",
        "ranges of CPUs for affinity. Complements --cpu-mask-batch",
        [](common_params & params, const std::string & range) {
            params.cpuparams_batch.mask_valid = true;
            if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
                throw std::invalid_argument("invalid range");
            }
        }
    ));
    add_opt(common_arg(
        {"--cpu-strict-batch"}, "<0|1>",
        "use strict CPU placement (default: same as --cpu-strict)",
        [](common_params & params, int value) {
            params.cpuparams_batch.strict_cpu = value;
        }
    ));
    add_opt(common_arg(
        {"--prio-batch"}, "N",
        string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
        [](common_params & params, int prio) {
            if (prio < 0 || prio > 3) {
                throw std::invalid_argument("invalid value");
            }
            params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
        }
    ));
    add_opt(common_arg(
        {"--poll-batch"}, "<0|1>",
        "use polling to wait for work (default: same as --poll)",
        [](common_params & params, int value) {
            params.cpuparams_batch.poll = value;
        }
    ));
    add_opt(common_arg(
        {"-Cd", "--cpu-mask-draft"}, "M",
        "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
        [](common_params & params, const std::string & mask) {
            params.draft_cpuparams.mask_valid = true;
            if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) {
                throw std::invalid_argument("invalid cpumask");
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-Crd", "--cpu-range-draft"}, "lo-hi",
        "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
        [](common_params & params, const std::string & range) {
            params.draft_cpuparams.mask_valid = true;
            if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) {
                throw std::invalid_argument("invalid range");
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"--cpu-strict-draft"}, "<0|1>",
        "Use strict CPU placement for draft model (default: same as --cpu-strict)",
        [](common_params & params, int value) {
            params.draft_cpuparams.strict_cpu = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"--prio-draft"}, "N",
        string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams.priority),
        [](common_params & params, int prio) {
            if (prio < 0 || prio > 3) {
                throw std::invalid_argument("invalid value");
            }
            params.draft_cpuparams.priority = (enum ggml_sched_priority) prio;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"--poll-draft"}, "<0|1>",
        "Use polling to wait for draft model work (default: same as --poll])",
        [](common_params & params, int value) {
            params.draft_cpuparams.poll = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-Cbd", "--cpu-mask-batch-draft"}, "M",
        "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
        [](common_params & params, const std::string & mask) {
            params.draft_cpuparams_batch.mask_valid = true;
            if (!parse_cpu_mask(mask, params.draft_cpuparams_batch.cpumask)) {
                throw std::invalid_argument("invalid cpumask");
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
        "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
        [](common_params & params, const std::string & range) {
            params.draft_cpuparams_batch.mask_valid = true;
            if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) {
                throw std::invalid_argument("invalid cpumask");
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"--cpu-strict-batch-draft"}, "<0|1>",
        "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
        [](common_params & params, int value) {
            params.draft_cpuparams_batch.strict_cpu = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"--prio-batch-draft"}, "N",
        string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams_batch.priority),
        [](common_params & params, int prio) {
            if (prio < 0 || prio > 3) {
                throw std::invalid_argument("invalid value");
            }
            params.draft_cpuparams_batch.priority = (enum ggml_sched_priority) prio;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"--poll-batch-draft"}, "<0|1>",
        "Use polling to wait for draft model work (default: --poll-draft)",
        [](common_params & params, int value) {
            params.draft_cpuparams_batch.poll = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"--draft"}, "N",
        string_format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft),
        [](common_params & params, int value) {
            params.n_draft = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
    add_opt(common_arg(
        {"-ps", "--p-split"}, "N",
        string_format("speculative decoding split probability (default: %.1f)", (double)params.p_split),
        [](common_params & params, const std::string & value) {
            params.p_split = std::stof(value);
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-lcs", "--lookup-cache-static"}, "FNAME",
        "path to static lookup cache to use for lookup decoding (not updated by generation)",
        [](common_params & params, const std::string & value) {
            params.lookup_cache_static = value;
        }
    ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
    add_opt(common_arg(
        {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
        "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
        [](common_params & params, const std::string & value) {
            params.lookup_cache_dynamic = value;
        }
    ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
    add_opt(common_arg(
        {"-c", "--ctx-size"}, "N",
        string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
        [](common_params & params, int value) {
            params.n_ctx = value;
        }
    ).set_env("LLAMA_ARG_CTX_SIZE"));
    add_opt(common_arg(
        {"-n", "--predict", "--n-predict"}, "N",
        string_format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict),
        [](common_params & params, int value) {
            params.n_predict = value;
        }
    ).set_env("LLAMA_ARG_N_PREDICT"));
    add_opt(common_arg(
        {"-b", "--batch-size"}, "N",
        string_format("logical maximum batch size (default: %d)", params.n_batch),
        [](common_params & params, int value) {
            params.n_batch = value;
        }
    ).set_env("LLAMA_ARG_BATCH"));
    add_opt(common_arg(
        {"-ub", "--ubatch-size"}, "N",
        string_format("physical maximum batch size (default: %d)", params.n_ubatch),
        [](common_params & params, int value) {
            params.n_ubatch = value;
        }
    ).set_env("LLAMA_ARG_UBATCH"));
    add_opt(common_arg(
        {"--keep"}, "N",
        string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
        [](common_params & params, int value) {
            params.n_keep = value;
        }
    ));
    add_opt(common_arg(
        {"--no-context-shift"},
        string_format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
        [](common_params & params) {
            params.ctx_shift = false;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
    add_opt(common_arg(
        {"--chunks"}, "N",
        string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
        [](common_params & params, int value) {
            params.n_chunks = value;
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
    add_opt(common_arg(
        {"-fa", "--flash-attn"},
        string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
        [](common_params & params) {
            params.flash_attn = true;
        }
    ).set_env("LLAMA_ARG_FLASH_ATTN"));
    add_opt(common_arg(
        {"-p", "--prompt"}, "PROMPT",
        ex == LLAMA_EXAMPLE_MAIN
            ? "prompt to start generation with\nif -cnv is set, this will be used as system prompt"
            : "prompt to start generation with",
        [](common_params & params, const std::string & value) {
            params.prompt = value;
        }
    ));
    add_opt(common_arg(
        {"--no-perf"},
        string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
        [](common_params & params) {
            params.no_perf = true;
            params.sparams.no_perf = true;
        }
    ).set_env("LLAMA_ARG_NO_PERF"));
    add_opt(common_arg(
        {"-f", "--file"}, "FNAME",
        "a file containing the prompt (default: none)",
        [](common_params & params, const std::string & value) {
            std::ifstream file(value);
            if (!file) {
                throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
            }
            // store the external file name in params
            params.prompt_file = value;
            std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
            if (!params.prompt.empty() && params.prompt.back() == '\n') {
                params.prompt.pop_back();
            }
        }
    ));
    add_opt(common_arg(
        {"--in-file"}, "FNAME",
        "an input file (repeat to specify multiple files)",
        [](common_params & params, const std::string & value) {
            std::ifstream file(value);
            if (!file) {
                throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
            }
            params.in_files.push_back(value);
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
    add_opt(common_arg(
        {"-bf", "--binary-file"}, "FNAME",
        "binary file containing the prompt (default: none)",
        [](common_params & params, const std::string & value) {
            std::ifstream file(value, std::ios::binary);
            if (!file) {
                throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
            }
            // store the external file name in params
            params.prompt_file = value;
            std::ostringstream ss;
            ss << file.rdbuf();
            params.prompt = ss.str();
            fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
        }
    ));
    add_opt(common_arg(
        {"-e", "--escape"},
        string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
        [](common_params & params) {
            params.escape = true;
        }
    ));
    add_opt(common_arg(
        {"--no-escape"},
        "do not process escape sequences",
        [](common_params & params) {
            params.escape = false;
        }
    ));
    add_opt(common_arg(
        {"-ptc", "--print-token-count"}, "N",
        string_format("print token count every N tokens (default: %d)", params.n_print),
        [](common_params & params, int value) {
            params.n_print = value;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"--prompt-cache"}, "FNAME",
        "file to cache prompt state for faster startup (default: none)",
        [](common_params & params, const std::string & value) {
            params.path_prompt_cache = value;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"--prompt-cache-all"},
        "if specified, saves user input and generations to cache as well\n",
        [](common_params & params) {
            params.prompt_cache_all = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"--prompt-cache-ro"},
        "if specified, uses the prompt cache but does not update it",
        [](common_params & params) {
            params.prompt_cache_ro = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"-r", "--reverse-prompt"}, "PROMPT",
        "halt generation at PROMPT, return control in interactive mode\n",
        [](common_params & params, const std::string & value) {
            params.antiprompt.emplace_back(value);
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"-sp", "--special"},
        string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
        [](common_params & params) {
            params.special = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
    add_opt(common_arg(
        {"-cnv", "--conversation"},
        string_format(
            "run in conversation mode:\n"
            "- does not print special tokens and suffix/prefix\n"
            "- interactive mode is also enabled\n"
            "(default: %s)",
            params.conversation ? "true" : "false"
        ),
        [](common_params & params) {
            params.conversation = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"-i", "--interactive"},
        string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
        [](common_params & params) {
            params.interactive = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"-if", "--interactive-first"},
        string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
        [](common_params & params) {
            params.interactive_first = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"-mli", "--multiline-input"},
        "allows you to write or paste multiple lines without ending each in '\\'",
        [](common_params & params) {
            params.multiline_input = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"--in-prefix-bos"},
        "prefix BOS to user inputs, preceding the `--in-prefix` string",
        [](common_params & params) {
            params.input_prefix_bos = true;
            params.enable_chat_template = false;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"--in-prefix"}, "STRING",
        "string to prefix user inputs with (default: empty)",
        [](common_params & params, const std::string & value) {
            params.input_prefix = value;
            params.enable_chat_template = false;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
    add_opt(common_arg(
        {"--in-suffix"}, "STRING",
        "string to suffix after user inputs with (default: empty)",
        [](common_params & params, const std::string & value) {
            params.input_suffix = value;
            params.enable_chat_template = false;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
    add_opt(common_arg(
        {"--no-warmup"},
        "skip warming up the model with an empty run",
        [](common_params & params) {
            params.warmup = false;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"--spm-infill"},
        string_format(
            "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
            params.spm_infill ? "enabled" : "disabled"
        ),
        [](common_params & params) {
            params.spm_infill = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
    add_opt(common_arg(
        {"--samplers"}, "SAMPLERS",
        string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
        [](common_params & params, const std::string & value) {
            const auto sampler_names = string_split<std::string>(value, ';');
            params.sparams.samplers = common_sampler_types_from_names(sampler_names, true);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"-s", "--seed"}, "SEED",
        string_format("RNG seed (default: %d, use random seed for %d)", params.sparams.seed, LLAMA_DEFAULT_SEED),
        [](common_params & params, const std::string & value) {
            params.sparams.seed = std::stoul(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--sampling-seq"}, "SEQUENCE",
        string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
        [](common_params & params, const std::string & value) {
            params.sparams.samplers = common_sampler_types_from_chars(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--ignore-eos"},
        "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
        [](common_params & params) {
            params.sparams.ignore_eos = true;
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--penalize-nl"},
        string_format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"),
        [](common_params & params) {
            params.sparams.penalize_nl = true;
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--temp"}, "N",
        string_format("temperature (default: %.1f)", (double)params.sparams.temp),
        [](common_params & params, const std::string & value) {
            params.sparams.temp = std::stof(value);
            params.sparams.temp = std::max(params.sparams.temp, 0.0f);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--top-k"}, "N",
        string_format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k),
        [](common_params & params, int value) {
            params.sparams.top_k = value;
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--top-p"}, "N",
        string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p),
        [](common_params & params, const std::string & value) {
            params.sparams.top_p = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--min-p"}, "N",
        string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p),
        [](common_params & params, const std::string & value) {
            params.sparams.min_p = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--xtc-probability"}, "N",
        string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sparams.xtc_probability),
        [](common_params & params, const std::string & value) {
            params.sparams.xtc_probability = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--xtc-threshold"}, "N",
        string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sparams.xtc_threshold),
        [](common_params & params, const std::string & value) {
            params.sparams.xtc_threshold = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--typical"}, "N",
        string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),
        [](common_params & params, const std::string & value) {
            params.sparams.typ_p = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--repeat-last-n"}, "N",
        string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n),
        [](common_params & params, int value) {
            params.sparams.penalty_last_n = value;
            params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--repeat-penalty"}, "N",
        string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat),
        [](common_params & params, const std::string & value) {
            params.sparams.penalty_repeat = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--presence-penalty"}, "N",
        string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present),
        [](common_params & params, const std::string & value) {
            params.sparams.penalty_present = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--frequency-penalty"}, "N",
        string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq),
        [](common_params & params, const std::string & value) {
            params.sparams.penalty_freq = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--dry-multiplier"}, "N",
        string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sparams.dry_multiplier),
        [](common_params & params, const std::string & value) {
            params.sparams.dry_multiplier = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--dry-base"}, "N",
        string_format("set DRY sampling base value (default: %.2f)", (double)params.sparams.dry_base),
        [](common_params & params, const std::string & value) {
            float potential_base = std::stof(value);
            if (potential_base >= 1.0f)
            {
                params.sparams.dry_base = potential_base;
            }
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--dry-allowed-length"}, "N",
        string_format("set allowed length for DRY sampling (default: %d)", params.sparams.dry_allowed_length),
        [](common_params & params, int value) {
            params.sparams.dry_allowed_length = value;
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--dry-penalty-last-n"}, "N",
        string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sparams.dry_penalty_last_n),
        [](common_params & params, int value) {
            params.sparams.dry_penalty_last_n = value;
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--dry-sequence-breaker"}, "STRING",
        string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
            params.sparams.dry_sequence_breakers.empty() ? "none" :
            std::accumulate(std::next(params.sparams.dry_sequence_breakers.begin()),
                params.sparams.dry_sequence_breakers.end(),
                std::string("'") + (params.sparams.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sparams.dry_sequence_breakers[0]) + "'",
                [](const std::string& a, const std::string& b) {
                    std::string formatted_b = (b == "\n") ? "\\n" : b;
                    return a + ", '" + formatted_b + "'";
                }).c_str()),
        [](common_params & params, const std::string & value) {
            static bool defaults_cleared = false;

            if (!defaults_cleared) {
                params.sparams.dry_sequence_breakers.clear();
                defaults_cleared = true;
            }

            if (value == "none") {
                params.sparams.dry_sequence_breakers.clear();
            } else {
                params.sparams.dry_sequence_breakers.emplace_back(value);
            }
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--dynatemp-range"}, "N",
        string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range),
        [](common_params & params, const std::string & value) {
            params.sparams.dynatemp_range = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--dynatemp-exp"}, "N",
        string_format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent),
        [](common_params & params, const std::string & value) {
            params.sparams.dynatemp_exponent = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--mirostat"}, "N",
        string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
        "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat),
        [](common_params & params, int value) {
            params.sparams.mirostat = value;
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--mirostat-lr"}, "N",
        string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta),
        [](common_params & params, const std::string & value) {
            params.sparams.mirostat_eta = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--mirostat-ent"}, "N",
        string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau),
        [](common_params & params, const std::string & value) {
            params.sparams.mirostat_tau = std::stof(value);
        }
    ).set_sparam());
    add_opt(common_arg(
        {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
        "modifies the likelihood of token appearing in the completion,\n"
        "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
        "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
        [](common_params & params, const std::string & value) {
            std::stringstream ss(value);
            llama_token key;
            char sign;
            std::string value_str;
            try {
                if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
                    const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
                    params.sparams.logit_bias.push_back({key, bias});
                } else {
                    throw std::invalid_argument("invalid input format");
                }
            } catch (const std::exception&) {
                throw std::invalid_argument("invalid input format");
            }
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--grammar"}, "GRAMMAR",
        string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()),
        [](common_params & params, const std::string & value) {
            params.sparams.grammar = value;
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--grammar-file"}, "FNAME",
        "file to read grammar from",
        [](common_params & params, const std::string & value) {
            std::ifstream file(value);
            if (!file) {
                throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
            }
            std::copy(
                std::istreambuf_iterator<char>(file),
                std::istreambuf_iterator<char>(),
                std::back_inserter(params.sparams.grammar)
            );
        }
    ).set_sparam());
    add_opt(common_arg(
        {"-j", "--json-schema"}, "SCHEMA",
        "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
        [](common_params & params, const std::string & value) {
            params.sparams.grammar = json_schema_to_grammar(json::parse(value));
        }
    ).set_sparam());
    add_opt(common_arg(
        {"--pooling"}, "{none,mean,cls,last,rank}",
        "pooling type for embeddings, use model default if unspecified",
        [](common_params & params, const std::string & value) {
            /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
            else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
            else if (value == "cls")  { params.pooling_type = LLAMA_POOLING_TYPE_CLS;  }
            else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
            else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
            else { throw std::invalid_argument("invalid value"); }
        }
    ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
    add_opt(common_arg(
        {"--attention"}, "{causal,non-causal}",
        "attention type for embeddings, use model default if unspecified",
        [](common_params & params, const std::string & value) {
            /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
            else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
            else { throw std::invalid_argument("invalid value"); }
        }
    ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
    add_opt(common_arg(
        {"--rope-scaling"}, "{none,linear,yarn}",
        "RoPE frequency scaling method, defaults to linear unless specified by the model",
        [](common_params & params, const std::string & value) {
            /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
            else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
            else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
            else { throw std::invalid_argument("invalid value"); }
        }
    ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
    add_opt(common_arg(
        {"--rope-scale"}, "N",
        "RoPE context scaling factor, expands context by a factor of N",
        [](common_params & params, const std::string & value) {
            params.rope_freq_scale = 1.0f / std::stof(value);
        }
    ).set_env("LLAMA_ARG_ROPE_SCALE"));
    add_opt(common_arg(
        {"--rope-freq-base"}, "N",
        "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
        [](common_params & params, const std::string & value) {
            params.rope_freq_base = std::stof(value);
        }
    ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
    add_opt(common_arg(
        {"--rope-freq-scale"}, "N",
        "RoPE frequency scaling factor, expands context by a factor of 1/N",
        [](common_params & params, const std::string & value) {
            params.rope_freq_scale = std::stof(value);
        }
    ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
    add_opt(common_arg(
        {"--yarn-orig-ctx"}, "N",
        string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
        [](common_params & params, int value) {
            params.yarn_orig_ctx = value;
        }
    ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
    add_opt(common_arg(
        {"--yarn-ext-factor"}, "N",
        string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
        [](common_params & params, const std::string & value) {
            params.yarn_ext_factor = std::stof(value);
        }
    ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
    add_opt(common_arg(
        {"--yarn-attn-factor"}, "N",
        string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
        [](common_params & params, const std::string & value) {
            params.yarn_attn_factor = std::stof(value);
        }
    ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
    add_opt(common_arg(
        {"--yarn-beta-slow"}, "N",
        string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
        [](common_params & params, const std::string & value) {
            params.yarn_beta_slow = std::stof(value);
        }
    ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
    add_opt(common_arg(
        {"--yarn-beta-fast"}, "N",
        string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
        [](common_params & params, const std::string & value) {
            params.yarn_beta_fast = std::stof(value);
        }
    ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
    add_opt(common_arg(
        {"-gan", "--grp-attn-n"}, "N",
        string_format("group-attention factor (default: %d)", params.grp_attn_n),
        [](common_params & params, int value) {
            params.grp_attn_n = value;
        }
    ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
    add_opt(common_arg(
        {"-gaw", "--grp-attn-w"}, "N",
        string_format("group-attention width (default: %d)", params.grp_attn_w),
        [](common_params & params, int value) {
            params.grp_attn_w = value;
        }
    ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
    add_opt(common_arg(
        {"-dkvc", "--dump-kv-cache"},
        "verbose print of the KV cache",
        [](common_params & params) {
            params.dump_kv_cache = true;
        }
    ));
    add_opt(common_arg(
        {"-nkvo", "--no-kv-offload"},
        "disable KV offload",
        [](common_params & params) {
            params.no_kv_offload = true;
        }
    ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
    add_opt(common_arg(
        {"-ctk", "--cache-type-k"}, "TYPE",
        string_format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()),
        [](common_params & params, const std::string & value) {
            // TODO: get the type right here
            params.cache_type_k = value;
        }
    ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
    add_opt(common_arg(
        {"-ctv", "--cache-type-v"}, "TYPE",
        string_format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()),
        [](common_params & params, const std::string & value) {
            // TODO: get the type right here
            params.cache_type_v = value;
        }
    ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
    add_opt(common_arg(
        {"--perplexity", "--all-logits"},
        string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
        [](common_params & params) {
            params.logits_all = true;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--hellaswag"},
        "compute HellaSwag score over random tasks from datafile supplied with -f",
        [](common_params & params) {
            params.hellaswag = true;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--hellaswag-tasks"}, "N",
        string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
        [](common_params & params, int value) {
            params.hellaswag_tasks = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--winogrande"},
        "compute Winogrande score over random tasks from datafile supplied with -f",
        [](common_params & params) {
            params.winogrande = true;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--winogrande-tasks"}, "N",
        string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
        [](common_params & params, int value) {
            params.winogrande_tasks = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--multiple-choice"},
        "compute multiple choice score over random tasks from datafile supplied with -f",
        [](common_params & params) {
            params.multiple_choice = true;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--multiple-choice-tasks"}, "N",
        string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
        [](common_params & params, int value) {
            params.multiple_choice_tasks = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--kl-divergence"},
        "computes KL-divergence to logits provided via --kl-divergence-base",
        [](common_params & params) {
            params.kl_divergence = true;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
        "set logits file",
        [](common_params & params, const std::string & value) {
            params.logits_file = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--ppl-stride"}, "N",
        string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
        [](common_params & params, int value) {
            params.ppl_stride = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"--ppl-output-type"}, "<0|1>",
        string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
        [](common_params & params, int value) {
            params.ppl_output_type = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
    add_opt(common_arg(
        {"-dt", "--defrag-thold"}, "N",
        string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
        [](common_params & params, const std::string & value) {
            params.defrag_thold = std::stof(value);
        }
    ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
    add_opt(common_arg(
        {"-np", "--parallel"}, "N",
        string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
        [](common_params & params, int value) {
            params.n_parallel = value;
        }
    ).set_env("LLAMA_ARG_N_PARALLEL"));
    add_opt(common_arg(
        {"-ns", "--sequences"}, "N",
        string_format("number of sequences to decode (default: %d)", params.n_sequences),
        [](common_params & params, int value) {
            params.n_sequences = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
    add_opt(common_arg(
        {"-cb", "--cont-batching"},
        string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
        [](common_params & params) {
            params.cont_batching = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
    add_opt(common_arg(
        {"-nocb", "--no-cont-batching"},
        "disable continuous batching",
        [](common_params & params) {
            params.cont_batching = false;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
    add_opt(common_arg(
        {"--mmproj"}, "FILE",
        "path to a multimodal projector file for LLaVA. see examples/llava/README.md",
        [](common_params & params, const std::string & value) {
            params.mmproj = value;
        }
    ).set_examples({LLAMA_EXAMPLE_LLAVA}));
    add_opt(common_arg(
        {"--image"}, "FILE",
        "path to an image file. use with multimodal models. Specify multiple times for batching",
        [](common_params & params, const std::string & value) {
            params.image.emplace_back(value);
        }
    ).set_examples({LLAMA_EXAMPLE_LLAVA}));
    if (llama_supports_rpc()) {
        add_opt(common_arg(
            {"--rpc"}, "SERVERS",
            "comma separated list of RPC servers",
            [](common_params & params, const std::string & value) {
                params.rpc_servers = value;
            }
        ).set_env("LLAMA_ARG_RPC"));
    }
    add_opt(common_arg(
        {"--mlock"},
        "force system to keep model in RAM rather than swapping or compressing",
        [](common_params & params) {
            params.use_mlock = true;
        }
    ).set_env("LLAMA_ARG_MLOCK"));
    add_opt(common_arg(
        {"--no-mmap"},
        "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
        [](common_params & params) {
            params.use_mmap = false;
        }
    ).set_env("LLAMA_ARG_NO_MMAP"));
    add_opt(common_arg(
        {"--numa"}, "TYPE",
        "attempt optimizations that help on some NUMA systems\n"
        "- distribute: spread execution evenly over all nodes\n"
        "- isolate: only spawn threads on CPUs on the node that execution started on\n"
        "- numactl: use the CPU map provided by numactl\n"
        "if run without this previously, it is recommended to drop the system page cache before using this\n"
        "see https://github.com/ggerganov/llama.cpp/issues/1437",
        [](common_params & params, const std::string & value) {
            /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
            else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
            else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
            else { throw std::invalid_argument("invalid value"); }
        }
    ).set_env("LLAMA_ARG_NUMA"));
    add_opt(common_arg(
        {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
        "number of layers to store in VRAM",
        [](common_params & params, int value) {
            params.n_gpu_layers = value;
            if (!llama_supports_gpu_offload()) {
                fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
                fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
            }
        }
    ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
    add_opt(common_arg(
        {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
        "number of layers to store in VRAM for the draft model",
        [](common_params & params, int value) {
            params.n_gpu_layers_draft = value;
            if (!llama_supports_gpu_offload()) {
                fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
                fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-sm", "--split-mode"}, "{none,layer,row}",
        "how to split the model across multiple GPUs, one of:\n"
        "- none: use one GPU only\n"
        "- layer (default): split layers and KV across GPUs\n"
        "- row: split rows across GPUs",
        [](common_params & params, const std::string & value) {
            std::string arg_next = value;
            if (arg_next == "none") {
                params.split_mode = LLAMA_SPLIT_MODE_NONE;
            } else if (arg_next == "layer") {
                params.split_mode = LLAMA_SPLIT_MODE_LAYER;
            } else if (arg_next == "row") {
#ifdef GGML_USE_SYCL
                fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
                exit(1);
#endif // GGML_USE_SYCL
                params.split_mode = LLAMA_SPLIT_MODE_ROW;
            } else {
                throw std::invalid_argument("invalid value");
            }
            if (!llama_supports_gpu_offload()) {
                fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
            }
        }
    ).set_env("LLAMA_ARG_SPLIT_MODE"));
    add_opt(common_arg(
        {"-ts", "--tensor-split"}, "N0,N1,N2,...",
        "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
        [](common_params & params, const std::string & value) {
            std::string arg_next = value;

            // split string by , and /
            const std::regex regex{ R"([,/]+)" };
            std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
            std::vector<std::string> split_arg{ it, {} };
            if (split_arg.size() >= llama_max_devices()) {
                throw std::invalid_argument(
                    string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
                );
            }
            for (size_t i = 0; i < llama_max_devices(); ++i) {
                if (i < split_arg.size()) {
                    params.tensor_split[i] = std::stof(split_arg[i]);
                } else {
                    params.tensor_split[i] = 0.0f;
                }
            }
            if (!llama_supports_gpu_offload()) {
                fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
            }
        }
    ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
    add_opt(common_arg(
        {"-mg", "--main-gpu"}, "INDEX",
        string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
        [](common_params & params, int value) {
            params.main_gpu = value;
            if (!llama_supports_gpu_offload()) {
                fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
            }
        }
    ).set_env("LLAMA_ARG_MAIN_GPU"));
    add_opt(common_arg(
        {"--check-tensors"},
        string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
        [](common_params & params) {
            params.check_tensors = true;
        }
    ));
    add_opt(common_arg(
        {"--override-kv"}, "KEY=TYPE:VALUE",
        "advanced option to override model metadata by key. may be specified multiple times.\n"
        "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
        [](common_params & params, const std::string & value) {
            if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
                throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
            }
        }
    ));
    add_opt(common_arg(
        {"--lora"}, "FNAME",
        "path to LoRA adapter (can be repeated to use multiple adapters)",
        [](common_params & params, const std::string & value) {
            params.lora_adapters.push_back({ std::string(value), 1.0 });
        }
        // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
    ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
    add_opt(common_arg(
        {"--lora-scaled"}, "FNAME", "SCALE",
        "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
        [](common_params & params, const std::string & fname, const std::string & scale) {
            params.lora_adapters.push_back({ fname, std::stof(scale) });
        }
        // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
    ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
    add_opt(common_arg(
        {"--control-vector"}, "FNAME",
        "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
        [](common_params & params, const std::string & value) {
            params.control_vectors.push_back({ 1.0f, value, });
        }
    ));
    add_opt(common_arg(
        {"--control-vector-scaled"}, "FNAME", "SCALE",
        "add a control vector with user defined scaling SCALE\n"
        "note: this argument can be repeated to add multiple scaled control vectors",
        [](common_params & params, const std::string & fname, const std::string & scale) {
            params.control_vectors.push_back({ std::stof(scale), fname });
        }
    ));
    add_opt(common_arg(
        {"--control-vector-layer-range"}, "START", "END",
        "layer range to apply the control vector(s) to, start and end inclusive",
        [](common_params & params, const std::string & start, const std::string & end) {
            params.control_vector_layer_start = std::stoi(start);
            params.control_vector_layer_end = std::stoi(end);
        }
    ));
    add_opt(common_arg(
        {"-a", "--alias"}, "STRING",
        "set alias for model name (to be used by REST API)",
        [](common_params & params, const std::string & value) {
            params.model_alias = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
    add_opt(common_arg(
        {"-m", "--model"}, "FNAME",
        ex == LLAMA_EXAMPLE_EXPORT_LORA
            ? std::string("model path from which to load base model")
            : string_format(
                "model path (default: `models/$filename` with filename from `--hf-file` "
                "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
            ),
        [](common_params & params, const std::string & value) {
            params.model = value;
        }
    ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
    add_opt(common_arg(
        {"-md", "--model-draft"}, "FNAME",
        "draft model for speculative decoding (default: unused)",
        [](common_params & params, const std::string & value) {
            params.model_draft = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
    add_opt(common_arg(
        {"-mu", "--model-url"}, "MODEL_URL",
        "model download url (default: unused)",
        [](common_params & params, const std::string & value) {
            params.model_url = value;
        }
    ).set_env("LLAMA_ARG_MODEL_URL"));
    add_opt(common_arg(
        {"-hfr", "--hf-repo"}, "REPO",
        "Hugging Face model repository (default: unused)",
        [](common_params & params, const std::string & value) {
            params.hf_repo = value;
        }
    ).set_env("LLAMA_ARG_HF_REPO"));
    add_opt(common_arg(
        {"-hff", "--hf-file"}, "FILE",
        "Hugging Face model file (default: unused)",
        [](common_params & params, const std::string & value) {
            params.hf_file = value;
        }
    ).set_env("LLAMA_ARG_HF_FILE"));
    add_opt(common_arg(
        {"-hft", "--hf-token"}, "TOKEN",
        "Hugging Face access token (default: value from HF_TOKEN environment variable)",
        [](common_params & params, const std::string & value) {
            params.hf_token = value;
        }
    ).set_env("HF_TOKEN"));
    add_opt(common_arg(
        {"--context-file"}, "FNAME",
        "file to load context from (repeat to specify multiple files)",
        [](common_params & params, const std::string & value) {
            std::ifstream file(value, std::ios::binary);
            if (!file) {
                throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
            }
            params.context_files.push_back(value);
        }
    ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
    add_opt(common_arg(
        {"--chunk-size"}, "N",
        string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
        [](common_params & params, int value) {
            params.chunk_size = value;
        }
    ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
    add_opt(common_arg(
        {"--chunk-separator"}, "STRING",
        string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
        [](common_params & params, const std::string & value) {
            params.chunk_separator = value;
        }
    ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
    add_opt(common_arg(
        {"--junk"}, "N",
        string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
        [](common_params & params, int value) {
            params.n_junk = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
    add_opt(common_arg(
        {"--pos"}, "N",
        string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
        [](common_params & params, int value) {
            params.i_pos = value;
        }
    ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
    add_opt(common_arg(
        {"-o", "--output", "--output-file"}, "FNAME",
        string_format("output file (default: '%s')",
            ex == LLAMA_EXAMPLE_EXPORT_LORA
                ? params.lora_outfile.c_str()
                : ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
                    ? params.cvector_outfile.c_str()
                    : params.out_file.c_str()),
        [](common_params & params, const std::string & value) {
            params.out_file = value;
            params.cvector_outfile = value;
            params.lora_outfile = value;
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
    add_opt(common_arg(
        {"-ofreq", "--output-frequency"}, "N",
        string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
        [](common_params & params, int value) {
            params.n_out_freq = value;
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
    add_opt(common_arg(
        {"--save-frequency"}, "N",
        string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
        [](common_params & params, int value) {
            params.n_save_freq = value;
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
    add_opt(common_arg(
        {"--process-output"},
        string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
        [](common_params & params) {
            params.process_output = true;
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
    add_opt(common_arg(
        {"--no-ppl"},
        string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
        [](common_params & params) {
            params.compute_ppl = false;
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
    add_opt(common_arg(
        {"--chunk", "--from-chunk"}, "N",
        string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
        [](common_params & params, int value) {
            params.i_chunk = value;
        }
    ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
    add_opt(common_arg(
        {"-pps"},
        string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
        [](common_params & params) {
            params.is_pp_shared = true;
        }
    ).set_examples({LLAMA_EXAMPLE_BENCH}));
    add_opt(common_arg(
        {"-npp"}, "n0,n1,...",
        "number of prompt tokens",
        [](common_params & params, const std::string & value) {
            auto p = string_split<int>(value, ',');
            params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
        }
    ).set_examples({LLAMA_EXAMPLE_BENCH}));
    add_opt(common_arg(
        {"-ntg"}, "n0,n1,...",
        "number of text generation tokens",
        [](common_params & params, const std::string & value) {
            auto p = string_split<int>(value, ',');
            params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
        }
    ).set_examples({LLAMA_EXAMPLE_BENCH}));
    add_opt(common_arg(
        {"-npl"}, "n0,n1,...",
        "number of parallel prompts",
        [](common_params & params, const std::string & value) {
            auto p = string_split<int>(value, ',');
            params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
        }
    ).set_examples({LLAMA_EXAMPLE_BENCH}));
    add_opt(common_arg(
        {"--embd-normalize"}, "N",
        string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
        [](common_params & params, int value) {
            params.embd_normalize = value;
        }
    ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
    add_opt(common_arg(
        {"--embd-output-format"}, "FORMAT",
        "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
        [](common_params & params, const std::string & value) {
            params.embd_out = value;
        }
    ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
    add_opt(common_arg(
        {"--embd-separator"}, "STRING",
        "separator of embeddings (default \\n) for example \"<#sep#>\"",
        [](common_params & params, const std::string & value) {
            params.embd_sep = value;
        }
    ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
    add_opt(common_arg(
        {"--host"}, "HOST",
        string_format("ip address to listen (default: %s)", params.hostname.c_str()),
        [](common_params & params, const std::string & value) {
            params.hostname = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
    add_opt(common_arg(
        {"--port"}, "PORT",
        string_format("port to listen (default: %d)", params.port),
        [](common_params & params, int value) {
            params.port = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
    add_opt(common_arg(
        {"--path"}, "PATH",
        string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
        [](common_params & params, const std::string & value) {
            params.public_path = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
    add_opt(common_arg(
        {"--embedding", "--embeddings"},
        string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
        [](common_params & params) {
            params.embedding = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
    add_opt(common_arg(
        {"--reranking", "--rerank"},
        string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
        [](common_params & params) {
            params.reranking = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
    add_opt(common_arg(
        {"--api-key"}, "KEY",
        "API key to use for authentication (default: none)",
        [](common_params & params, const std::string & value) {
            params.api_keys.push_back(value);
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
    add_opt(common_arg(
        {"--api-key-file"}, "FNAME",
        "path to file containing API keys (default: none)",
        [](common_params & params, const std::string & value) {
            std::ifstream key_file(value);
            if (!key_file) {
                throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
            }
            std::string key;
            while (std::getline(key_file, key)) {
                if (!key.empty()) {
                        params.api_keys.push_back(key);
                }
            }
            key_file.close();
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}));
    add_opt(common_arg(
        {"--ssl-key-file"}, "FNAME",
        "path to file a PEM-encoded SSL private key",
        [](common_params & params, const std::string & value) {
            params.ssl_file_key = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
    add_opt(common_arg(
        {"--ssl-cert-file"}, "FNAME",
        "path to file a PEM-encoded SSL certificate",
        [](common_params & params, const std::string & value) {
            params.ssl_file_cert = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
    add_opt(common_arg(
        {"-to", "--timeout"}, "N",
        string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
        [](common_params & params, int value) {
            params.timeout_read  = value;
            params.timeout_write = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
    add_opt(common_arg(
        {"--threads-http"}, "N",
        string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
        [](common_params & params, int value) {
            params.n_threads_http = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
    add_opt(common_arg(
        {"--cache-reuse"}, "N",
        string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
        [](common_params & params, int value) {
            params.n_cache_reuse = value;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
    add_opt(common_arg(
        {"--metrics"},
        string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
        [](common_params & params) {
            params.endpoint_metrics = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
    add_opt(common_arg(
        {"--slots"},
        string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
        [](common_params & params) {
            params.endpoint_slots = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
    add_opt(common_arg(
        {"--props"},
        string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
        [](common_params & params) {
            params.endpoint_props = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
    add_opt(common_arg(
        {"--no-slots"},
        "disables slots monitoring endpoint",
        [](common_params & params) {
            params.endpoint_slots = false;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
    add_opt(common_arg(
        {"--slot-save-path"}, "PATH",
        "path to save slot kv cache (default: disabled)",
        [](common_params & params, const std::string & value) {
            params.slot_save_path = value;
            // if doesn't end with DIRECTORY_SEPARATOR, add it
            if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
                params.slot_save_path += DIRECTORY_SEPARATOR;
            }
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}));
    add_opt(common_arg(
        {"--chat-template"}, "JINJA_TEMPLATE",
        "set custom jinja chat template (default: template taken from model's metadata)\n"
        "if suffix/prefix are specified, template will be disabled\n"
        "only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template",
        [](common_params & params, const std::string & value) {
            if (!common_chat_verify_template(value)) {
                throw std::runtime_error(string_format(
                    "error: the supplied chat template is not supported: %s\n"
                    "note: llama.cpp does not use jinja parser, we only support commonly used templates\n",
                    value.c_str()
                ));
            }
            params.chat_template = value;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
    add_opt(common_arg(
        {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
        string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
        [](common_params & params, const std::string & value) {
            params.slot_prompt_similarity = std::stof(value);
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}));
    add_opt(common_arg(
        {"--lora-init-without-apply"},
        string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
        [](common_params & params) {
            params.lora_init_without_apply = true;
        }
    ).set_examples({LLAMA_EXAMPLE_SERVER}));
    add_opt(common_arg(
        {"--simple-io"},
        "use basic IO for better compatibility in subprocesses and limited consoles",
        [](common_params & params) {
            params.simple_io = true;
        }
    ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
    add_opt(common_arg(
        {"-ld", "--logdir"}, "LOGDIR",
        "path under which to save YAML logs (no logging if unset)",
        [](common_params & params, const std::string & value) {
            params.logdir = value;

            if (params.logdir.back() != DIRECTORY_SEPARATOR) {
                params.logdir += DIRECTORY_SEPARATOR;
            }
        }
    ));
    add_opt(common_arg(
        {"--positive-file"}, "FNAME",
        string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
        [](common_params & params, const std::string & value) {
            params.cvector_positive_file = value;
        }
    ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
    add_opt(common_arg(
        {"--negative-file"}, "FNAME",
        string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
        [](common_params & params, const std::string & value) {
            params.cvector_negative_file = value;
        }
    ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
    add_opt(common_arg(
        {"--pca-batch"}, "N",
        string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
        [](common_params & params, int value) {
            params.n_pca_batch = value;
        }
    ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
    add_opt(common_arg(
        {"--pca-iter"}, "N",
        string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
        [](common_params & params, int value) {
            params.n_pca_iterations = value;
        }
    ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
    add_opt(common_arg(
        {"--method"}, "{pca, mean}",
        "dimensionality reduction method to be used (default: pca)",
        [](common_params & params, const std::string & value) {
            /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
            else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
            else { throw std::invalid_argument("invalid value"); }
        }
    ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
    add_opt(common_arg(
        {"--output-format"}, "{md,jsonl}",
        "output format for batched-bench results (default: md)",
        [](common_params & params, const std::string & value) {
            /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
            else if (value == "md") { params.batched_bench_output_jsonl = false; }
            else { std::invalid_argument("invalid value"); }
        }
    ).set_examples({LLAMA_EXAMPLE_BENCH}));
    add_opt(common_arg(
        {"--log-disable"},
        "Log disable",
        [](common_params &) {
            common_log_pause(common_log_main());
        }
    ));
    add_opt(common_arg(
        {"--log-file"}, "FNAME",
        "Log to file",
        [](common_params &, const std::string & value) {
            common_log_set_file(common_log_main(), value.c_str());
        }
    ));
    add_opt(common_arg(
        {"--log-colors"},
        "Enable colored logging",
        [](common_params &) {
            common_log_set_colors(common_log_main(), true);
        }
    ).set_env("LLAMA_LOG_COLORS"));
    add_opt(common_arg(
        {"-v", "--verbose", "--log-verbose"},
        "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
        [](common_params & params) {
            params.verbosity = INT_MAX;
            common_log_set_verbosity_thold(INT_MAX);
        }
    ));
    add_opt(common_arg(
        {"-lv", "--verbosity", "--log-verbosity"}, "N",
        "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
        [](common_params & params, int value) {
            params.verbosity = value;
            common_log_set_verbosity_thold(value);
        }
    ).set_env("LLAMA_LOG_VERBOSITY"));
    add_opt(common_arg(
        {"--log-prefix"},
        "Enable prefx in log messages",
        [](common_params &) {
            common_log_set_prefix(common_log_main(), true);
        }
    ).set_env("LLAMA_LOG_PREFIX"));
    add_opt(common_arg(
        {"--log-timestamps"},
        "Enable timestamps in log messages",
        [](common_params &) {
            common_log_set_timestamps(common_log_main(), true);
        }
    ).set_env("LLAMA_LOG_TIMESTAMPS"));

    return ctx_arg;
}