Spaces:
Sleeping
Sleeping
# app.py | |
# π GIfty β Smart Gift Recommender (Embeddings + FAISS) | |
# Dataset: ckandemir/amazon-products (Hugging Face) | |
# UI: Gradio (English) | |
# | |
# Requirements (see requirements.txt): | |
# gradio, datasets, pandas, numpy, sentence-transformers, faiss-cpu, tabulate | |
import os, re, random | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
# ========================= Config ========================= | |
MAX_ROWS = int(os.getenv("MAX_ROWS", "10000")) # cap for speed | |
TITLE = "# π GIfty β Smart Gift Recommender\n*Top-3 similar picks + 1 generated idea + personalized message*" | |
OCCASION_OPTIONS = [ | |
"birthday", "anniversary", "valentines", "graduation", | |
"housewarming", "christmas", "hanukkah", "thank_you", | |
] | |
AGE_OPTIONS = { | |
"any": "any", | |
"kid (3β12)": "kids", | |
"teen (13β17)": "teens", | |
"adult (18β64)": "adult", | |
"senior (65+)": "senior", | |
} | |
INTEREST_OPTIONS = [ | |
"reading","writing","tech","travel","fitness","cooking","tea","coffee", | |
"games","movies","plants","music","design","stationery","home","experience", | |
"digital","aesthetic","premium","eco","practical","minimalist","social","party", | |
"photography","outdoors","pets","beauty","jewelry" | |
] | |
MODEL_CHOICES = { | |
"MiniLM (384d)": "sentence-transformers/all-MiniLM-L6-v2", | |
"MPNet (768d)": "sentence-transformers/all-mpnet-base-v2", | |
"E5-base (768d)": "intfloat/e5-base-v2", | |
} | |
# ========================= Data loading & schema ========================= | |
def _to_price_usd(x): | |
s = str(x).strip().replace("$","").replace(",","") | |
try: return float(s) | |
except: return np.nan | |
def _infer_age_from_category(cat: str) -> str: | |
s = (cat or "").lower() | |
if any(k in s for k in ["baby", "toddler", "infant"]): return "kids" | |
if "toys & games" in s or "board games" in s or "toy" in s: return "kids" | |
if any(k in s for k in ["teen", "young adult", "ya"]): return "teens" | |
return "any" | |
def _infer_occasion_tags(cat: str) -> str: | |
s = (cat or "").lower() | |
tags = set(["birthday"]) # default | |
if any(k in s for k in ["home & kitchen","furniture","home dΓ©cor","home decor","garden","tools","appliance","cookware","kitchen"]): | |
tags.update(["housewarming","thank_you"]) | |
if any(k in s for k in ["beauty","jewelry","watch","fragrance","cosmetic","makeup","skincare"]): | |
tags.update(["valentines","anniversary"]) | |
if any(k in s for k in ["toys","board game","puzzle","kids","lego"]): | |
tags.update(["hanukkah","christmas"]) | |
if any(k in s for k in ["office","stationery","notebook","pen","planner"]): | |
tags.update(["graduation","thank_you"]) | |
if any(k in s for k in ["electronics","camera","audio","headphones","gaming","computer"]): | |
tags.update(["birthday","christmas"]) | |
if any(k in s for k in ["book","novel","literature"]): | |
tags.update(["graduation","thank_you"]) | |
if any(k in s for k in ["sports","fitness","outdoor","camping","hiking","run","yoga"]): | |
tags.update(["birthday"]) | |
return ",".join(sorted(tags)) | |
def map_amazon_to_schema(df_raw: pd.DataFrame) -> pd.DataFrame: | |
cols = {c.lower().strip(): c for c in df_raw.columns} | |
get = lambda key: df_raw.get(cols.get(key, ""), "") | |
out = pd.DataFrame({ | |
"name": get("product name"), | |
"short_desc": get("description"), | |
"tags": get("category"), | |
"price_usd": get("selling price").map(_to_price_usd) if "selling price" in cols else np.nan, | |
"age_range": "", | |
"gender_tags": "any", | |
"occasion_tags": "", | |
"persona_fit": get("category"), | |
"image_url": get("image") if "image" in cols else "", | |
}) | |
# clean | |
out["name"] = out["name"].astype(str).str.strip().str.slice(0, 120) | |
out["short_desc"] = out["short_desc"].astype(str).str.strip().str.slice(0, 500) | |
out["tags"] = out["tags"].astype(str).str.replace("|", ", ").str.lower() | |
out["persona_fit"] = out["persona_fit"].astype(str).str.lower() | |
# infer occasion & age | |
out["occasion_tags"] = out["tags"].map(_infer_occasion_tags) | |
out["age_range"] = out["tags"].map(_infer_age_from_category).fillna("any") | |
return out | |
def build_doc(row: pd.Series) -> str: | |
parts = [ | |
str(row.get("name","")), | |
str(row.get("short_desc","")), | |
str(row.get("tags","")), | |
str(row.get("persona_fit","")), | |
str(row.get("occasion_tags","")), | |
str(row.get("age_range","")), | |
] | |
return " | ".join([p for p in parts if p]) | |
def load_catalog() -> pd.DataFrame: | |
try: | |
ds = load_dataset("ckandemir/amazon-products", split="train") | |
raw = ds.to_pandas() | |
except Exception: | |
# Fallback (keeps the app alive if internet is blocked) | |
raw = pd.DataFrame({ | |
"Product Name": ["Wireless Earbuds", "Coffee Sampler", "Strategy Board Game"], | |
"Description": [ | |
"Compact earbuds with noise isolation and long battery life.", | |
"Four single-origin roasts from small roasters.", | |
"Modern eurogame for 2β4 players, 45β60 minutes." | |
], | |
"Category": ["Electronics | Audio","Grocery | Coffee","Toys & Games | Board Games"], | |
"Selling Price": ["$59.00","$34.00","$39.00"], | |
"Image": ["","",""], | |
}) | |
df = map_amazon_to_schema(raw).drop_duplicates(subset=["name","short_desc"]) | |
if len(df) > MAX_ROWS: | |
df = df.sample(n=MAX_ROWS, random_state=42).reset_index(drop=True) | |
df["doc"] = df.apply(build_doc, axis=1) | |
return df | |
CATALOG = load_catalog() | |
# ========================= Business filters ========================= | |
def _contains_ci(series: pd.Series, needle: str) -> pd.Series: | |
if not needle: return pd.Series(True, index=series.index) | |
pat = re.escape(needle) | |
return series.fillna("").str.contains(pat, case=False, regex=True) | |
def filter_business(df: pd.DataFrame, budget_min=None, budget_max=None, | |
occasion: str=None, age_range: str="any") -> pd.DataFrame: | |
m = pd.Series(True, index=df.index) | |
if budget_min is not None: | |
m &= df["price_usd"].fillna(0) >= float(budget_min) | |
if budget_max is not None: | |
m &= df["price_usd"].fillna(1e9) <= float(budget_max) | |
if occasion: | |
m &= _contains_ci(df["occasion_tags"], occasion) | |
if age_range and age_range != "any": | |
m &= (df["age_range"].fillna("any").isin([age_range, "any"])) | |
return df[m] | |
# ========================= Embeddings + FAISS ========================= | |
class EmbeddingStore: | |
def __init__(self, docs: List[str]): | |
self.docs = docs | |
self.model_cache: Dict[str, SentenceTransformer] = {} | |
self.index_cache: Dict[str, faiss.Index] = {} | |
self.dim_cache: Dict[str, int] = {} | |
def _build(self, model_id: str): | |
model = SentenceTransformer(model_id) | |
embs = model.encode(self.docs, convert_to_numpy=True, normalize_embeddings=True) | |
index = faiss.IndexFlatIP(embs.shape[1]) # cosine if normalized | |
index.add(embs) | |
self.model_cache[model_id] = model | |
self.index_cache[model_id] = index | |
self.dim_cache[model_id] = embs.shape[1] | |
def ensure_ready(self, model_id: str): | |
if model_id not in self.index_cache: | |
self._build(model_id) | |
def search(self, model_id: str, query: str, topn: int) -> Tuple[np.ndarray, np.ndarray]: | |
self.ensure_ready(model_id) | |
model = self.model_cache[model_id] | |
index = self.index_cache[model_id] | |
qv = model.encode([query], convert_to_numpy=True, normalize_embeddings=True) | |
sims, idxs = index.search(qv, topn) | |
return sims[0], idxs[0] | |
EMB_STORE = EmbeddingStore(CATALOG["doc"].tolist()) | |
def profile_to_query(profile: Dict) -> str: | |
"""Weighted, doc-aligned query: focuses on interests/occasion/age used in docs.""" | |
interests = [t.strip().lower() for t in profile.get("interests", []) if t.strip()] | |
interests_expanded = interests + interests + interests # weight *3 | |
occasion = (profile.get("occasion", "") or "").lower() | |
age = profile.get("age_range", "any") | |
parts = [] | |
if interests_expanded: parts.append(", ".join(interests_expanded)) | |
if occasion: parts.append(occasion) | |
if age and age != "any": parts.append(age) | |
return " | ".join(parts).strip() | |
def recommend_topk_embeddings(profile: Dict, model_key: str, k: int=3) -> pd.DataFrame: | |
model_id = MODEL_CHOICES.get(model_key, list(MODEL_CHOICES.values())[0]) | |
query = profile_to_query(profile) | |
# global search on whole catalog | |
sims, idxs = EMB_STORE.search(model_id, query, topn=min(max(k*50, k), len(CATALOG))) | |
# filter to business subset | |
df_f = filter_business( | |
CATALOG, | |
budget_min=profile.get("budget_min"), | |
budget_max=profile.get("budget_max"), | |
occasion=profile.get("occasion"), | |
age_range=profile.get("age_range","any"), | |
) | |
if df_f.empty: df_f = CATALOG | |
order = np.argsort(-sims) # descending similarity | |
seen, picks = set(), [] | |
for gi in idxs[order]: | |
gi = int(gi) | |
if gi not in df_f.index: | |
continue | |
nm = CATALOG.loc[gi, "name"] | |
if nm in seen: | |
continue | |
seen.add(nm) | |
picks.append(gi) | |
if len(picks) >= k: | |
break | |
if not picks: | |
res = df_f.head(k).copy() | |
res["similarity"] = np.nan | |
return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]] | |
gi_to_sim = {int(i): float(s) for i, s in zip(idxs, sims)} | |
res = CATALOG.loc[picks].copy() | |
res["similarity"] = [gi_to_sim.get(int(i), np.nan) for i in picks] | |
return res[["name","short_desc","price_usd","occasion_tags","persona_fit","age_range","image_url","similarity"]] | |
# ========================= Synthetic item + message ========================= | |
def generate_item(profile: Dict) -> Dict: | |
interests = profile.get("interests", []) | |
occasion = profile.get("occasion","birthday") | |
budget = profile.get("budget_max", profile.get("budget_usd", 50)) or 50 | |
age = profile.get("age_range","any") | |
core = (interests[0] if interests else "hobby").strip() or "hobby" | |
style = random.choice(["personalized","experience","bundle"]) | |
if style == "personalized": | |
base_name = f"Custom {core} accessory with initials" | |
base_desc = f"Thoughtful personalized {core} accessory tailored to their taste." | |
elif style == "experience": | |
base_name = f"{core.title()} workshop voucher" | |
base_desc = f"A guided intro session to explore {core} in a fun, hands-on way." | |
else: | |
base_name = f"{core.title()} starter bundle" | |
base_desc = f"A curated set to kickstart their {core} passion." | |
if age == "kids": | |
base_desc += " Suitable for kids with safe, age-appropriate materials." | |
elif age == "teens": | |
base_desc += " Trendy pick that suits young enthusiasts." | |
elif age == "senior": | |
base_desc += " Comfortable and easy to use." | |
price = float(np.clip(float(budget), 10, 300)) | |
return { | |
"name": f"{base_name} ({occasion})", | |
"short_desc": base_desc, | |
"price_usd": price, | |
"occasion_tags": occasion, | |
"persona_fit": ", ".join(interests) or "general", | |
"age_range": age, | |
"image_url": "" | |
} | |
def generate_message(profile: Dict) -> str: | |
name = profile.get("recipient_name","Friend") | |
occasion = profile.get("occasion","birthday") | |
tone = profile.get("tone","warm and friendly") | |
return (f"Dear {name},\n" | |
f"Happy {occasion}! Wishing you health, joy, and wonderful memories. " | |
f"May your goals come true. With {tone}.") | |
# ========================= Gradio UI ========================= | |
EXAMPLES = [ | |
[["tech","music"], "birthday", 20, 60, "Noa", "adult (18β64)", "MiniLM (384d)", "warm and friendly"], | |
[["home","cooking","practical"], "housewarming", 25, 45, "Daniel", "adult (18β64)", "MiniLM (384d)", "warm"], | |
[["games","photography"], "birthday", 30, 120, "Omer", "teen (13β17)", "MPNet (768d)", "fun"], | |
[["reading","design","aesthetic"], "thank_you", 15, 35, "Maya", "any", "E5-base (768d)", "friendly"], | |
] | |
def safe_markdown_table(df: pd.DataFrame) -> str: | |
try: | |
return df.to_markdown(index=False) | |
except Exception: | |
return df.to_string(index=False) | |
def ui_predict(interests_list: List[str], occasion: str, budget_min: float, budget_max: float, | |
recipient_name: str, age_label: str, model_key: str, tone: str): | |
try: | |
# sanity | |
if budget_min is None: budget_min = 20.0 | |
if budget_max is None: budget_max = 60.0 | |
if budget_min > budget_max: | |
budget_min, budget_max = budget_max, budget_min | |
age_range = AGE_OPTIONS.get(age_label, "any") | |
profile = { | |
"recipient_name": recipient_name or "Friend", | |
"interests": interests_list or [], | |
"occasion": occasion or "birthday", | |
"budget_min": float(budget_min), | |
"budget_max": float(budget_max), | |
"budget_usd": float(budget_max), | |
"age_range": age_range, | |
"tone": tone or "warm and friendly", | |
} | |
recs = recommend_topk_embeddings(profile, model_key, k=3) | |
gen = generate_item(profile) | |
msg = generate_message(profile) | |
top3_md = safe_markdown_table(recs[["name","short_desc","price_usd","age_range","similarity"]]) | |
gen_md = f"**{gen['name']}**\n\n{gen['short_desc']}\n\n~${gen['price_usd']:.0f}" | |
return top3_md, gen_md, msg | |
except Exception as e: | |
return f":warning: Error: {e}", "", "" | |
with gr.Blocks() as demo: | |
gr.Markdown(TITLE) | |
with gr.Row(): | |
interests = gr.CheckboxGroup( | |
label="Interests (select a few)", | |
choices=INTEREST_OPTIONS, | |
value=["tech","music"], | |
interactive=True | |
) | |
with gr.Row(): | |
occasion = gr.Dropdown(label="Occasion", choices=OCCASION_OPTIONS, value="birthday") | |
age = gr.Dropdown(label="Age group", choices=list(AGE_OPTIONS.keys()), value="adult (18β64)") | |
model = gr.Dropdown(label="Embedding model", choices=list(MODEL_CHOICES.keys()), value="MiniLM (384d)") | |
# Two sliders (for older Gradio versions): min + max budget | |
with gr.Row(): | |
budget_min = gr.Slider(label="Min budget (USD)", minimum=5, maximum=500, step=1, value=20) | |
budget_max = gr.Slider(label="Max budget (USD)", minimum=5, maximum=500, step=1, value=60) | |
with gr.Row(): | |
recipient_name = gr.Textbox(label="Recipient name", value="Noa") | |
tone = gr.Textbox(label="Message tone", value="warm and friendly") | |
go = gr.Button("Get GIfty π―") | |
out_top3 = gr.Markdown(label="Top-3 recommendations") | |
out_gen = gr.Markdown(label="Generated item") | |
out_msg = gr.Markdown(label="Personalized message") | |
gr.Examples( | |
EXAMPLES, | |
[interests, occasion, budget_min, budget_max, recipient_name, age, model, tone], | |
label="Quick examples", | |
) | |
go.click( | |
ui_predict, | |
[interests, occasion, budget_min, budget_max, recipient_name, age, model, tone], | |
[out_top3, out_gen, out_msg] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |